g factor of highly charged ions

Vladimir Shabaev

Department of Physics St. Petersburg State University

Fundamental Constants Meeting 2015

Introduction

The g factor of H-like ions

The g factor of Li-like ions

Isotope shift of the g factor

The *g* factor of heavy ions: a new access to α

Conclusion

Free electron g factor

$$g_{\text{free}} = 2\left(1 + \frac{\alpha}{\pi}A^{(2)} + \left(\frac{\alpha}{\pi}\right)^2A^{(4)} + \left(\frac{\alpha}{\pi}\right)^3A^{(6)} + \dots + \Delta\right)$$

	$A^{(2i)}$	
		2.000 000 000 000
α/π	0.5	0.002 322 819 466
$(\alpha/\pi)^2$	-0.328	-0.000 003 544 610
$(\alpha/\pi)^3$	1.181	0.000 000 029 608
$(\alpha/\pi)^4$	-1.911(2)	-0.000 000 000 111
$(\alpha/\pi)^5$	9.16(58)	0.000 000 000 001
Δ		0.000 000 000 002
g _{free}		2.002 319 304 361

T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, PRL, 2012.

Free electron g factor

$$g_{\text{free}} = 2\left(1 + \frac{\alpha}{\pi}A^{(2)} + \left(\frac{\alpha}{\pi}\right)^2A^{(4)} + \left(\frac{\alpha}{\pi}\right)^3A^{(6)} + \dots + \Delta\right)$$

Experiment: $g_{\text{free}} = 2.00231930436146(56)$

D. Hanneke, S. Fogwell, and G. Gabrielse, PRL, 2008.

Theory: $A^{(i)}, \Delta$

T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, PRL (2012)

 $\rightarrow \alpha = 1/137.035\,999\,173\,(35)$

vs $\alpha = 1/137.035999044(90)$

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, PRL, 2011.

Nucleus + few electrons: $N_e \ll Z$

Nuclear potential:
$$V_{\rm nuc}(r) = -\frac{\alpha Z}{r}$$

Electron velocity: $v/c \sim \alpha Z$

Low-Z systems: $\alpha Z \ll 1 \rightarrow \alpha Z$ -expansion

High-Z systems: $\alpha Z \sim 1 \rightarrow \text{all orders in } \alpha Z$

Simple systems: (closed shell(s)) + 1 electron

- H-like: 1s
- Li-like: $(1s)^2 2s$
- B-like: $(1s)^2 (2s)^2 2p$

Zeeman splitting:

$$\Delta E_{
m mag} = \langle - oldsymbol{\mu} {f B}
angle = g \, M \, \mu_0 \, B$$

	H-like:	Li-like:	B-like:
Z	1s	(1s) ² 2s	$(1s)^2(2s)^22p$
6	2000		
	2014		
8	2004		
14	2011, 2013	2013	
18			in progress
			GSI
20	planned	in progress	
	Uni Mainz	Uni Mainz	
up to 92	MPIK, FAIR		

The g factor of H-like ions

Theory:

$$m{g} = m{g}_{ ext{Dirac}} + \Delta m{g}_{ ext{QED}} + \Delta m{g}_{ ext{nuc.rec.}} + \Delta m{g}_{ ext{nuc.size}} + \Delta m{g}_{ ext{nuc.pol.}} \, ,$$

where for an ns state

$$g_{\text{Dirac}} = 2 + \frac{4}{3} \frac{E - m}{m}$$

= $2 - \frac{2}{3} \frac{(\alpha Z)^2}{n^2} + \left(\frac{1}{2n} - \frac{2}{3}\right) \frac{(\alpha Z)^4}{n^3} + \cdots,$

where *E* is the Dirac energy,

$$\Delta g_{ ext{QED}} = \Delta g_{ ext{free}- ext{QED}} + \Delta g_{ ext{binding}- ext{QED}}$$
.

Free-electron g-factor:

$$g_{\rm free} = 2 + \Delta g_{\rm free-QED}$$
.

Binding-QED correction to the lowest order in αZ and to all orders in α for an *ns* state (*H. Grotch, 1970; R.N. Faustov, 1970; F.E. Close and H. Osborn, 1971; M.I. Eides and H. Grotch, 1997; S.G. Karshenboim, 2001; A.Czarnecki et al., 2001)*:

$$\Delta g_{\mathrm{binding-QED}} = \Delta g_{\mathrm{free-QED}} \frac{(\alpha Z)^2}{6n^2},$$

where

$$\Delta g_{\text{free-QED}} = 2\left(rac{lpha}{\pi}A^{(2)} + \left(rac{lpha}{\pi}
ight)^2A^{(4)} + \left(rac{lpha}{\pi}
ight)^3A^{(6)} + \dots
ight)\,.$$

The corresponding correction for an *np*_J state: (V.A. Yerokhin and U. Jentschura, PRA, 2010.)

The g factor of H-like ions

One-loop QED corrections to all orders in αZ : self energy

First evaluations: S.A. Blundell et al., PRA, 1997; H. Persson et al., PRA 1997. Most precise evaluations: V.A. Yerokhin et al., PRL, 2002; PRA, 2004; V.A. Yerokhin and U. Jentschura, PRL, 2008, PRA, 2010. Evaluation for arbitrary potential: D.A. Glazov et al., PLA, 2006. One-loop QED corrections to all orders in αZ : vacuum polarization

Evaluations: H. Persson et al., PRA, 1997; T. Beier et al., PRA, 2000.

Magnetic-loop vacuum-polarization correction to the lowest order in αZ for an *ns* state (S.G. Karshenboim and A.I. Milstein, PLB, 2002):

$$\Delta g_{\rm VP}^{\rm magn} = \frac{7}{216} \frac{\alpha (\alpha Z)^5}{n^3}$$

٠

Two-loop QED correction to the order $\alpha^2(\alpha Z)^4$ for an *ns* state (K. Pachucki, A. Czarnecki, U. Jentschura, and V.A. Yerokhin, PRA, 2005):

$$\Delta g_{\text{two-loop}} = \left(\frac{\alpha}{\pi}\right)^2 \frac{(\alpha Z)^4}{n^3} \left\{\frac{28}{9} \ln[(\alpha Z)^{-2}] + \frac{258917}{19440} - \frac{4}{9} \ln k_0 - \frac{8}{3} \ln k_3 + \frac{113}{810} \pi^2 - \frac{379}{90} \pi^2 \ln 2 + \frac{379}{60} \zeta(3) + \frac{1}{n} \left[-\frac{985}{1728} - \frac{5}{144} \pi^2 + \frac{5}{24} \pi^2 \ln 2 - \frac{5}{16} \zeta(3)\right]\right\},$$

where

 $\begin{array}{ll} \ln k_0(1s) = 2.984128556, & \ln k_3(1s) = 3.272806545, \\ \ln k_0(2s) = 2.811769893, & \ln k_3(2s) = 3.546018666. \end{array}$

Recent progress on calculations of the QED corrections: Two-loop QED corrections with closed fermion loops (U. Jentschura, PRA, 2009; V.A. Yerokhin and Z. Harman, PRA, 2013)

Two-loop QED corrections with the closed fermion loops for the bound-electron g-factor are evaluated for the 1s state. The calculations are performed within the free-fermion-loop (Uehling) approximation.

Nuclear recoil corrections to the lowest orders in $(\alpha Z)^2$, (α/π) , and $(m/M)^2$ for an *ns* state (*R.N. Faustov, PLB, 1970; H. Grotch and R.A. Hegstrom, PRA,* 1971; F.E. Close and H. Osborn, PLB, 1971; M.I. Eides and H. Grotch, Ann. Phys., 1997; K. Pachucki, PRA, 2008; M.I. Eides and T.J.S Martin, PRL. 2010):

$$\Delta g_{\text{nuc.rec.}}^{(\text{LO})} = \frac{(\alpha Z)^2}{n^2} \left[\frac{m}{M} - (1+Z) \left(\frac{m}{M} \right)^2 \right] \\ + \frac{\alpha}{\pi} \frac{(\alpha Z)^2}{n^2} \left[-\frac{1}{3} \frac{m}{M} + \frac{3-2Z}{6} \left(\frac{m}{M} \right)^2 \right].$$

The g factor of H-like ions

Formula for the nuclear recoil effect on the *g*-factor of an H-like ion to first order in m/M and to all orders in αZ (V.M. Shabaev, PRA, 2001):

$$\Delta g_{\text{nuc.rec.}} = \frac{1}{\mu_0 m_a} \frac{i}{2\pi M} \int_{-\infty}^{\infty} d\omega \left[\frac{\partial}{\partial B} \langle a | [\vec{p} - \vec{D}(\omega) + e\vec{A}_{\text{cl}}] \right] \\ \times G(\omega + E_a) [\vec{p} - \vec{D}(\omega) + e\vec{A}_{\text{cl}}] |a\rangle \Big]_{B=0}.$$

Here \vec{p} is the momentum operator, $G(\omega)$ is the Coulomb Green function, $D_m(\omega) = -4\pi\alpha Z \alpha_I D_{lm}(\omega)$, and $D_{ik}(\omega, r)$ is the transverse part of the photon propagator in the Coulomb gauge. It is implied that all quantities are calculated in the presence of the magnetic field *B*.

The g factor of H-like ions

For the practical calculations, the nuclear recoil effect can be represented by a sum of a lower-order term and a higher-order term, $\Delta g_{\text{nuc.rec.}} = \Delta g_{\text{nuc.rec.}}^{(L)} + \Delta g_{\text{nuc.rec.}}^{(H)}$, where

$$\begin{split} \Delta g_{\text{nuc.rec.}}^{(\text{L})} &= \frac{1}{\mu_0 m_a} \frac{1}{2M} \Biggl[\frac{\partial}{\partial B} \langle a | \left\{ \mathbf{p}^2 - \mathbf{p} \cdot \mathbf{D}(0) \right\} | a \rangle \Biggr]_{B=0} \\ &- \frac{1}{m_a} \frac{m}{M} \langle a | \left([\mathbf{r} \times \mathbf{p}]_z - \frac{\alpha Z}{2r} [\mathbf{r} \times \alpha]_z \right) | a \rangle , \\ \Delta g_{\text{nuc.rec.}}^{(\text{H})} &= \frac{1}{\mu_0 m_a} \frac{i}{2\pi M} \int_{-\infty}^{\infty} d\omega \left[\frac{\partial}{\partial B} \langle a | \left(D^k(\omega) - \frac{[p^k, V]}{\omega + i0} \right) \right. \\ &\left. \times G(\omega + E_a) \Bigl(D^k(\omega) + \frac{[p^k, V]}{\omega + i0} \Bigr) | a \rangle \Biggr]_{B=0}. \end{split}$$

Analytical evaluation of the low-order term yields (V.M. Shabaev, PRA, 2001):

$$\Delta g^{\mathrm{(L)}}_{\mathrm{nuc.rec.}} = -rac{m}{M}rac{2\kappa^2 E^2 + \kappa m E - m^2}{2m^2 j(j+1)}\,,$$

where $\kappa = (-1)^{j+l+1/2}(j+1/2)$. To the two lowest orders in αZ , we have

$$\Delta g_{\mathrm{nuc.rec.}}^{(\mathrm{L})} = -\frac{m}{M} \frac{1}{j(j+1)} \Big[\kappa^2 + \frac{\kappa}{2} - \frac{1}{2} - \left(\kappa^2 + \frac{\kappa}{4}\right) \frac{(\alpha Z)^2}{n^2} \Big] \,.$$

For the 1*s* state, the exact formula for the low-order term takes the form:

$$\Delta g_{\rm nuc.rec.}^{\rm (L)} = \frac{m}{M} (\alpha Z)^2 - \frac{m}{M} \frac{(\alpha Z)^4}{3[1 + \sqrt{1 - (\alpha Z)^2}]^2}.$$

The higher-order term can be represented as

$$\Delta g_{\rm nuc.rec.}^{\rm (H)} = \frac{m}{M} \frac{(\alpha Z)^5}{n^3} P(\alpha Z) \,.$$

The numerical evaluation of the function $P(\alpha Z)$ for the 1*s* state: (V.M. Shabaev and V.A. Yerokhin, PRL, 2002).

The g factor of H-like ions

Finite nuclear size correction for an *ns* state to the lowest order in αZ (S.G. Karshenboim, PLA, 2000):

$$\Delta g_{
m nuc.size} = rac{8}{3n^3} (lpha Z)^4 m^2 \langle r^2
angle_{
m nuc}$$

To two lowest orders in αZ (D.A. Glazov and V.M. Shabaev, PLA, 2002):

$$\begin{aligned} \Delta g_{\mathrm{nuc.size}} &= \frac{8}{3n^3} (\alpha Z)^4 m^2 \langle r^2 \rangle_{\mathrm{nuc}} \left[1 + (\alpha Z)^2 \left(\frac{1}{4} + \frac{12n^2 - n - 9}{4n^2(n+1)} \right) \right. \\ &+ 2\psi(3) - \psi(2+n) - \frac{\langle r^2 \ln(2\alpha Zmr/n) \rangle_{\mathrm{nuc}}}{\langle r^2 \rangle_{\mathrm{nuc}}} \right) \right]. \end{aligned}$$

where $\psi(\mathbf{x}) = \frac{d}{d\mathbf{x}} \ln \Gamma(\mathbf{x})$.

The g factor of H-like ions

Nuclear-polarization corrections to the bound-electron g factor

Evaluations: A.V. Nefiodov et al., PLB, 2003; A.V. Volotka and G. Plunien, PRL, 2014.

Nuclear magnetic susceptibility correction to the bound-electron *g* factor: *U.D. Jentschura, A. Czarnecki, K. Pachucki, and V.A. Yerokhin, IJMS, 2006.*

First high-precision measurement of the g-factor of ${}^{12}C^{5+}$ using a single ion confined in a Penning ion trap (*H. Häffner et al., PRL, 2000*):

$$g_{\rm exp} = 2(\omega_L/\omega_c)(m_e/M)(q/|e|) = 2.001\,041\,596\,3\,(10)(44)$$
.

Here $\omega_c = (q/M)B$ is the cyclotron frequency, $\omega_L = \Delta E/\hbar$ is the Larmor precession frequency, *M* is the ion mass, and *q* is the ion charge. The second uncertainty (44) was due to the uncertainty of the (m_e/M) ratio.

This experiment strongly stimulated high-precision calculations of the nuclear recoil and QED corrections.

g factor of $^{\rm 12}{\rm C}^{\rm 5+}$

Dirac value (point nucleus)	1.998 721 354 39
Free QED	0.002 319 304 36
Binding QED	0.000 000 843 40(3)
Nuclear recoil	0.000 000 087 62
Nuclear size	0.000 000 000 41
Total theory	2.001 041 590 17(3)
Experiment [1]	2.001 041 596 3(10) <mark>(44)</mark>

[1] H. Häffner et al., PRL, 2000.

Outcome 2002: four-times improvement of the accuracy of the electron mass.

g factor of $\rm ^{16}O^{7+}$

Dirac value (point nucleus)	1.997 726 003 06
Free QED	0.002 319 304 36
Binding QED	0.000 001 594 38(11)
Nuclear recoil	0.000 000 116 97
Nuclear size	0.000 000 001 55(1)
Total theory	2.000 047 020 32(11)
Experiment [1]	2.000 047 025 4 (15) <mark>(44)</mark>

[1] J. Verdu et al., PRL, 2004.

The value of the electron mass derived from the O^{7+} experiment agrees with the value derived from the C^{5+} experiment.

g factor of $^{28}\mathrm{Si}^{13+}$

Dirac value (point nucleus)	1.993 023 571 6	
Free QED	0.002 319 304 4	
Binding QED	0.000 005 855 8(17)	
Nuclear recoil	0.000 000 205 8(1)	
Nuclear size	0.000 000 020 5	
Total theory	1.995 348 958 0(17)	
Experiment [1]	1.995 348 959 10(7)(7) <mark>(80)</mark>	

[1] S. Sturm et al., PRL, 2011; PRA, 2013.

These experiment and theory provide to date the most accurate test of bound-state QED with middle-Z ions.

High-precision measurement of the atomic mass of the electron (S. Sturm et al., Nature, 2014):

 $g_{\mathrm{exp}} = 2(Z-1)(m_e/M_{\mathrm{ion}})(\omega_L/\omega_c) = g^*_{\mathrm{theor}} + (lpha/\pi)^2 (lpha Z)^5 b_{50}$

This equation is considered for ${}^{12}C^{5+}$ and ${}^{28}Si^{13+}$:

$$\left(\frac{\alpha}{\pi}\right)^2 (6\alpha)^5 b_{50} = 2(6-1) \frac{m_e}{M_{^{12}C^{5+}}} \left(\frac{\omega_L}{\omega_c}\right)_{^{12}C^{5+}} - g_{\text{theor}}^*(6),$$

$$\left(\frac{\alpha}{\pi}\right)^2 (14\alpha)^5 b_{50} = 2(14-1) \frac{m_e}{M_{^{28}Si^{13+}}} \left(\frac{\omega_L}{\omega_c}\right)_{^{28}Si^{13+}} - g_{\text{theor}}^*(14).$$

This yields:

 $m_{\rm e} = 0.000548579909067(14)(9)(2)u$, $b_{50} = -4.0(5.1)$.

The theoretical uncertainty of the g-factor for high-Z ions is defined by the nuclear effects. This uncertainty can be significantly reduced in the difference: (V.M. Shabaev et al., PRA, 2002):

$$g'=g_{(1s)^22s}-\xi g_{1s},$$

where ξ is chosen to cancel the nuclear size effect.

Theoretical value of the g-factor of a Li-like ion:

$$g = g_{\text{one-elec.}} + \Delta g_{\text{int.}} + \Delta g_{\text{scr.QED}} + \dots$$

The interelectronic interaction and screened QED corrections are evaluated using the perturbarion theory in 1/Z.

The g factor of Li-like ions

One-photon exchange

$$\Delta g_{\rm int} = \Delta g_{\rm int}^{(1)} + \Delta g_{\rm int}^{(2)} + \dots$$

$$\Delta g_{\rm int}^{(1)} = \frac{1}{Z} \left(\alpha Z \right)^2 B(\alpha Z)$$

V.M. Shabaev et al., PRA, 2002.

Two-photon exchange: 2-electron diagrams

$$\Delta g_{\mathrm{int}} = \Delta g_{\mathrm{int}}^{(1)} + \Delta g_{\mathrm{int}}^{(2)} + \dots$$

$$\Delta g_{\rm int}^{(2)} = \frac{1}{Z^2} (\alpha Z)^2 C(\alpha Z)$$

A.V. Volotka et al., PRL, 2014.

The g factor of Li-like ions

Two-photon exchange: 3-electron diagrams

$$\Delta g_{\mathrm{int}} = \Delta g_{\mathrm{int}}^{(1)} + \Delta g_{\mathrm{int}}^{(2)} + \dots$$

$$\Delta g_{\rm int}^{(2)} = \frac{1}{Z^2} (\alpha Z)^2 C(\alpha Z)$$

A.V. Volotka et al., PRL, 2014.

The g factor of Li-like ions

Two-electron self-energy

A.V. Volotka et al., PRL, 2009; D.A. Glazov et al., PRA, 2010.

g factor of Li-like silicon (Z=14)

Free electron	Dirac + QED	2.002 319 304
Binding	Dirac	-0.001 395 613
	$QED \sim \alpha$	0.000 001 224 (3)
	$QED \sim \alpha^2$	$-0.000\ 000\ 001$
e ⁻ -e ⁻ interaction	$\sim 1/Z$	-0.000 033 846
	$\sim 1/Z^2$	$-0.000\ 000\ 976$
	$\sim 1/Z^{3+}$	-0.000 000 005 (6)
	$\sim lpha/Z^+$	-0.000 000 236 (5)
Nuclear effects	Recoil	0.000 000 039 (1)
	Finite size	0.000 000 003
	Total theory	2.000 889 892 (8)
	Experiment	2.000 889 890 (2)

A. Wagner et al., PRL, 2013; A.V. Volotka et al., PRL, 2014.

Isotope shift of the g factor: H-like Ca

Isotope shift of the g factor: ${}^{40}Ca^{19+} - {}^{48}Ca^{19+}$

Nuclear recoil: non-QED $\sim m/M$	0.00000048657
Nuclear recoil: non-QED $\sim (m/M)^2$	-0.00000000026(2)
Nuclear recoil: QED $\sim m/M$	0.00000000904
Nuclear recoil: QED $\sim \alpha(m/M)$	-0.0000000038(3)
Finite nuclear size	0.00000000032(75)
Total theory	0.00000049529(75)

The current theoretical uncertainty is about 8% of the QED nuclear recoil contribution.

Isotope shift of the g factor: Li-like Ca

Isotope shift of the g-factor: ${}^{40}Ca^{17+} - {}^{48}Ca^{17+}$

Nuclear recoil: one-electron non-QED	0.00000012240(1)
Nuclear recoil: interelectronic int.	-0.00000002051(22)
Nuclear recoil: QED $\sim m/M$	0.00000000123(12)
Nuclear recoil: QED $\sim \alpha(m/M)$	-0.00000000009(1)
Finite nuclear size	0.00000000004(9)
Total theory	0.00000010305(27)

This study will provide the first test of QED beyond the Furry picture with highly charged ions.

Future prospects for the g-factor investigations

- 1) Tests of bound-state QED within the Furry picture and beyond
- 2) Determination of the nuclear magnetic moments

$$g_{\text{atom}} = g^{(e)} \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)} \\ - \frac{m_e}{m_p} g^{(N)} \frac{F(F+1) + I(I+1) - J(J+1)}{2F(F+1)}$$

3) Investigations of the higher-order Zeeman effects with highly charged ions (*D. von Lindenfels et al., PRA, 2013*)

4) Determination of the fine structure constant by studying the g-factors of H- and B-like Pb (V.M. Shabaev et al., PRL, 2006)

$$g_{1s} = 2 - rac{2}{3} (lpha Z)^2 + \cdots \Rightarrow rac{\delta lpha}{lpha} \sim rac{1}{(lpha Z)^2} rac{\sqrt{(\delta g_{
m exp})^2 + (\delta g_{
m th})^2}}{g}$$

The g factor: determination of α

free electron

$$\frac{\delta \alpha}{\alpha} = \frac{2\pi}{\alpha} \frac{\delta g_{\text{free}}}{g_{\text{free}}}$$

bound electron

$$\frac{\delta \alpha}{\alpha} \sim \frac{1}{(\alpha Z)^2} \frac{\delta g_{1s}}{g_{1s}}$$

$$\delta g_{\text{free}}^{\text{exp}} = 3 \times 10^{-13}$$

 $\rightarrow \frac{\delta \alpha}{\alpha} = 3 \times 10^{-10}$

$$\delta g_{1s}^{exp} = 1.5 \times 10^{-10}$$

$$\rightarrow \frac{\delta \alpha}{\alpha} = 3 \times 10^{-10}$$

(for Pb, Z = 82)

We consider a specific difference of the g-factors of B- and H-like lead (*V.M. Shabaev et al., PRL, 2006*):

$$g' = g^{[(1s)^2(2s)^2 2p_{1/2}]} - \xi g^{[1s]},$$

where $\xi = 0.0097416$ is chosen to cancel the nuclear size effect.

The uncertainties of $g' \approx 0.585$ for Pb due to various effects:

Effect	$\delta oldsymbol{g}'$	$\delta m{g'}/m{g'}$
$1/\alpha = 137.035999173(35)$	$0.4 imes 10^{-10}$	$0.7 imes 10^{-10}$
Nuc. polarization*	$0.3 imes10^{-10}$	$0.5 imes10^{-10}$

* A.V. Volotka and G. Plunien, PRL, 2014

The g factor of highly charged ions is available for both

- high-precision measurements
- accurate calculations
- \rightarrow Test of theory: bound-state QED
- \rightarrow Determination of
 - m_e electron mass (in a.u.)
 - μ_N nuclear magnetic moment
 - R_N nuclear charge radius
 - α fine structure constant