Progress Report to 23rd CCRI(I) meeting, BIPM, June 27-29, 2017

Activities in radiation dosimetry at the GUM

Central Office of Measures (GUM) Laboratory of Ionizing Radiation Elektoralna 2, 00-139 Warsaw, Poland e-mail: <u>radiology@gum.gov.pl</u>

Compiled by Adrian Bożydar Knyziak, Head of Laboratory e-mail: <u>a.knyziak@gum.gov.pl</u>

1. Air Kerma Standards

The primary standard for air-kerma of the GUM for low- and medium- energy x-ray ranges (below 10kV, from 10kV to 60kV, from 30kV to 320kV) are 3 parallel plate chambers constructed at the GUM. Now, the laboratory is recalculating (EGSnrc, BEAMnrc, FLUKA/FLAIR) and determining the correction factors for ISO 4037 and EN 61267 quality radiation.

Fig. 1. The primary standard for air-kerma of the GUM for low energy x-ray ranges on irradiation bench

Fig. 2. The primary standard of air-kerma of the GUM for medium energy x-ray ranges on irradiation bench

Fig. 3. Calculated electron-loss correction factor for the GUM medium-energy free-air chamber standard in EGSnrc (FAC code)

Fig. 4. Calculated photon-scatter correction factor for the GUM medium-energy free-air chamber standard in EGSnrc (FAC code)

The primary standard for air kerma of the GUM for ⁶⁰Co and ¹³⁷Cs is a cavity ionization chamber constructed at the Orszagos Mérésügyi Hivatal (now known as the Magyar Kereskedelmi Engedélyezési Hivatal – MKEH), Budapest, Hungary in 1983 (type ND 1005/A, serial number 8303).

Fig. 5. The primary standard of air kerma of the GUM for ⁶⁰Co and ¹³⁷Cs (a ionization chamber type ND 1005/A, serial number 8303) on irradiation bench

In 2016 we have assembled our new primary standard (a ionization chamber IGNAŚ-IC16#001). In this year, we have determined correction factors for ¹³⁷Cs and ⁶⁰Co gamma radiation. The volume of ionization chamber was determined by radiographic method [2]. Correction factors k_{wall} and k_{an} was determined in EGSnrc.In next year, we would like to comparison of the air kerma standards of the GUM and the BIPM for ⁶⁰Co and ¹³⁷Cs gamma radiation.

Fig. 6. The new primary standard of air kerma of the GUM for ⁶⁰Co and ¹³⁷Cs (a ionization chamber IGNAŚ-IC16#001) on irradiation bench

Fig. 7. The assembled a ionization chamber IGNAS-IC16#001 (radiography)

Table 1. Characteristics of the GUM standard of air kerma

Parameter	Ionization chamber		
i didinio(oi	IGNAS-IC16#001		
Material ionization chamber	Graphite		
Height cylinder [mm]	20.00		
Outer diameter graphite cylinder [mm]	12.50		
Wall thickness chamber [mm]	2.50		
Diameter chamber [mm]	7.50		
Material collecting electrode	Graphite		
Diameter collecting electrode [mm]	2.50		
Nominal cavity volume [cm3]	0.45		
Graphite density qc [g/cm3]	1.81		
Manufacturer of graphite	POCO		
Material graphite	Ultrapur Graphite EDM-3		
Impurity graphite [%]	99.997		
Real cavity volume [cm3]	0.447		
Insulator	Polyethilene		
Applied Voltage [V]	300		
Reference point	Chamber center		

Table 2. Physical constants and correction factors with their estimated relative uncertainties of the GUM standards for Cs137 radiation beam

		Values	uncertainty	
			100si	100ui
Physi	cal Constants			
ρο	dry air density [kg/m3]	1.2045		0.01
(µen/ρ)a,c	0.9999		0.05
Sc,a		1.0010		0.11
W/e		33.97		0.15
g		0.0012		0.02
Correc	ction factors			
ksat	recombination losses	1.0001	0.03	
kpol	polarity	0.9946	0.03	
kstem	stem scattering	0.9962	0.03	
kh	humidity	0.9970		0.03
kwall	wall attenuation and scattering	1.0158	0.01	
kan	axial non-uniformity	1.0002	0.02	
krn	radial non-uniformity	1.0002		0.02
V	chamber volume [cm3]	0.4465		0.10
I	ionization current [pA]	1.2121	0.06	
guadratic summation		0.08	0.22	
combined uncertainty		0.	24	

Table 3. Physical constants and correction factors with their estimated relative uncertainties of the GUM standards for Co60 radiation beam

	Values	uncertainty	
		100si	100ui
Physical Constants			
ρο dry air density [kg/m3]	1.2045		0.01
(μen/ρ)a,c	0.9985		0.05
Sc,a	1.0010		0.11
W/e	33.97		0.15
g	0.0032		0.02
Correction factors			
ksat recombination losses	1.0001	0.01	
kpol polarity	0.9945	0.02	
kstem stem scattering	0.9970	0.04	
kh humidity	0.9970		0.03
kwall wall attenuation and scattering	1.0110	0.01	
kan axial non-uniformity	1.0009	0.02	
krn radial non-uniformity	1.0002		0.02
V chamber volume [cm3]	0.4465		0.10
I ionization current [pA]	1.7914	0.03	
quadratic summation		0.06	0.22
combined uncertainty		0.1	23

This ionization chamber will be ionometric primary standard for absorbed dose to water for ⁶⁰Co gamma radiation, until our water calorimeter will be finished. The laboratory is calculating (FLUKA/FLAIR) and determining the correction factors.

2. Absorbed Dose to Water Standard

The laboratory has built measuring system for the secondary standard of absorbed dose to water. As the secondary standard ionization chamber type NE2571 is used, which is calibrated in the BIPM ⁶⁰Co radiation beam. The ionization chamber is enclosed in a polyethylen housing and positioned with the reference plane at depth of 5 g/cm⁻². The water phantom is a cube of side 35 cm with a circle front window of 15 cm diameter and thickness 4 mm.

Fig. 8. The secondary standard of absorbed dose to water of the GUM for ⁶⁰Co on irradiation bench

The laboratory team have just built a graphite calorimeter. Now, the calorimeter is being tested in the medium energy x-ray ranges.

Fig. 9. First version of the assembled graphite calorimeter of the GUM

Fig. 10. First version of the assembled graphite calorimeter (radiography)

Fig. 11. Example of temperature rise measurement for the BIPM250 x-ray beam (first test)

3. Services

GUM offers routine calibration of measuring instruments for national accredited calibration laboratories in terms of air kerma and absorbed dose to water. GUM is organizing inter-laboratory comparisons for national accredited calibration laboratories for proficiency of calibration services and proficiency in dose reading.

Conferences and Publications:

- 1. P. Tulik, A. B. Knyziak, A. Paszcza, M. Derlaciński, E. Kaczorowska: Odtwarzanie i przekazywanie jednostki dawki pochłoniętej w wodzie z wykorzystaniem kalorymetru grafitowego, Conferece of Polish Society of Medical Physics, Letters in Oncology Science 2017, 14(S1), 60
- 2. A. B. Knyziak, W. Rzodkiewicz: New X-ray testing methods of aerosol products for industrial radiography, Nuclear Instruments and Methods in Physics Research Section A, 2017, Vol. 844, 141-146
- 3. A. B. Knyziak, W. Rzodkiewicz: Measurement methods of ionization current and electric charges in radiation dosimetry; Nuclear Instruments and Methods in Physics Research Section A, 2016, Vol. 822, 1-8
- 4. A. B. Knyziak, M. Derlaciński, W. Rzodkiewicz: FROM AIR KERMA TO ABSORBED DOSE TO WATER, 50th Congress of Polish Society of Medical Physics
- A. B. Knyziak, M. Derlaciński, W. Rzodkiewicz: REPRODUCTION AND DISSAMINATION OF AIR KERMA RATE FOR X AND GAMMA RADIATION, 50th Congress of Polish Society of Medical Physics