

Determination of the Planck constant at the National Institute of Standards and Technology

D. Haddad, F. Seifert, L.S. Chao, D.B. Newell, R. Liu, R.L. Steiner, J.R. Pratt, S. Schlamminger

National Institute of Standards and Technology

rad

Outline

- The principle of the watt balance
- The apparatus, NIST-3
- The 2012/2013 measurement campaign

- Corrigendum and Addendum
- Outlook

V

mg = I Bl

V = v Bl

rad

V = v Bl

rad

mg = I Bl

mg

V

V = v Bl

rad

mg = I Bl

mgv = VI

V

V = v Bl

rad

mg = I Bl

mgv = VI

mg_I

 $mgv = V_1 \frac{V_2}{R}$

V

V = v Bl

mg = I Bl

mg

mgv = VI

$$mgv = V_1 \frac{V_2}{R}$$
$$mgv = n_1 f_1 \frac{h}{2e} n_2 f_2 \frac{h}{2e} \frac{1}{r} \frac{e^2}{h}$$

rad

V

V = v Bl

mg = I Bl

mg

mgv = VI

$$mgv = V_1 \frac{V_2}{R}$$
$$mgv = n_1 f_1 \frac{h}{2e} n_2 f_2 \frac{h}{2e} \frac{1}{r} \frac{e^2}{h}$$

rad

$$mgv = \frac{n_1 n_2}{4r} f_1 f_2 h$$

Velocity mode PPP v

V

V = v Bl

mg = I Bl

I

ma

$$\frac{mg}{V} = \frac{1}{v}$$

$$mgv = VI$$

$$mgv = V_1 \frac{V_2}{R}$$

$$mgv = n_1 f_1 \frac{h}{2e} n_2 f_2 \frac{h}{2e} \frac{1}{r} \frac{e^2}{h}$$

$$mgv = \frac{n_1 n_2}{4r} f_1 f_2 h$$

 $h = \frac{4r}{n_1 n_2} \frac{mgv}{f_1 f_2}$

rad

4r

The evolutions of NIST watt balances 1980: about 4 years after Kibble's proposal.

234

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. IM-29, NO. 4, DECEMBER 1980

rad

The Realization of the Ampere at NBS

NIST-1

- \circ Result published in 1989
- \circ Rel. uncertainty: 1.3x10⁻⁶
- $\circ~$ Measurement in air.
- Conventional electromagnet
- $\circ~$ 10.5 g gold mass.

rad

• Bl = 21

NIST-2

- Result published in 1998
- Rel. uncertainty: 8.7x10⁻⁸
- o Measurement in air.
- 1 kg gold mass

- BI = 481
- $\circ~$ Superconducting magnet system

NIST-3

- $\circ~$ Used with K85 since 2003.
- \circ Rel. uncertainty: 5.7x10⁻⁸
- Measurement in vacuum.
- $\circ~$ 1 kg PtIr mass (K85).
- \circ in vacuum

- BI = 481
- Superconducting magnet system

National Institute of Standards and Technology U.S. Department of Commerce

NIST-3 our workhorse for 15 years

balance wheel knife edge multi-P. P. P. P. P. spider filament band mass interfero--counter meter mass velocity mode motor upper superconducting solenoid trim coil moving coil stationary interferometer coils 👐 (1 of 3) lower trim super-North conducting coil West solenoid 1 m

Distinctive feature:

rad

Superconducting Magnet System

- Current is not persistent.
- Field is in principle calculable.
- \circ B(r) \propto 1/r.
- $\circ~$ Relative small field B ≈ 0.1 T.
- Field can be changed.
- \circ Iron free.
- Tall structure.
- Moving coil has large radius.
- o Infinite gap.
- \circ $\,$ Easy access to moving coil.

 $h_{90} \equiv \frac{4}{K^2_{J-90}R_{K-90}} = 6.626\ 068\ 854\ \dots\ \times\ 10^{-34}\ \text{Js}$

Upper part

Moving coil

Data up to Oct. 2011

rad

Measurement plan 2012-2013

Improvements for this campaign

- Electrical:
- Environmental:
- Mechanical:
- Procedural:
- SW-control:
- Electronics:
- References:

Improved filters, grounding, guarding, power level.

- Better temperature stabilization.
 - New knife edge.

Improved hysteresis erasing procedure.

More channels logged.

New low-noise current source.

New, calibrated laser.

New bias electronics for Josephson Voltage standard. Josephson system was calibrated against US Volt.

New determination of g.

PtIr mass has been calibrated @ BIPM.

rad

Data analysis: Second, largely independent analysis package.

Blind Measurement

Patrick J. Abbott Mass & Force Group

rad

Mass side stirrup

L=4.18 m,
m=25 kgWobble frequency:0.537 HzPendulum frequency:0.241 HzBounce frequency:16 HzSensitivity to torques: $2 \times 10^{-5} \text{ Nm}$ Sensitivity to horiz. forces: $6 \times 10^{-5} \text{ N}$

$P_{\rm mech} = F_z v_z + F_x v_x + F_y v_y + N_x \omega_x + N_y \omega_y + N_z \omega_z$

rad

Electrical circuit

Force mode

Velocity mode

NIST National Institute of Standards and Technology

Switchbox

rad

Concerns regarding the magnet system

- Surface currents due to Meissner Effect
 - BL during force mode is different due to persistent surface currents.
- Transient effects
 - Current ramp in moving coil changes super current.
- Transformer effect
 - AC in moving coil induces AC in super conductor. AC-AC coupling has net DC force.
- Iron
 - Nearby ferromagnetic material changes BL during force mode.

No big change between I_{sc} = 5 A and I_{sc} = 2 A observed.

Physic

Stability of the magnetic field

Knife edge

- Knife edge and flat are made from WC.
- It is coated with diamond like carbon.
- WC is magnetic.
- Knife edge was changed on 06/25/2012.
- Old knife edge was in use from 2010 to 2012.

Mass - Sorption

Ηz

Calibrations -- Resistance

Measurement procedure

National Institute of Standards and Technology U.S. Department of Commerce

One velocity sweep

Typical data

H翻

National Institute of Standards and Technology U.S. Department of Commerce

```
Typical data
```

Ηz

rad

National Institute of Standards and Technology U.S. Department of Commerce

Results

Uncertainty budget and final result

Source	rel. std. uncertainty k=1 (10 ⁻⁹)	
Balance mechanics	21.4	$h = 6.626\ 069\ 79(30) \times 10^{-34}$ Js
Alignment	20.0	
Magnetic field	19.4	
Electrical	16.1	h
Statistical	15.7	$\frac{1}{h_{ee}} - 1 = 141(45) \times 10^{-9}$
Velocity	10.6	1190
Mass metrology	9.7	
Local acceleration	7.1	
Combined	44.7	

 $P_{\text{mech}} = F_z v_z + F_x v_x + F_y v_y + N_x \omega_x + N_y \omega_y + N_z \omega_z$

rad

Corrections

Source

Fractional correction (10⁻⁹)

rad

Polar motion on g	+6.4	
Dynamic knife edge hysteresis	-6.3	
Alignment	-3.3	
Water desorption on mass	-3.1	
Diffraction of interferometer beams	+2.8	
Air pressure variations on g	-2.1	
Verticality of the interferometer beams	2.1	
Refractive index of residual air	-1.2	
Tidal variation of g	-0.8	
PJVS leakage	+0.4	
Buoyancy on the mass by residual air	-0.2	
Magnetic forces on K85	+0.1	
DVM gain correction	0.0	
Total	-5.3	

Polar motion correction

Correction due to alignment

Physical Measurement Laboratory

The result at the end of 2013

Calibration history of K85

Calibration history of K85

rad

The final NIST-3 number

$$h_{NIST-3} = 6.626\ 069\ 36(37) \times 10^{-34}\ \text{J s}$$

rad

$$\frac{h_{NIST-3}}{h_{90}} = 77(57) \times 10^{-9}$$

In the meantime

December 2013

August 2014

NIST-4 is being assembled

rad

NIST-4 status

- Preliminary measurements in velocity mode (without PJVS)
- Preliminary measurements in force mode (in air)
- We are working on combining the two modes.
- We hope to have a first measurement of h in the spring of 2015.

rad

• And a more precise value at the end of 2015.

Conclusions

- \circ NIST-3 was used to measure h with K85 from 2003-2013.
- $\odot~$ The final relative uncertainty is 57 x 10⁻⁹ .
- In 2010 the data shifted by 70x10⁻⁹ and the statistical noise increased. No single reason for this shift could be identified.
- A relative uncertainty of 35x10⁻⁹ was added to the uncertainty budget to reflect this shift.

rad

• This is the largest uncertainty.

Thank you for your attention

rad

rad

He

C The