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Electron scattering from light nuclei

Ingo Sick

Interest
can calculate wave function exactly from Vi
Faddeev, VMC, GFMC, Nocore SM, ...
(e,e) & only probe sensitive to short range
rich set of form factors, including spin observables
— excellent testing ground for understanding of nuclei

Questions
standard model of nuclear physics valid?
relativistic effects important?
role of mesonic degrees of freedom?
role of quark-structure of N7

Special emphasis of talk: radii
absolute radii, useful for isotope shifts from atomic physics
comparison with radii from p atoms (Z=1,2)
reference for matter radii of unstable nuclei
radii &+ only practical observable (scattering in inv. kin.)
parallel aspects to proton radius
presently not understood problems



Deuteron

fundamental system of nuclear physics

can be understood in terms of N+N?

rich set of observables: C0, M1, C2, M1 AT=1
+ best neutron target

leading NR m-exchange absent (T=0)

Structure
loosely bound
for » > 1.5fm dominated by asympt. tail
only at short range interesting structure
M==1: dumbbell-like
M= 0: torus-like
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Form factors
cross section complicated due to I=1 nature
3 independent form factors contribute
multipolarities C0, M1, C2

Equations in TA

dO'(E, H)PWIA

dQ = omot(E, 0)[A(q) + B(q)tan(0/2)?]

A(q) = Feo(q)® + (Mde)2§n2Féz(q)

Mg 22 2
+(—— —n(1 +n)F
(Mpud) 377( 77) Ml(q)

Mgy

B(q)=(M

Nd)2§77(1 +n)*Fi (@) n=q*/(4M})

~1
V2

To separate C0O, C2 need polarization observables

8 8 1 0
taoF” = —=(GnFooloz + nFe, + onll + 2(1 + m)tg* 1Fy,)



Available data

Cross sections: many experiments, large g, 8-range, very different accuracies
some 512 data points
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Experimental form factors (much more sensitive than o’s)

Usual determination
experiments measure some o, to,
observable dominated by one of the form factors F;
use other F)’s from some other data to extract F; in PWIA

publish F;



involves inter /extrapolation of F’s
does not use all info on Fj;, F; today available
ignores Coulomb distortion

Optimal determination

Get

use all primary data o, ts,,...

parameterize 3 F’s using flexible parameterization
apply Coulomb corrections

fit simultaneously to all data

L /T-separation during fit
C0/C2-separation during fit
statistical errors (error matrix)
systematic errors (conservative estimation)
change every data set by error
refit
add quadratically changes
total error: quadratic sum



Same procedure as in N-N scattering

use cross section data in (energy-dependent) phase-shift analysis
then discuss only phase shifts

see e.g. Stoks et al., PRC48(93)792

Main difference
do not ”prune” the data set
in N-N ~30% of data eliminated to get x? ~ 1
do not float normalization

largest effort of experimentalists has gone into normalization
take seriously

do not use theoretical NN potential as in phase-shift analysis
no bias from parametrization (energy dependence)

Result
form factors with reliable error bars

Note
resulting F'(q)’s correlated over interval Aqg ~ 1/R,,,q ~ 0.25fm ™!
(Rinaz = max. radius allowed for in r-space parametrization)

uncertainty given by 0F, not by scatter of points



FCO(q)

FM1(C1)
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Results for deuteron
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Fcz(Q)

A(q)
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Find

good agreement with theory
substantial effect of MEC in C0, M1
C2 not sensitive (short-range suppressed)
CO0 much more sensitive than A(q)
(A(q) = sum of 2 terms)



Moments of interest
rms-radius R
R? defined as [ r*p(r)dndr
obtainable from q=0 slope of G.: G.(q) =1 — ¢*R?/6 + q*(r*) /120 + ....
Third Zemach moment

needed to get rms-radius from g atoms data

(e = [ d ripu(r)  with  p(r) = [ d% pallz = xI) pu(2)
measurable in (e,e) via

() 48 [°° dqg

r = — —

2 ™ Jo q*

First Zemach moment, needed to calculate HFS in atoms

= [ @ r [ @ pale = D) pman(r)

measurable in (e,e) via

(Gi(a) — 1+ ¢*R?/3)

== [ %G Gula) - 1.



Important consideration
in which g-region are data sensitive to given moment?
diffuse answer: ”small q”
when is q ”small” enough? And not too small?

Quantitative answer: +never studied

Notch test: change data in narrow interval around gg by 1%
refit, determine change of moment
plot this change as function of qq

Example: for proton
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Note: data above q~ 1.1fm ™! not useful for R-determination
Note: peak occurs at lower q if R is bigger



Deuteron rms-radius: from slope of A(q) at q=07?

Has been problem for long time

large scatter of results

disagreement with radius derived from n-p scattering length (Klarsfeld et al)
Part of problem: analysis of data in PWIA

Main difficulty: extremely long tail of p(r)
leads to structure of A(q) at very low q
complicates (implicit) extrapolation to q=0

max

Demonstration: study [fOR p(r)r* dr]'/? as function of R4, — 00

rms(r)/rms for deuteron
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Consequence
hopeless to get radius of %-type accuracy
data at 0.5 < g < 1. have largest sensitivity to rms-radius
extrapolation to ¢ = 0 dependent on model for A(q)
strongly dependent on tail of corresponding density (=FT[A(q)])

Analogous to situation for proton, see PRC 89(14)012201
for 98% of proton rms radius need p(r) out to r=3fm!
effect of remaining 2% (at r > 3fm) on G(q) not measurable
with g-space fit (¢nmae = 2fm™!) can get rms-radii up to 1.5fm

Solution for both deuteron and proton
get away from g-space parametrization
extrapolation to q=0 too ambiguous
use r-space parametrization
with large-r tail constrained by physics
helpful: fit of data up to maximal q
such that also data constrain tail as much as possible

Shape of tail of deuteron density
well known
entirely given by BE=2.2MeV for r>1.6fm

Fit of data: see below



Floating vs. absolute o
main purpose of floating: low x?
— taken as sign of ”successful” data fitting

Danger of floating
systematic errors increase toward edge of data set
particularly dangerous for low-q edge
consequence of sys.err. enhanced by extrapolation to q=0
this extrapolation determines overall normalization
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Better: do not float, accept poorer x?. Much safer!



Results for deuteron radius

14 T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T

12— —

fit

2

N I IS BRI R RV R
| . | e, | | |
electron scattering 2.130 £0.010 fm
ic ?H (prelim!) 2.128940.0012 frm SC0¢ Agreement
ruonie . p ) ) ) much better than for proton
n-p scattering length 2.131 fm
Tritium

(e,e) data more limited than for *He
comparison to theory for 3He more instructive
isotope shifts for 3H poorly known; requires more attention!



Helium isotopes: interest
form factors
comparison to theory
isotope shifts (charge, matter)
comparison electron scattering — muonic *He

3He form factors
fairly compete set of o measured, ~ 275 data points
F., and F,, determined from global fit
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quite good agreement theory-experiment
also for CO, despite importance of MEC



SHe rms-radius and Zemach moments
Zemach moments needed for analysis of muonic *He (CREMA)
recently determined (PRC90(14)064002)
fit of world data
including constraint on tail-shape
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<T>(2) 2.528 + 0.016 fm
() 2) 28.15 £+ 0.70 fm?
(r2 )12 1.973 £ 0.014fm
(r2)1/2 | 1.976 4 0.047fm
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for Gauss (Exp) 26.68 (29.10) fm?



1He
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fairly complete data set, up to 8 fm™=!
recent high-q data from JLab
confirm 2. minimum
disagree somewhat with previous data
total of 192 data points
decent agreement with VMOC V14 Schiavilla et al.




Moments

for rms-radius see below
Zemach moment and (r?) — atomic data

Recent determination

analysis of world data
with constraint on tail of p (as for d)

PRC 90(14)064002

Interesting question: which g-region important?
(r) @) =2 Jo 4 (G2(a) — 1+ ¢*R?/3)

dominated by extremely low q7

20—

15}
Sensitivity similar to the one of R

(r3)(2) differs significantly from standard
values for gaussian/exponential p’s

third Zemach moment (fm?)

(r*)2) | 16.73+£0.10fm3 16.50(17.99)
(r2)1/2| 1.681 £ 0.004fm
(r?) 14.35 + 0.11 fm*




Isotope shifts
3-4 measured via (e,e)
4-6-8 measured via atomic transitions at ANL (PRL 99(2007)252501)
matter radii from scattering in inverse kinematics at GSI (EPJ A15(02)27)
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3-4 shift from (e,e) agrees with shifts from atomic helium (1.066,1.028,1.074 fm?)
cannot resolve discrepancies



RMS-radius: (e,e) < uX

for ‘He low-q data base excellent, data with small syst. errors

not only shape of large-r tail known

absolute value of density in tail also known
world data on p-*He scattering + Forward Dispersion Relation analysis
yields residuum of closest singularity
this gives absolute normalization of tail density

tail steeply falling as SE~19.8MeV

together with (e,e) produces more accurate value for rms-radius
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rms-radius = 1.681+0.004 fm, smallest relative error of all nuclei
relevant with regards to proton radius puzzle



Proton (charge) rms-radius
from electron scattering (world data w/o Bernauer)
radius = 0.88710.008 fm
from muonic hydrogen (Pohl et al.)
radius = 0.8409+0.0004 fm
from electronic hydrogen 1S—nD
radius = 0.877940.0094 fm (Beyer et al.)

Unsolved problem, many speculations!

One idea: e- and p ”electromagnetic” interaction different
MUSE experiment at PSI
study of e™ scattering at DESY, JLab, ...

e <= u for helium
relative error of *He radius from (e,e) 4 times smaller than for proton
find agreement between (e,e) and pX: 1.681+0.004 <= 1.67940.001 fm!
(value from pX still preliminary; A. Antognini, CREMA collaboration)

good agreement only deepens puzzle



Lithium
6Li and “Li accessible to electron scattering
shifts of A=8, 9, 11 measured by laser spectroscopy (Nortershiuser et al.)
matter radii for A=6, 8, 9, 11 from proton scattering (Dobrovolsky et al.)
in inverse kinematics
pronounced A-dependent shape changes (clustering)
interesting comparison to ab-initio calculations

Electron scattering
"Li in past standard reference for rms-radius
not a good idea
data for °Li more extensive (86 o), more precise
"Li experiments did not resolve 1. excited state
quadrupole contribution in “ Li much more important, cannot be separated

Analysis of world data for °Li (PRC84(11)024307)
use tail constraint as well
complication: p-tail or d-tail? (cluster structure of %Li)
SE,=4.6MeV, SE;=1.5MeV
as GFMC calculation (Pieper et al.) gives correct BE: use GFMC

Result
charge rms-radius = 2.589+0.039fm
comparatively large uncertainty due to poor low-q data
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Theoretical understanding
GFMC calculation
V18+Urbana 3BF
Wiringa et al.
MEC included, for CO small

CO well understood
M1 problematic
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Isotope shifts
measured by laser spectroscopy with stored ions
Nortershauser et al.
UTi = Borromean nucleus (2n, YLi unbound)
2n-separation energy only 369KeV
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Extreme case of tail-importance: matter radii
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Not emphasized: magnetic form factors + radii

data in general not as good

understanding more involved (MEC)

rms-radii even more difficult to measure
at low q o is dominated by F.;
polarization transfer useful only for p
best results from (old) 180° facilities

small contribution from F;,, enhances effect of systematic errors
example: proton

information from HFS limited

Heavier p-shell nuclei

complication: spin=3/2 (*Be, 11B), =3 (1'B)

little accurate data available

could do accurate experiment on °Be
despite loss of knowhow

as accuracy for 1?C excellent, could do Be/C ratio measurement
produce precise reference radius for isotope shift data

for review: see 1.Sick, Prog. Part. Nucl. Phys. 47 (01) 245



