Electron scattering from light nuclei

Ingo Sick

Interest

can calculate wave function exactly from V_{NN} Faddeev, VMC, GFMC, Nocore SM, ... (e,e) \pm only probe sensitive to short range rich set of form factors, including spin observables \rightarrow excellent testing ground for understanding of nuclei

Questions

standard model of nuclear physics valid? relativistic effects important? role of mesonic degrees of freedom? role of quark-structure of N?

Special emphasis of talk: radii

absolute radii, useful for isotope shifts from atomic physics comparison with radii from μ atoms (Z=1,2) reference for matter radii of unstable nuclei radii \pm only practical observable (scattering in inv. kin.) parallel aspects to proton radius presently not understood problems

Deuteron

fundamental system of nuclear physics can be understood in terms of N+N? rich set of observables: C0, M1, C2, M1 Δ T=1 \pm best neutron target leading NR π -exchange absent (T=0)

Structure

loosely bound

for r > 1.5 fm dominated by asympt. tail only at short range interesting structure $M=\pm 1$: dumbbell-like

M = 0: torus-like

Form factors

cross section complicated due to I=1 nature 3 independent form factors contribute multipolarities C0, M1, C2

Equations in IA

$$rac{d\sigma(E, heta)}{d\Omega}^{PWIA} = \sigma_{Mott}(E, heta)[m{A(q)}+m{B(q)}tan(heta/2)^2]$$

$$egin{aligned} A(q) &= oldsymbol{F_{C0}}(q)^2 + (M_d^2 Q_d)^2 rac{8}{9} \eta^2 oldsymbol{F_{C2}}^2(q) \ &+ (rac{M_d}{M_p} \mu_d)^2 rac{2}{3} \eta (1+\eta) oldsymbol{F_{M1}}^2(q) \end{aligned}$$

$$t_{20}F^2 = \frac{-1}{\sqrt{2}}(\frac{8}{3}\eta F_{C0}F_{C2} + \frac{8}{9}\eta^2 F_{C2}^2 + \frac{1}{3}\eta[1 + 2(1+\eta)tg^2\frac{\theta}{2}]F_{M1}^2)$$

To separate C0, C2 need polarization observables

Available data

Cross sections: many experiments, large q, θ -range, very different accuracies some 512 data points

Experimental form factors (much more sensitive than σ 's)

Usual determination

experiments measure some σ , t_{2x} observable dominated by one of the form factors F_i use other F_j 's from some other data to extract F_i in PWIA publish F_i

Non-optimal

involves inter/extrapolation of F's does not use all info on F_i, F_j today available ignores Coulomb distortion

Optimal determination

use *all* primary data σ , t_{2x} , ... parameterize 3 F's using flexible parameterization apply Coulomb corrections fit simultaneously to *all* data

Get

L/T-separation during fit C0/C2-separation during fit statistical errors (error matrix) systematic errors (conservative estimation) change every data set by error refit add quadratically changes total error: quadratic sum

Same procedure as in N-N scattering

use cross section data in (energy-dependent) phase-shift analysis then discuss only phase shifts see e.g. Stoks *et al.*, PRC48(93)792

Main difference

do not "prune" the data set

in N-N $\sim 30\%$ of data eliminated to get $\chi^2 \sim 1$

do not float normalization

largest effort of experimentalists has gone into normalization take seriously

do not use theoretical NN potential as in phase-shift analysis no bias from parametrization (energy dependence)

Result

form factors with reliable error bars

Note

resulting F(q)'s correlated over interval $\Delta q \sim 1/R_{max} \sim 0.25 fm^{-1}$

 $(R_{max} = max. radius allowed for in r-space parametrization)$

uncertainty given by δF , not by scatter of points

Results for deuteron

Find

good agreement with theory substantial effect of MEC in C0, M1 C2 not sensitive (short-range suppressed) C0 much more sensitive than A(q)(A(q) = sum of 2 terms)

Moments of interest

rms-radius R

 R^2 defined as $\int r^4
ho(r) 4\pi dr$

obtainable from q=0 slope of G_e: $G_e(q) = 1 - q^2 R^2/6 + q^4 \langle r^4 \rangle / 120 + \dots$

Third Zemach moment

needed to get rms-radius from μ atoms data

$$\langle r^3
angle_{(2)} = \int d^3\!r \,\, r^3
ho_{(2)}(r) ~~~with~~
ho_{(2)}(r) = \int d^3\!z \,\,
ho_{ch}(|{
m z}-{
m r}|) \,\,
ho_{ch}(z)$$

measurable in (e,e) via

$$\langle r^3
angle_{(2)} = rac{48}{\pi} \int_0^\infty rac{dq}{q^4} \; (G_e^2(q) - 1 + q^2 R^2/3)$$

First Zemach moment, needed to calculate HFS in atoms

$$\langle r
angle_{(2)} = \int d^3\!r \,\, r \,\, \int d^3\!r' \,\,
ho_{ch}(|{
m r}-{
m r}'|) \,\,
ho_{mag}(r')$$

measurable in (e,e) via

$$\langle r
angle_{(2)} = -rac{4}{\pi} \int_0^\infty rac{dq}{q^2} (G_e(q) \,\, G_m(q) - 1),$$

Important consideration

in which q-region are data sensitive to given moment? diffuse answer: "small q" when is q "small" enough? And not too small?

Quantitative answer: \pm never studied

Notch test: change data in narrow interval around q_0 by 1% refit, determine change of moment plot this change as function of q_0

Example: for proton

Note: data above $q \sim 1.1 fm^{-1}$ not useful for R-determination Note: peak occurs at lower q if R is bigger

Deuteron rms-radius: from slope of A(q) at q=0?

Has been problem for long time

large scatter of results

disagreement with radius derived from n-p scattering length (Klarsfeld et al) Part of problem: analysis of data in PWIA

Main difficulty: extremely long tail of $\rho(r)$

leads to structure of A(q) at very low q complicates (implicit) extrapolation to q=0

Demonstration: study $[\int_0^{R_{max}}
ho(r) r^4 \; dr]^{1/2}$ as function of $R_{max} o \infty$

Consequence

hopeless to get radius of %-type accuracy data at 0.5 < q < 1. have largest sensitivity to rms-radius extrapolation to q = 0 dependent on model for A(q) strongly dependent on tail of corresponding density (=FT[A(q)])

Analogous to situation for proton, see PRC 89(14)012201

for 98% of proton rms radius need $\rho(\mathbf{r})$ out to $\mathbf{r}=3fm!$ effect of remaining 2% (at r > 3fm) on G(q) not measurable with q-space fit ($q_{max} = 2fm^{-1}$) can get rms-radii up to 1.5fm

Solution for both deuteron and proton

get away from q-space parametrization
extrapolation to q=0 too ambiguous
use r-space parametrization
with large-r tail constrained by physics
helpful: fit of data up to maximal q
such that also data constrain tail as much as possible

Shape of tail of deuteron density

well known entirely given by BE=2.2MeV for r>1.6fm

Fit of data: see below

Floating vs. absolute σ

main purpose of floating: low χ^2

 \rightarrow taken as sign of "successful" data fitting

Danger of floating

systematic errors increase toward edge of data set particularly dangerous for low-q edge consequence of sys.err. enhanced by extrapolation to q=0this extrapolation determines overall normalization

Better: do not float, accept poorer χ^2 . Much safer!

Results for deuteron radius

Tritium

(e,e) data more limited than for ³He comparison to theory for ³He more instructive isotope shifts for ³H poorly known; requires more attention!

Helium isotopes: interest

form factors comparison to theory isotope shifts (charge, matter) comparison electron scattering – muonic ${}^{4}\text{He}$

³He form factors

fairly compete set of σ measured, ~ 275 data points F_{ch} and F_m determined from global fit

quite good agreement theory-experiment also for C0, despite importance of MEC

³He rms-radius and Zemach moments

Zemach moments needed for analysis of muonic ³He (CREMA) recently determined (PRC90(14)064002) fit of *world* data including constraint on tail-shape

$\langle r angle_{(2)}$	$2.528\pm 0.016 fm$
$\langle r^3 angle_{(2)}$	$28.15 \pm 0.70 fm^{3}$
$\langle r_{ch}^2 angle^{1/2}$	$1.973\pm0.014 fm$
$\langle r_m^2 angle^{1/2}$	$1.976\pm 0.047 fm$
$\langle r_{ch}^4 angle$	$32.9\pm1.60 fm^4$

for Gauss (Exp) 26.68 (29.10) fm^3

fairly complete data set, up to 8 fm^{-1} recent high-q data from JLab confirm 2. minimum disagree somewhat with previous data total of 192 data points

decent agreement with VMC V14 Schiavilla et al.

$^{4}\mathrm{He}$

Moments

for rms-radius see below Zemach moment and $\langle r^4 \rangle \rightarrow$ atomic data

Recent determination

analysis of world data with constraint on tail of ρ (as for d) PRC 90(14)064002

Interesting question: which q-region important?

 $\langle r^3
angle_{(2)} = rac{48}{\pi} \int_0^\infty rac{dq}{q^4} \; (G_e^2(q) - 1 + q^2 R^2/3)$

dominated by extremely low q?

Sensitivity similar to the one of R

 $\langle r^3
angle_{(2)}$ differs significantly from standard values for gaussian/exponential ho's

$$egin{array}{lll} \langle r^3
angle_{(2)} & 16.73 \pm 0.10 fm^3 \ \langle r^2
angle^{1/2} & 1.681 \pm 0.004 fm \ \langle r^4
angle & 14.35 \pm 0.11 fm^4 \end{array}$$

Isotope shifts

3-4 measured via (e,e)

4-6-8 measured via atomic transitions at ANL (PRL 99(2007)252501) matter radii from scattering in inverse kinematics at GSI (EPJ A15(02)27)

3-4 shift from (e,e) agrees with shifts from atomic helium $(1.066, 1.028, 1.074 fm^2)$ cannot resolve discrepancies

RMS-radius: (e,e) $\Leftrightarrow \mu X$

for ⁴He low-q data base excellent, data with small syst. errors not only *shape* of large-r tail known absolute value of density in tail also known

world data on p-⁴He scattering + Forward Dispersion Relation analysis yields residuum of closest singularity

this gives absolute normalization of tail density

tail steeply falling as $\rm SE{\sim}19.8 MeV$

together with (e,e) produces more accurate value for rms-radius

 $\label{eq:rms-radius} \begin{array}{l} \text{rms-radius} = 1.681 \pm 0.004 fm, \, \text{smallest relative error of } all \, \text{nuclei} \\ \text{relevant with regards to proton radius puzzle} \end{array}$

Proton (charge) rms-radius

from electron scattering (world data w/o Bernauer) radius = $0.887 \pm 0.008 \ fm$ from muonic hydrogen (Pohl *et al.*) radius = $0.8409 \pm 0.0004 \ fm$ from electronic hydrogen 1S-nD radius = $0.8779 \pm 0.0094 \ fm$ (Beyer *et al.*)

Unsolved problem, many speculations!

```
One idea: e- and \mu "electromagnetic" interaction different
MUSE experiment at PSI
study of e^+ scattering at DESY, JLab, ...
```

 $e \iff \mu$ for helium

relative error of 4 He radius from (e,e) 4 times smaller than for proton

find agreement between (e,e) and μX : $1.681 \pm 0.004 \iff 1.679 \pm 0.001 fm!$

(value from μX still preliminary; A. Antognini, CREMA collaboration) good agreement only deepens puzzle

Lithium

⁶Li and ⁷Li accessible to electron scattering

shifts of A=8, 9, 11 measured by laser spectroscopy (Nörtershäuser et al.)

matter radii for A=6, 8, 9, 11 from proton scattering (Dobrovolsky et al.)

in inverse kinematics

pronounced A-dependent shape changes (clustering) interesting comparison to ab-initio calculations

Electron scattering

⁷Li in past standard reference for rms-radius not a good idea data for ⁶Li more extensive (86 σ), more precise ⁷Li experiments did not resolve 1. excited state quadrupole contribution in ⁷Li much more important, cannot be separated

Analysis of world data for 6 Li (PRC84(11)024307)

use tail constraint as well complication: p-tail or d-tail? (cluster structure of ⁶Li) $SE_p=4.6MeV, SE_d=1.5MeV$ as GFMC calculation (Pieper *et al.*) gives correct BE: use GFMC

Result

charge rms-radius = $2.589 \pm 0.039 fm$ comparatively large uncertainty due to poor low-q data

C0 well understood M1 problematic

Isotope shifts

measured by laser spectroscopy with stored ions Nörtershäuser *et al.*¹¹Li = Borromean nucleus (2n, ¹⁰Li unbound) 2n-separation energy only 369KeV

Extreme case of tail-importance: matter radii

Not emphasized: magnetic form factors + radii data in general not as good understanding more involved (MEC) rms-radii even more difficult to measure at low q σ is dominated by F_{ch} polarization transfer useful only for p best results from (old) 180° facilities small contribution from F_m enhances effect of systematic errors example: proton information from HFS limited

Heavier p-shell nuclei

complication: spin=3/2 (⁹Be, ¹¹B), =3 (¹⁰B)
little accurate data available
could do accurate experiment on ⁹Be
despite loss of knowhow
as accuracy for ¹²C excellent, could do Be/C ratio measurement
produce precise reference radius for isotope shift data

for review: see I.Sick, Prog. Part. Nucl. Phys. 47 (01) 245