Improved Determination of the Electron Mass in Atomic Mass Units

Wolfgang Quint GSI Darmstadt and Univ. Heidelberg

You know, it would be sufficient to really understand the electron.

Albert Einstein

g-Factor of the electron

 $\begin{array}{c} \mu: \mbox{ magnetic moment}\\ g: \ g-factor\\ s: \ spin\\ \mu_B: \ Bohr \ magneton \end{array}$

QED contributions to the g-factor of the free electron

$g_{\text{free}} = 2 (1 + C_1 \alpha / \pi + C_2 (\alpha / \pi)^2 + C_3 (\alpha / \pi)^3 + C_4 (\alpha / \pi)^4 + C_5 (\alpha / \pi)^5 + \dots$

1st order in α: Schwinger term $C_1 = \frac{1}{2}$

The theory of quantum electrodynamics is, I would say, the jewel of physics - our proudest possession.

J. Schwinger, Phys. Rev. 73, 416 (1948); Hanneke et al., PRL 100, 120801 (2008)

Ref.:

R. Feynman

GSI

Free electron: QED contributions of 2nd and 3rd order

 $g_{\text{free}} = 2 (1 + C_1 \alpha / \pi + C_2 (\alpha / \pi)^2 + C_3 (\alpha / \pi)^3 + C_4 (\alpha / \pi)^4 + C_5 (\alpha / \pi)^5 + \dots$

g-Factor of the free electron

q1

Folie 7

q1 quint_local; 18.05.2003

QED and highly charged ions

bound-state QED: quantum physics in strong fields

basic processes in bound-state QED:

self energy vacuum polarization vertex correction

bound-state QED coupling parameter for U⁹¹⁺: $Z\alpha \approx 0.67$

Ref.: T. Beier, Physics Reports 339, 79 (2000)

Bound-state QED: treatment non-perturbative in Za

Non-perturbative bound-state QED was developed in the last 20 years by excellent theoreticians like:

Beier, Blundell, Breit, Czarnecki, Glazov, Jentschura, Johnson, Karshenboim, Lindgren, Lee, Milstein, Mohr, Pachucki, Persson, Plunien, Salomonson, Sapirstein, Shabaev, Soff, Sunnergreen, Terekhov, Tupitsyn, Volotka, Yerokhin, and others.

Bound-electron g-factor: Feynman graphs 1st order in α/π

T. Beier, Physics Reports 339, 79 (2000)

Ref.:

Bound-electron g-factor: Feynman graphs 2^{nd} order in α/π

a la 50 graphs l s~~>⊃ <u>}</u>

T. Beier, Physics Reports 339, 79 (2000)

Ref.:

Bound-electron g-factor

Fundamental Constants Meeting, Eltville, Germany, February 2015, Wolfgang Quint

g-Factor of the bound electron in a hydrogen-like ion (nucleus has no spin, e.g. ¹²C⁵⁺, ¹⁶O⁷⁺, ²⁸Si¹³⁺, ⁴⁰Ca¹⁹⁺)

A single highly charged ion stored in a Penning trap

Fundamental Constants Meeting, Eltville, Germany, February 2015, Wolfgang Quint

Triple Penning Trap System

<u>Precision trap (PT)</u>Very homogeneous magnetic field

<u>Analysis trap (AT)</u>Magnetic bottle for spin detection

G 5 1

g-Factor trap in Mainz (GSI/Heidelberg collaboration)

GSX[—]

Electronic detection and resistive cooling of trapped ions

Fundamental Constants Meeting, Eltville, Germany, February 2015, Wolfgang Quint

Charge breeding of carbon and oxygen ions in cryogenic EBIS (electron-beam ion source)

FS SS 1

Isolating a single highly charged ion

High-resolution cyclotron frequency measurement of a single highly charged silicon ion

Eigenfrequency Measurement

Axial frequency(v_z) directly measured as narrow "dip"

Other modes (v₊, v₋) can be coupled to axial motion via *rf*-sideband coupling

$$v_{+} = v_{rf} - v_{z} + v_{L} + v_{R}$$

$$\boldsymbol{v}_{-} = \boldsymbol{v}_{rf} + \boldsymbol{v}_{z} - \boldsymbol{v}_{L} - \boldsymbol{v}_{R}$$

Continuous Stern-Gerlach effect: Determination of spin direction

Quantum jump spectroscopy: Spin-flip transitions in the analysis trap

Fundamental Constants Meeting, Eltville, Germany, February 2015, Wolfgang Quint

GSI

The lab team (before spinflip)

Gsi⁻

Fundamental Constants Meeting, Eltville, Germany, February 2015, Wolfgang Quint

Precision measurement of bound electron g-factor in hydrogen-like silicon

Comparison of theory and experiment: g-Factor of the bound electron in H-like carbon ¹²C⁵⁺, oxygen ¹⁶O⁷⁺ and silicon ²⁸Si¹³⁺

 $g_J(^{12}C^{5+}) = 2.001\ 041\ 590\ 18\ (3)$ theoretical value $g_J(^{12}C^{5+}) = 2.001\ 041\ 596\ 4\ (10)(44)$ our measurement

 $g_J({}^{16}O^{7+}) = 2.000\ 047\ 020\ 32\ (11)$ theoretical value $g_J({}^{16}O^{7+}) = 2.000\ 047\ 025\ 4\ (15)(44)$ our measurement

 $g_J(^{28}S^{13+}) = 1.995\ 348\ 958\ 0\ (17)$ theoretical value $g_J(^{28}S^{13+}) = 1.995\ 348\ 958\ 7\ (5)(3)(8)$ our measurement

Lit.:

T. Beier et al., PRL 88, 011603 (2002) V. Shabaev et al., PRL 88, 091801 (2002) V. Yerokhin et al., PRL 89, 143001 (2002) K. Pachucki, V. Yerokhin et al., PRA 72, 022108 (2005) S. Sturm et al., PRL 107, 023002 (2011)

Electron mass

Larmor precession Ion cyclotron frequency: frequency of the В bound electron: $\frac{g_J}{2}$ ion $\frac{Q}{M_{ion}}B$ $\boldsymbol{\mathcal{W}}_{c}$ <u>2</u> me ion \mathcal{W}_{c} Me g_J e е Mion our theory as \rightarrow determination measureinput of electron mass ment parameter

Experimental Result

Probing Zeeman transition at different Γ's several 100 times:

\rightarrow *\Gamma*-resonance

- Γ₀' is extracted from fit
- Resonance width and thus statistical error limited by magnetic field fluctuations
 - Several *Γ*-resonances at different cyclotron energies to check systematics → extrapolation to zero energy

- Dominant systematics:
- image charge shift: -282(14) ppt

LETTER

High-precision measurement of the atomic mass of the electron

S. Sturm¹, F. Köhler^{1,2}, J. Zatorski¹, A. Wagner¹, Z. Harman^{1,3}, G. Werth⁴, W. Quint², C. H. Keitel¹ & K. Blaum¹

Effect	Correction (parts per trillion)	Uncertainty (parts per trillion)
Image charge	-282.4	14.1
Image current	2.2	0.5
Residual electrostatic anharmonicity	0	0.25
Axial and magnetron temperature	0.04	0.04
lonic mass ¹² C ⁵⁺	0	0.1

Table 1 | Relative systematic corrections and their uncertainties applied to the measured frequency ratio

 $m_{\rm e} = 0.000548579909067(14)(9)(2) \tag{5}$

The first two errors are the statistical and systematic uncertainties of the measurement, and the third error represents the uncertainties of the theoretical prediction of the *g*-factor and the electron binding

Who has forgotten the walnut?

Relative Precision: 3.10-11

Profit of an improved electron mass me

Important ingredient in fine-structure constant measurement:

Measurements of the electron mass over the y

$$m_e = \frac{e}{q} \frac{V_c^{jon}}{V_c^{electron}} M$$

- - CODATA

- $\circ \quad \ \ \, \text{Indirect measurement via } \mu_B/\mu_N$
- Gärtner: v_c via particle loss (first direct)
- ▼ Gräff: v_c via ToF
- Van Dyck: v_c via image currents (first non-destructive)
- Wineland: v_c via laser fluorescence + v_L + g_{theo}
 (first bound electron)
 - Gabrielse: v_c via image currents
- Farnham: v_c via image currents (first single ion)
- * Häffner: v_c/v_L of ${}^{12}C^{5+} + g_{theo}$

Hori: antiprotonic helium

Experim	ent: Jiamin Hou, Sven Sturm, Anke Wagner,
	Günter Werth, Klaus Blaum
Theory:	Jacek Zatorski, Zoltán Harman, Christoph H. Keitel

- "Abteilung für gespeicherte und gekühlte Ionen" at MPIK, Heidelberg
 - Atomic Physics Division at GSI Helmholtzzentrum, Darmstadt
 - QUANTUM group at the Institut für Physik, Mainz
- MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

JOHANNES GUTENBERG

UNIVERSITÄT MAINZ

• International Max Planck Research School – Quantum Dynamics

