THE INTERNATIONAL TEMPERATURE SCALE OF 1990 (ITS-90) It should be noted that the official version of the scale is the French one. The English version, published for convenience, has been authorized by the Comité Consultatif de Thermométrie and approved by the Comité International des Poids et Mesures. The International Temperature Scale of 1990 was adopted by the Comité International des Poids et Mesures at its meeting in 1989, in accordance with the request embodied in Resolution 7 of the 18th Conférence Générale des Poids et Mesures of 1987. This scale supersedes the International Practical Temperature Scale of 1968 (amended edition of 1975) and the 1976 Provisional 0.5 K to 30 K Temperature Scale. #### 1. Units of temperature The unit of the fundamental physical quantity known as thermodynamic temperature, symbol T, is the kelvin, symbol K, defined as the fraction 1/273,16 of the thermodynamic temperature of the triple point of water (1). Because of the way earlier temperature scales were defined, it remains common practice to express a temperature in terms of its difference from 273,15 K, the ice point. A thermodynamic temperature, T, expressed in this way is known as a Celsius temperature, symbol t, defined by: $$t/^{\circ}C = T/K - 273,15.$$ (1) The unit of Celsius temperature is the degree Celsius, symbol °C, which is by definition equal in magnitude to the kelvin. A difference of temperature may be expressed in kelvins or degrees Celsius. ⁽¹) Comptes Rendus des Séances de la Treizième Conférence Générale des Poids et Mesures (1967-1968), Resolutions 3 and 4, p. 104. The International Temperature Scale of 1990 (ITS-90) defines both International Kelvin Temperatures, symbol T_{90} , and International Celsius Temperatures, symbol t_{90} . The relation between T_{90} and t_{90} is the same as that between T and t, i.e.: $$t_{90}$$ /°C = T_{90} /K - 273,15. (2) The unit of the physical quantity T_{90} is the kelvin, symbol K, and the unit of the physical quantity t_{90} is the degree Celsius, symbol °C, as is the case for the thermodynamic temperature T and the Celsius temperature t. #### 2. Principles of the International Temperature Scale of 1990 (ITS-90) The ITS-90 extends upwards from 0,65 K to the highest temperature practically measurable in terms of the Planck radiation law using monochromatic radiation. The ITS-90 comprises a number of ranges and sub-ranges throughout each of which temperatures T_{90} are defined. Several of these ranges or sub-ranges overlap, and where such overlapping occurs, differing definitions of T_{90} exist: these differing definitions have equal status. For measurements of the very highest precision there may be detectable numerical differences between measurements made at the same temperature but in accordance with differing definitions. Similarly, even using one definition, at a temperature between defining fixed points two acceptable interpolating instruments (e.g. resistance thermometers) may give detectably differing numerical values of T_{90} . In virtually all cases these differences are of negligible practical importance and are at the minimum level consistent with a scale of no more than reasonable complexity: for further information on this point, see « Supplementary Information for the ITS-90 » *. The ITS-90 has been constructed in such a way that, throughout its range, for any given temperature the numerical value of T_{90} is a close approximation to the numerical value of T according to best estimates at the time the scale was adopted. By comparison with direct measurements of thermodynamic temperatures, measurements of T_{90} are more easily made, are more precise and are highly reproducible. There are significant numerical differences between the values of T_{90} and the corresponding values of T_{68} measured on the International Practical Temperature Scale of 1968 (IPTS-68), see Fig. 1 and Table VI. Similarly there were differences between the IPTS-68 and the International Practical Temperature Scale of 1948 (IPTS-48), and between the ^{*} See Monography BIPM/1990. International Temperature Scale of 1948 (ITS-48) and the International Temperature Scale of 1927 (ITS-27). See the Appendix and, for more detailed information, «Supplementary Information for the ITS-90». ### 3. Definition of the International Temperature Scale of 1990 Between 0,65 K and 5,0 K T_{90} is defined in terms of the vapour-pressure temperature relations of ${}^{3}\text{He}$ and ${}^{4}\text{He}$. Between 3,0 K and the triple point of neon (24,5561 K) T_{90} is defined by means of a helium gas thermometer calibrated at three experimentally realizable temperatures having assigned numerical values (defining fixed points) and using specified interpolation procedures. Between the triple point of equilibrium hydrogen (13,8033 K) and the freezing point of silver (961,78 °C) T_{90} is defined by means of platinum resistance thermometers calibrated at specified sets of defining fixed points and using specified interpolation procedures. Above the freezing point of silver (961,78 °C) T_{90} is defined in terms of a defining fixed point and the Planck radiation law. The defining fixed points of the ITS-90 are listed in Table I. The effects of pressure, arising from significant depths of immersion of the sensor or from other causes, on the temperature of most of these points are given in Table II. ## 3.1. From $0.65~\mathrm{K}$ to $5.0~\mathrm{K}$: helium vapour-pressure temperature equations In this range T_{90} is defined in terms of the vapour pressure p of ${}^{3}\text{He}$ and ${}^{4}\text{He}$ using equations of the form: $$T_{90}/K = A_0 + \sum_{i=1}^{9} A_i [(\ln (p/Pa) - B)/C]^i.$$ (3) The values of the constants A_0 , A_i , B and C are given in Table III for ³He in the range of 0,65 K to 3,2 K, and for ⁴He in the ranges 1,25 K to 2,1768 K (the λ point) and 2,1768 K to 5,0 K. ### 3.2. From 3,0 K to the triple point of neon (24,5561 K): gas thermometer In this range T_{90} is defined in terms of a ${}^{3}\text{He}$ or a ${}^{4}\text{He}$ gas thermometer of the constant-volume type that has been calibrated at three temperatures. These are the triple point of neon (24,5561 K), the Defining fixed points of the ITS-90 TABLE I | - | | | | | | |--------------------------------|------------------------------|--|--|--|--| | $W_{\rm r}\left(T_{90}\right)$ | | 0,001 190 07 | 0,008 449 74
0,091 718 04
0,215 859 75
0,844 142 11 | 1,000 000 00
1,118 138 89
1,609 801 85
1,892 797 68 | 2,568 917 30
3,376 008 60
4,286 420 53 | | State ^(b) | Λ | T
V (or G)
V (or G) | | T X T | ائم ائم ائم ائم | | Substance ^(a) | Не | e-H ₂
e-H ₂ (or He)
e-H ₂ (or He) | Ne
O Ar
Hg | H ₂ O
Ga
In
Sn | Zn
Al
Au
Cu | | rature | t_{90} °C – 270,15 to | | - 248,593 9
- 218,791 6
- 189,344 2
- 38,834 4 | 0,01
29,764 6
156,598 5
231,928 | 419,527
660,323
961,78
1 064,18
1 084,62 | | Temperature | T ₉₀ /K
3 to 5 | 13,803 3
≈ 17
≈ 20,3 | 24,556 1
54,358 4
83,805 8
234,315 6 | 273,16
302,914 6
429,748 5
505,078 | 692,677
933,473
1,234,93
1,337,33
1,357,77 | | Number | - | 0.64 | N91-8 | 9
10
11
12 | 13
15
16
17 | (a): All substances except ¹He are of natural isotopic composition; e-H, is hydrogen at the equilibrium concentration of the ortho- and para-molecular forms. — For advice on the realization of these various states, see «Supplementary Information for the ITS-90». — Symbols have the following meanings: V: vapour pressure point; T: triple point (temperature at which the solid, liquid and vapour phases are in equilibrium); G: gas thermometer point; M. F: melting point, freezing point (temperature, at a pressure of 101 325 Pa, at which the solid and liquid phases are in equilibrium). (p) Procès-Verbaux du Comité International des Poids et Mesures, 78th meeting, 1989 TABLE II Effect of pressure on the temperatures of some defining fixed points * | | Assigned value of equilibrium | Temperatu | re variation | |----------------|-------------------------------|--|--| | Substance | temperature T_{90}/K | with pressure p $(dT/dp)/(10^{-8} \text{K} \cdot \text{Pa}^{-1})^{**}$ | with depth h $(dT/dh)/(10^{-3} \text{K} \cdot \text{m}^{-1})***$ | | e-Hydrogen (T) | 13,803 3 | 34 | 0,25 | | Neon (T) | 24,556 1 | 16 | 1,9 | | Oxygen (T) | 54,358 4 | 12 | 1,5 | | Argon (T) | 83,805 8 | 25 | 3,3 | | Mercury (T) | 234,315 6 | 5,4 | 7,1 | | Water (T) | 273,16 | - 7,5 | - 0,73 | | Gallium | 302,914 6 | - 2,0 | - 1,2 | | Indium | 429,748 5 | 4,9 | 3,3 | | Tin | 505,078 | 3,3 | 2,2 | | Zinc | 692,677 | 4,3 | 2,7 | | Aluminium | 933,473 | 7,0 | 1,6 | | Silver | 1 234,93 | 6,0 | 5,4 | | Gold | 1 337,33 | 6,1 | 10 | | Copper | 1 357,77 | 3,3 | 2,6 | ^{*} The reference pressure for melting and freezing points is the standard atmosphere $(p_0 = 101\ 325\ Pa)$. For triple points (T) the pressure effect is a consequence only of the hydrostatic head of liquid in the cell. ** Equivalent to millikelvins per standard atmosphere. *** Equivalent to millikelvins per metre of liquid. TABLE III Values of the constants for the helium vapour pressure Eq. (3), and the temperature range for which each equation, identified by its set of constants, is valid | | ³ He
0,65 K to 3,2 K | ⁴ He
1,25 K to 2,1768 K | ⁴ He
2,1768 K to 5,0 K | |----------------|------------------------------------|---------------------------------------|--------------------------------------| | A_0 |
1,053 447 | 1,392 408 | 3,146 631 | | A_1 | 0,980 106 | 0,527 153 | 1,357 655 | | A_2 | 0,676 380 | 0,166 756 " | 0,413 923 | | A ₃ | 0,372 692 | 0,050 988 | 0,091 159 | | 4. | 0,151 656 | 0,026 514 | 0,016 349 | | A, | - 0,002 263 | 0,001 975 | 0,001 826 | | A6 | 0,006 596 | - 0,017 976 | - 0,004 325 | | 47 | 0,088 966 | 0,005 409 | - 0,004 973 | | 48 | - 0,004 770 | 0,013 259 | 0 | | A ₉ | - 0,054 943 | 0 | 0 | | \vec{B} | 7,3 | 5,6 | 10,3 | | C | 4,3 | 2,9 | 1,9 | triple point of equilibrium hydrogen (13,8033 K), and a temperature between 3,0 K and 5,0 K. This last temperature is determined using a ³He or a ⁴He vapour pressure thermometer as specified in Sect. 3.1. ## 3.2.1. From 4,2 K to the triple point of neon (24,5561 K) with $^4\mathrm{He}$ as the thermometric gas In this range T_{90} is defined by the relation: $$T_{90} = a + bp + cp^2, (4)$$ where p is the pressure in the gas thermometer and a,b and c are coefficients the numerical values of which are obtained from measurements made at the three defining fixed points given in Sect. 3.2, but with the further restriction that the lowest one of these points lies between 4,2 K and 5.0 K. # 3.2.2. From 3,0 K to the triple point of neon (24,5561 K) with ³He or ⁴He as the thermometric gas For a 3 He gas thermometer, and for a 4 He gas thermometer used below 4,2 K, the non-ideality of the gas must be accounted for explicitly, using the appropriate second virial coefficient $B_{3}(T_{90})$ or $B_{4}(T_{90})$. In this range T_{90} is defined by the relation: $$T_{90} = \frac{a + bp + cp^2}{1 + B_x(T_{90}) N/V},\tag{5}$$ where p is the pressure in the gas thermometer, a, b and c are coefficients the numerical values of which are obtained from measurements at three defining temperatures as given in Sect. 3.2, N/V is the gas density with N being the quantity of gas and V the volume of the bulb, x is 3 or 4 according to the isotope used, and the values of the second virial coefficients are given by the relations: For ³He, $$B_3(T_{90})/\text{m}^3 \text{ mol}^{-1} = \{16,69 - 336,98(T_{90}/\text{K})^{-1} + 91,04(T_{90}/\text{K})^{-2} - 13,82(T_{90}/\text{K})^{-3}\} 10^{-6}.$$ (6 a) For ⁴He, $$B_4(T_{90})/\text{m}^3 \text{ mol}^{-1} = \{16,708 - 374,05(T_{90}/\text{K})^{-1} - 383,53(T_{90}/\text{K})^{-2} + 1799,2(T_{90}/\text{K})^{-3} - 4033,2(T_{90}/\text{K})^{-4} + 3252,8(T_{90}/\text{K})^{-5}\} 10^{-6}.$$ (6 b) The accuracy with which T_{90} can be realized using Eqs. (4) and (5) depends on the design of the gas thermometer and the gas density used. Design criteria and current good practice required to achieve a selected accuracy are given in «Supplementary Information for the ITS-90». ### 3.3. The triple point of equilibrium hydrogen (13,8033 K) to the freezing point of silver (961,78 °C): platinum resistance thermometer In this range T_{90} is defined by means of a platinum resistance thermometer calibrated at specified sets of defining fixed points, and using specified reference and deviation functions for interpolation at intervening temperatures. No single platinum resistance thermometer can provide high accuracy, or is even likely to be usable, over all of the temperature range 13,8033 K to 961,78 °C. The choice of temperature range, or ranges, from among those listed below for which a particular thermometer can be used is normally limited by its construction. For practical details and current good practice, in particular concerning types of thermometer available, their acceptable operating ranges, probable accuracies, permissible leakage resistance, resistance values, and thermal treatment, see « Supplementary Information for the ITS-90 ». It is particularly important to take account of the appropriate heat treatments that should be followed each time a platinum resistance thermometer is subjected to a temperature above about 420 °C. Temperatures are determined in terms of the ratio of the resistance $R(T_{90})$ at a temperature T_{90} and the resistance R(273,16 K) at the triple point of water. This ratio, $W(T_{90})$, is (2): $$W(T_{90}) = R(T_{90})/R(273,16 \text{ K}). \tag{7}$$ An acceptable platinum resistance thermometer must be made from pure, strain-free platinum, and it must satisfy at least one of the following two relations: $$W(29,7646 \,^{\circ}\text{C}) \ge 1,118 \, 07,$$ (8 a) $W(-38,8344 \,^{\circ}\text{C}) \le 0,844 \, 235.$ (8 b) ^(*) Note that this definition of $W(T_{so})$ differs from the corresponding definition used in the ITS-27, ITS-48, IPTS-48 and IPTS-68: for all of these earlier scales W(T) was defined in terms of a reference temperature of 0 °C, which since 1954 has itself been defined as 273,15 K, An acceptable platinum resistance thermometer that is to be used up to the freezing point of silver must also satisfy the relation: $$W(961.78 \,^{\circ}\text{C}) \ge 4.2844.$$ (8 c) In each of the resistance thermometer ranges, T_{90} is obtained from $W_r(T_{90})$ as given by the appropriate reference function {Eqs. (9 b) or (10 b)}, and the deviation $W(T_{90}) - W_r(T_{90})$. At the defining fixed points this deviation is obtained directly from the calibration of the thermometer; at intermediate temperatures it is obtained by means of the appropriate deviation function {Eqs. (12), (13) and (14)}. (i) For the range 13,8033 K to 273,16 K the following reference function is defined: $$\ln\left[W_{\rm r}(T_{90})\right] = A_0 + \sum_{i=1}^{12} A_i \left[\frac{\ln\left(T_{90}/273,16\,\mathrm{K}\right) + 1,5}{1,5}\right]^i. \tag{9 a}$$ An inverse function, equivalent to Eq. (9 a) to within 0,1 mK, is: $$T_{90}/273,16 \text{ K} = B_0 + \sum_{i=1}^{15} B_i \left[\frac{W_{\rm r}(T_{90})^{1/6} - 0,65}{0,35} \right]^i.$$ (9 b) The values of the constants A_0 , A_i , B_0 and B_i are given in Table IV. A thermometer may be calibrated for use throughout this range or, using progressively fewer calibration points, for ranges with low temperature limits of 24,5561 K, 54,3584 K and 83,8058 K, all having an upper limit of 273,16 K. (ii) For the range 0 $^{\circ}$ C to 961,78 $^{\circ}$ C the following reference function is defined: $$W_{\rm r}(T_{90}) = C_0 + \sum_{i=1}^{9} C_i \left[\frac{T_{90}/{\rm K} - 754,15}{481} \right]^i.$$ (10 a) An inverse function, equivalent to equation (10 a) to within 0,13 mK, is: $$T_{90}/K - 273,15 = D_0 + \sum_{i=1}^{9} D_i \left[\frac{W_i(T_{90}) - 2,64}{1,64} \right]^i.$$ (10 b) The values of the constants C_0 , C_i , D_0 and D_i are given in Table IV. A thermometer may be calibrated for use throughout this range or, using fewer calibration points, for ranges with upper limits of 660,323 °C, Table IV Platinum resistance thermometer The constants A_0 , A_i ; B_0 , B_i ; C_0 , C_i ; D_0 and D_1 in the reference function of equations (9 a); (9 b); (10 a); and (10 b) respectively | , | | | | |-----------------|----------------|----------------|-----------------| | A_0 | - 2,135 347 29 | B_0 | 0,183 324 722 | | A | 3,183 247 20 | B_1 | 0,240 975 303 | | A_2 | - 1,801 435 97 | B_2 | 0,209 108 771 | | A3 | 0.717 272 04 | B_3 | 0,190 439 972 | | 713 | 0,71727200 | ,,, | 0,1201133312 | | A_4 | 0,503 440 27 | B_4 | 0,142 648 498 | | A 5 | - 0.618 993 95 | B_{5} | 0,077 993 465 | | A6 | - 0,053 323 22 | B_6 | 0.012 475 611 | | 17 | 0,280 213 62 | B_7 | - 0.032 267 127 | | /17 | 0,200 21,7 02 | D ₇ | 0,032 207 127 | | Ax | 0,107 152 24 | B_8 | 0,075 291 522 | | A9 | - 0,293 028 65 | B_{q} | - 0.056 470 670 | | 1,0 | 0,044 598 72 | B_{10} | 0.076 201 285 | | A ₁₁ | 0.118 686 32 | B_{11} | 0,123 893 204 | | A ₁₂ | - 0,052 481 34 | B_{12} | - 0,029 201 193 | | 7112 | 0,032 461 34 | 2012 | 0,025 201 155 | | | | B_{13} | - 0.091 173 542 | | | | B_{14} | 0,001 317 696 | | | | B_{15} | 0.026 025 526 | | | | 2015 | 0,020 023 320 | | C_0 | 2,781 572 54 | D_0 | 439,932 854 | | C_1 | 1,646 509 16 | D_1 | 472,418 020 | | C_2 | - 0.137 143 90 | D_2 | 37,684 494 | | C2 | 0,137 (4370 | 2.5 2 | 37,007 474 | | C ₃ | - 0,006 497 67 | D_3 | 7,472 018 | | C_4 | - 0.002 344 44 | D_4 | 2,920 828 | | C ₅ | 0,005 118 68 | D_{i} | 0,005 184 | | | 0,000 710 00 | *** | 0,005 101 | | C ₆ | 0,001 879 82 | D_6 | - 0,963 864 | | C ₇ | - 0.002 044 72 | D_7 | - 0,188 732 | | C ₈ | - 0.000 461 22 | D_8 | 0.191 203 | | C ₉ | 0,000 457 24 | D_9 | 0,049 025 | | | Open to the t | 229 | 2,017 | 419,527 °C, 231,928 °C, 156,5985 °C or 29,7646 °C, all having a lower limit of 0 °C. (iii) A thermometer may be calibrated for use in the range 234,3156 K (- 38,8344 °C) to 29,7646 °C, the calibration being made at these temperatures and at the triple point of water. Both reference functions {Eqs. (9) and (10)} are required to cover this range. The defining fixed points and deviation functions for the various ranges are given below, and in summary form in Table V. Table V Deviation functions and calibration points for platinum resistance thermometers in the various ranges in which they define T_{so} | | | in the various ranges in which they agine 150 | | |-------------------------------|--|---|-------------------------------| | (a) Ranges wit | (a) Ranges with an upper limit of 273,16 K | of 273,16 K | | | Section | Lower | Deviation functions | Calibration points** | | 3.3.1 | 13,803 3 K | $a[W(T_{90})-1] + b[W(T_{90})-1]^2 + \sum_{i=1}^{5} c_i[\ln W(T_{90})]^{i+n}, n = 2$ | 2 to 9 | | 3.3.1.1
3.3.1.2
3.3.1.3 | 24,556 1 K
54,358 4 K
83,805 8 K | As for 3.3.1 with $c_4 = c_5 = 0$ and $n = 0$
As for 3.3.1 with $c_2 = c_3 = c_4 = c_5 = 0$ and $n = 1$
$a[W(T_{50}) - 1] + b[W(T_{50}) - 1] \ln W(T_{50})$ | 2, 5 to 9
6 to 9
7 to 9 | | (b) Ranges wit | (b) Ranges with a lower limit of 0 °C | 2.0 | | | Section
| Upper | Deviation functions | Calibration points ** | | 3.3.2 * | O. 861,78 °C | $a[W(T_{90}) - 1] + b[W(T_{90}) - 1]^2 + c[W(T_{90}) - 1]^3$ | 9, 12 to 15 | | 3.3.2.1 | 660,323 °C | $+ \frac{a}{4} \frac{[W(1_{99})]}{[W(2)_{2}_{2}_{2}_{2}_{3}_{3}_{3}_{3}_{4}_{5}_{4}_{5}_{4}_{6}_{4}_{5}_{5}_{6}_{5}_{3}_{3}_{3}_{5}_{4}_{5}_{6}_{6}_{7}_{7}_{7}_{7}_{7}_{7}_{7}_{7}_{7}_{7$ | 9, 12 to 14
9, 12 to 14 | | 3323 | 231,928 °C
156,598 5 °C | As for 3.3.2 with $c = d = 0$
As for 3.3.2 with $b = c = d = 0$ | 9, 11, 12 | | 3.3.2.5 | 29,764 6 °C | As for 3.3.2 with $b = c = d = 0$ | 9, 10 | | (c) Range fron | n 234,315 6 K (- 3 | (c) Range from 234,315 6 K (- 38,834 4 °C) to 29,764 6 °C | | | 3.3.3 | | As for 3.3.2 with $c = d = 0$ | 8 to 10 | * Calibration points 9, 12 to 14 are used with d = 0 for $t_{s0} \le 660,323$ °C; the values of a, b and c thus obtained are retained for $t_{s0} \ge 660,323$ °C, with d being determined from calibration point 15. ** See Table 1. ### 3.3.1. The triple point of equilibrium hydrogen (13,8033 K) to the triple point of water (273,16 K) The thermometer is calibrated at the triple points of equilibrium hydrogen (13,8033 K), neon (24,5561 K), oxygen (54,3584 K), argon (83,8058 K), mercury (234,3156 K), and water (273,16 K), and at two additional temperatures close to 17,0 K and 20,3 K. These last two may be determined either: by using a gas thermometer as described in Sect. 3.2, in which case the two temperatures must lie within the ranges, 16,9 K to 17,1 K and 20,2 K to 20,4 K respectively; or by using the vapour pressure-temperature relation of equilibrium hydrogen, in which case the two temperatures must lie within the ranges 17,025 K to 17,045 K and 20,26 K to 20,28 K respectively, with the precise values being determined from Eqs. (11 a) and (11 b) respectively: $$T_{90}/K - 17,035 = (p/kPa - 33,3213)/13,32,$$ (11 a) $$T_{90}/K - 20,27 = (p/kPa - 101,292)/30.$$ (11 b) The deviation function is (3): $$W(T_{90}) - W_{r}(T_{90}) = a[W(T_{90}) - 1] + b[W(T_{90}) - 1]^{2} + \sum_{i=1}^{5} c_{i}[\ln W(T_{90})]^{i+n}, \quad (12)$$ with values for the coefficients a, b and c_i being obtained from measurements at the defining fixed points and with n = 2. For this range and for the sub-ranges 3.3.1.1 to 3.3.1.3 the required values of $W_{\rm r}(T_{90})$ are obtained from Eq. (9 a) or from Table I. ## 3.3.1.1. The triple point of neon (24,5561 K) to the triple point of water (273,16 K) The thermometer is calibrated at the triple points of equilibrium hydrogen (13,8033 K), neon (24,5561 K), oxygen (54,3584 K), argon (83,8058 K), mercury (234,3156 K) and water (273,16 K). The deviation function is given by Eq. (12) with values for the coefficients a, b, c_1, c_2 and c_3 being obtained from measurements at the defining fixed points and with $c_4 = c_5 = n = 0$. ⁽³⁾ This deviation function {and also those of Eqs (13) and (14)} may be expressed in terms of W_r rather than W; for this procedure see «Supplementary Information for ITS-90». ### 3.3.1.2. The triple point of oxygen (54,3584 K) to the triple point of water (273,16 K) The thermometer is calibrated at the triple points of oxygen (54,3584 K), argon (83,8058 K), mercury (234,3156 K) and water (273,16 K). The deviation function is given by Eq. (12) with values for the coefficients a, b and c_1 being obtained from measurements at the defining fixed points, with $c_2 = c_3 = c_4 = c_5 = 0$ and with n = 1. ### 3.3.1.3. The triple point of argon (83,8058 K) to the triple point of water (273,16 K) The thermometer is calibrated at the triple points of argon (83,8058 K), mercury (234,3156 K) and water (273,16 K). The deviation function is: $$W(T_{90}) - W_{r}(T_{90}) = a[W(T_{90}) - 1] + b[W(T_{90}) - 1] \ln W(T_{90})$$ (13) with the values of a and b being obtained from measurements at the defining fixed points. #### 3.3.2. From 0 °C to the freezing point of silver (961,78 °C) The thermometer is calibrated at the triple point of water (0,01 °C), and at the freezing points of tin (231,928 °C), zinc (419,527 °C), aluminium (660,323 °C) and silver (961,78 °C). The deviation function is: $$W(T_{90}) - W_{r}(T_{90}) = a[W(T_{90}) - 1] + b[W(T_{90}) - 1]^{2} + c[W(T_{90}) - 1]^{3} + d[W(T_{90}) - W(660,323 ^{\circ}C)]^{2}.$$ (14) For temperatures below the freezing point of aluminium d=0, with the values of a, b and c being determined from the measured deviations from $W_r(T_{90})$ at the freezing points of tin, zinc and aluminium. From the freezing point of aluminium to the freezing point of silver the above values of a, b and c are retained and the value of d is determined from the measured deviation from $W_r(T_{90})$ at the freezing point of silver. For this range and for the sub-ranges 3.3.2.1 to 3.3.2.5 the required values for $W_r(T_{90})$ are obtained from Eq. (10 a) or from Table I. #### 3.3.2.1. From 0 °C to the freezing point of aluminium (660,323 °C) The thermometer is calibrated at the triple point of water (0,01 °C), and at the freezing points of tin (231,928 °C), zinc (419,527 °C) and aluminium (660,323 °C). The deviation function is given by Eq. (14), with the values of a, b and c being determined from measurements at the defining fixed points and with d=0. #### 3.3.2.2. From 0 °C to the freezing point of zinc (419,527 °C) The thermometer is calibrated at the triple point of water (0,01 °C), and at the freezing points of tin (231,928 °C) and zinc (419,527 °C). The deviation function is given by Eq. (14), with the values of a and b being obtained from measurements at the defining fixed points and with c = d = 0. #### 3.3.2.3. From 0 °C to the freezing point of tin (231,928 °C) The thermometer is calibrated at the triple point of water (0,01 °C), and at the freezing points of indium (156,5985 °C), and tin (231,928 °C). The deviation function is given by Eq. (14), with the values of a and b being obtained from measurements at the defining fixed points and with c = d = 0. ### 3.3.2.4. From 0 °C to the freezing point of indium (156,5985 °C) The thermometer is calibrated at the triple point of water (0,01 °C), and at the freezing point of indium (156,5985 °C). The deviation function is given by Eq. (14), with the value of a being obtained from measurements at the defining fixed points and with b = c = d = 0. ### 3.3.2.5. From 0 °C to the melting point of gallium (29,7646 °C) The thermometer is calibrated at the triple point of water (0,01 °C), and at the melting point of gallium (29,7646 °C). The deviation function is given by Eq. (14), with the value of a being obtained from measurements at the defining fixed points and with b = c = d = 0. ### 3.3.3. The triple point of mercury (-38,8344 °C) to the melting point of gallium (29,7646 °C) The thermometer is calibrated at the triple points of mercury (-38,8344 °C), and water (0,01 °C), and at the melting point of gallium (29,7646 °C). The deviation function is given by Eq. (14), with the values of a and b being obtained from measurements at the defining fixed points and with c = d = 0. The required values of $W_r(T_{90})$ are obtained from Eqs. (9 a) and (10 a) for measurements below and above 273,16 K respectively, or from Table I. ### 3.4. The range above the freezing point of silver (961,78 $^{\circ}$ C): Planck radiation law Above the freezing point of silver the temperature T_{90} is defined by the equation: $$\frac{L_{\lambda}(T_{90})}{L_{\lambda}[T_{90}(X)]} = \frac{\exp\left(c_{2}[\lambda T_{90}(X)]^{-1}\right) - 1}{\exp\left(c_{2}[\lambda T_{90}]^{-1}\right) - 1},\tag{15}$$ where $T_{90}(X)$ refers to any one of the silver $\{T_{90}(Ag) = 1.234,93 \text{ K}\}$, the gold $\{T_{90}(Au) = 1.337,33 \text{ K}\}$ or the copper $\{T_{90}(Cu) = 1.357,77 \text{ K}\}$ freezing points (4) and in which $L_{\lambda}(T_{90})$ and $L_{\lambda}[T_{90}(X)]$ are the spectral concentrations of the radiance of a blackbody at the wavelength (in vacuo) λ at T_{90} and at $T_{90}(X)$ respectively, and $C_{2} = 0.014388 \text{ m·K}$. For practical details and current good practice for optical pyrometry, see « Supplementary Information for the ITS-90 ». #### 4. Supplementary information and differences from earlier scales The apparatus, methods and procedures that will serve to realize the ITS-90 are given in «Supplementary Information for the ITS-90». This document also gives an account of the earlier International Temperature Scales and the numerical differences between successive scales that include, where practicable, mathematical functions for the differences $T_{90}-T_{68}$. A number of useful approximations to the ITS-90 are given in «Techniques for Approximating the ITS-90»*. The two documents have been prepared by the Comité Consultatif de Thermométrie and are published by the BIPM; they are revised and updated periodically. The differences $T_{90} - T_{68}$ are shown in Fig. 1 and Table VI. The number of significant figures given in Table VI allows smooth interpolations to be made. However, the reproducibility of the IPTS-68 is, in many areas, substantially worse than is implied by this number. ⁽⁴⁾ The T_{90} values of the freezing points of silver, gold and copper are believed to be self consistent to such a degree that the substitution of any one of them in place of one of the other two as the reference temperature $T_{90}(X)$ will not result in significant differences in the measured values of T_{90} . ^{*} See Monography BIPM/1990. Differences between 1TS-90 and EPT-76, and between 1TS-90 and 1PTS-68 for specified values of T₉₀ and t₉₀ TABLEAU VI | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $(T_{90} - T_{76})/mK$ | ₆)/mK | | | | | | | | | |
---|------------------------|-------------------|----------------|----------------|----------------|---------|-------------------------|-------------------------|-------------------------|----------------|----------------| | -0.66 -0.7 -0.8 -1.0 -1.1 -0.1 -0.2 -0.3 -0.4 -1.8 -0.4 <t< th=""><th>T_{90}/K</th><th>0</th><th></th><th>2</th><th>3</th><th>4</th><th>5</th><th>9</th><th>7</th><th>8</th><th>6</th></t<> | T_{90}/K | 0 | | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 6 | | 0 1 2 3 4 5 6 7 8 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.006 -0.008 -0.008 -0.008 -0.009 <td>0 0 0</td> <td></td> <td>- 0,7
- 2,5</td> <td>- 0,8
- 2,7</td> <td>- 1,0
- 3,0</td> <td></td> <td>- 0,1
- 1,3
- 3,5</td> <td>- 0,2
- 1,4
- 3,8</td> <td>- 0,3
- 1,6
- 4,1</td> <td>- 0,4
- 1,8</td> <td>- 0,5
- 2.0</td> | 0 0 0 | | - 0,7
- 2,5 | - 0,8
- 2,7 | - 1,0
- 3,0 | | - 0,1
- 1,3
- 3,5 | - 0,2
- 1,4
- 3,8 | - 0,3
- 1,6
- 4,1 | - 0,4
- 1,8 | - 0,5
- 2.0 | | 0 1 2 3 4 5 6 7 8 -0.009 -0.008 -0.007 -0.006 -0.005 -0.004 -0.006 -0.008 -0.008 -0.008 -0.008 -0.008 -0.009 <td>$(T_{90} - T_6)$</td> <td>s)/K</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | $(T_{90} - T_6)$ | s)/K | | | | | | | | | | | - 0.009 - 0.008 - 0.006 - 0.005 - 0.004 - 0.006 - 0.008 - 0.006 - 0.007 - 0.007 - 0.008 - 0.006 - 0.005 - 0.004 - 0.006 - 0.005 - 0.006 - 0.006 - 0.008 - 0.008 - 0.007 - 0.007 - 0.007 - 0.006 - 0.006 - 0.006 - 0.006 - 0.006 - 0.006 - 0.007 - 0.007 - 0.007 - 0.006 - 0.006 - 0.003 - 0.004 - 0.004 - 0.004 - 0.004 - 0.007 - 0.007 - 0.007 - 0.006 - 0.006 0.003 - 0.004 - 0.004 - 0.003 - 0.002 - 0.007 - 0.007 - 0.006 - 0.0 | T ₉₀ /K | 0 | 1 | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 6 | | - 0.009 - 0.008 - 0.007 - 0.006 - 0.005 - 0.004 - 0.004 - 0.005 - 0.006 - 0.007 - 0.006 - 0.006 - 0.007 - 0.006 - 0.007 - 0.006 - 0.007 - 0.007 - 0.007 - 0.006 - 0.006 - 0.007 - 0.007 - 0.007 - 0.006 - 0.006 - 0.006 - 0.007 - 0.007 - 0.006 <t< td=""><td>10</td><td></td><td></td><td></td><td></td><td>- 0,006</td><td>- 0,003</td><td>- 0,004</td><td>90000 -</td><td>8000 -</td><td>- 0,009</td></t<> | 10 | | | | | - 0,006 | - 0,003 | - 0,004 | 90000 - | 8000 - | - 0,009 | | - 0.006 - 0.007 - 0.008 - 0.008 - 0.007 - 0.007 - 0.006 - 0.006 - 0.008 - 0.007 - 0.007 - 0.006 - 0.006 - 0.006 - 0.006 - 0.007 - 0.007 - 0.007 - 0.006 <t< td=""><td>20</td><td></td><td>8000 -</td><td>- 0,007</td><td>-0.007</td><td>900'0 -</td><td>- 0,005</td><td>- 0,004</td><td></td><td>- 0,005</td><td>-0000</td></t<> | 20 | | 8000 - | - 0,007 | -0.007 | 900'0 - | - 0,005 | - 0,004 | | - 0,005 | -0000 | | - 0.006 - 0.006 - 0.006 - 0.006 - 0.006 - 0.006 - 0.006 - 0.006 - 0.007 - 0.007 - 0.006 - 0.006 - 0.006 - 0.007 - 0.006 - 0.000 - 0.006 - 0.000 <t< td=""><td>30</td><td></td><td>- 0.007</td><td></td><td></td><td>- 0,008</td><td>- 0,007</td><td>- 0,007</td><td></td><td>900'0 -</td><td>- 0,006</td></t<> | 30 | | - 0.007 | | | - 0,008 | - 0,007 | - 0,007 | | 900'0 - | - 0,006 | | - 0.006 - 0.005 - 0.005 - 0.004 - 0.003 - 0.005 - 0.004 0.004 - 0.003 - 0.004 0.004 0.005 - 0.005 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.009 0.010 30 40 50 60 70 80 0.009 0.011 0.013 0.014 0.014 0.014 0.014 0.014 0.013 0.001 | 40 | 900'0 - | 900'0 - | | 900'0 - | 900'0 - | - 0,007 | - 0,007 | | 900'0 - | 900'0 - | | 0,003 0,003 0,004 0,004 0,004 0,005 0,005 0,006 0,006 0,007 0,007 - 0,007 0,007 0,007 0,008 0,009 0,009 0,014 0,014 0,014 0,014 0,014 0,014 0,001 0 | 20 | 90000 - | - 0,005 | | -0.004 | | -0.002 | - 0,001 | 0,000 | 0,001 | 0,002 | | 0.007 - 0,007 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,009 0,008 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,001 0,012 0,014 0,014 0,014 0,014 0,014 0,013 0,012 0,001 < | 09 | 0,003 | 0,003 | 0,004 | 0,004 | 0,005 | 0,005 | 900'0 | 900'0 | 0,007 | 0,007 | | 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,008 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,009 0,001 0,011 0,013 0,014 0,014 0,014 0,001 <th< td=""><td>20</td><td>0.007</td><td>- 0,007</td><td>0,007</td><td>0,007</td><td>0,007</td><td>800.0</td><td>0,008</td><td>0,008</td><td>800,0</td><td>0,008</td></th<> | 20 | 0.007 | - 0,007 | 0,007 | 0,007 | 0,007 | 800.0 | 0,008 | 0,008 | 800,0 | 0,008 | | 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.001 0
10 20 30 40 50 60 70 80 0,009 0,011 0,013 0,014 0,014 0,014 0,014 0,013 0,012 0,011 0,010 0,009 0,008 0,007 0,005 0,003 0,001 0,001 | 80 | 0,008 | 800'0 | 0,008 | 0.008 | 0,008 | 0,008 | 0.008 | 0,008 | 800'0 | 0,008 | | 0 10 20 30 40 50 60 70 80 80 0,009 0,011 0,013 0,009 0,008 0,008 0,007 0,005 0,003 0,001 | 06 | 0,008 | 0,008 | 800'0 | 0,008 | 0,008 | 0,008 | 800'0 | 0,009 | 600,0 | 0,009 | | 0,009 0,011 0,013 0,014 0,014 0,014 0,014 0,013 0,012 0,012 0,011 0,010 0,009 0,008 0,007 0,005 0,003 0,001 | T ₉₀ /K | 0 | 10 | 20 | 30 | 40 | 50 | 09 | 70 | 80 | 06 | | | 100 | 0,009 | 0,011 | 0,003 | 0,014 | 0,014 | 0,014 | 0,014 | 0,013 | 0,012 | 0,012 | | $(t_{99}-t_{68})^{\prime c}C$ | /پد | | | | | | | | | | |-------------------------------|---------|----------------|---------|----------|---------|---------|----------------|---------|----------|---------| | $t_{99}^{''}C$ | 0 | - 10 | - 20 | - 30 | - 40 | - 50 | 09 — | - 70 | - 80 | - 90 | | - 100 | 0,013 | 0,013
0,002 | 0,014 | 0.014 | 0,014 | 0.013 | 0,012
0,010 | 0,010 | 0,008 | 0,008 | | ر _{امر} 'ور | 0 | 01 | 20 | 30 | 40 | 99 | 09 | 70 | 08 | 06 | | 0 | 0000 | - 0 000 | - 0.005 | - 0 007 | - 0 010 | - 0.013 | - 0.016 | - 0.018 | - 0.0021 | - 0.024 | | 100 | - 0,026 | - 0.028 | - 0.030 | - 0.032 | - 0.034 | - 0.036 | - 0.037 | - 0,038 | - 0,039 | - 0.039 | | 200 | - 0.040 | - 0,040 | - 0,040 | 0,040 | 0,040 | - 0,040 | - 0.040 | - 0,039 | - 0,039 | -0.039 | | 300 | - 0.039 | - 0.039 | - 0,039 | - 0,040 | - 0,040 | 0,041 | - 0,042 | - 0,043 | - 0,045 | - 0,046 | | 400 | - 0.048 | -0.051 | - 0,053 | - 0.056 | - 0.059 | - 0.062 | - 0.065 | 890'0 - | - 0,072 | - 0,075 | | 500 | -0.079 | - 0,083 | - 0.087 | 060.0 - | - 0,094 | - 0.098 | - 0,101 | - 0,105 | - 0,108 | - 0,112 | | 009 | -0.115 | -0.118 | -0.122 | - 0.125* | 80.0 - | -0.03 | 0,02 | 90.0 | 0.11 | 0,16 | | 700 | 0,20 | 0,24 | 0,28 | 0.31 | 0,33 | 0,35 | 0.36 | 0,36 | 0,36 | 0.35 | | 800 | 0.34 | 0.32 | 0,29 | 0.25 | 0.22 | 0,18 | 0,14 | 0,10 | 90.0 | 0.03 | | 006 | - 0.01 | *- 0.03 | 90.0 - | 80.0 - | - 0,10 | -0.12 | - 0.14 | -0.16 | -0.17 | - 0.18 | | 1 000 | - 0,19 | - 0,20 | - 0.21 | - 0.22 | - 0.23 | - 0.24 | - 0,25 | - 0,25 | - 0.26 | - 0.26 | | J.,/26/ | 0 | 100 | 200 | 300 | 400 | 900 | 009 | 700 | 800 | 006 | | 1 000 | | - 0.26 | - 0.30 | - 0.35 | - 0.39 | - 0,44 | - 0,49 | - 0.54 | 09.0 | 99.0 - | | 2 000 | - 0,72 | - 0.79 | - 0,85 | - 0,93 | - 1.00 | - 1,07 | - 1,15 | - 1.24 | - 1.32 | - 1.41 | | 3 000 | - 1.50 | - 1.59 | - 1.69 | - 1,78 | 68'1 - | - 1,99 | - 2,10 | - 2,21 | - 2,32 | - 2,43 | | | | | | | | | 4 | | | | * A discontinuity in the first derivative of $(t_{sp}-t_{sg})$ occurs at a temperature of $t_{sp}=630.6$ °C, at which $(t_{sp}-t_{sg})=-0.125$ °C. #### APPENDIX #### The International Temperature Scale of 1927 (ITS-27) The International Temperature Scale of 1927 was adopted by the seventh Conférence Générale des Poids et Mesures to overcome the practical difficulties of the direct realization of thermodynamic temperatures by gas thermometry, and as a universally acceptable replacement for the differing existing national temperature scales. The ITS-27 was formulated so as to allow measurements of temperature to be made precisely and reproducibly, with as close an approximation to thermodynamic temperatures as could be determined at that time. Between the oxygen boiling point and the gold freezing point it was based upon a number of reproducible temperatures, or fixed points, to which numerical values were assigned, and two standard interpolating instruments. Each of these interpolating instruments was calibrated at several of the fixed points, this giving the constants for the interpolating formula in the appropriate temperature range. A platinum resistance thermometer was used for the lower part and a platinum rhodium/platinum thermocouple for temperatures above 660 °C. For the region above the gold freezing point, temperatures were defined in terms of the Wien radiation law: in practice, this invariably resulted in the selection of an optical pyrometer as the realizing instrument. #### The International Temperature Scale of 1948 (ITS-48) The International Temperature Scale of 1948 was adopted by the ninth Conférence Générale. Changes from the ITS-27 were: the lower limit of the platinum resistance thermometer range was changed from - 190 °C to the defined oxygen boiling point of - 182,97 °C, and the junction of the platinum resistance thermometer range and the thermocouple range became the measured antimony freezing point (about 630 °C) in place of 660 °C; the silver freezing* point was defined as being 960,8 °C instead of 960,5 °C; the gold freezing point replaced the gold melting point (1063 °C); the Planck radiation law replaced the Wien law; the value assigned to the second radiation constant became $1,438 \times 10^{-2}\,\mathrm{m\cdot K}$ in place of $1,432 \times 10^{-2}\,\mathrm{m\cdot K}$; the permitted ranges for the constants of the interpolation formulae for the standard resistance thermometer and thermocouple were modified; the limitation on λT for optical pyrometry ($\lambda T \leqslant 3 \times 10^{-3}\,\mathrm{m\cdot K}$) was changed to the requirement that « visible » radiation be used. ### The International Practical Temperature Scale of 1948 (Amended Edition of 1960) (IPTS-48) The International Practical Temperature Scale of 1948, amended edition of 1960, was adopted by the eleventh Conférence Générale: the tenth Conférence Générale had already adopted the triple point of water as the sole point defining the kelvin, the unit of thermodynamic temperature. In addition to the introduction of the word « Practical », the modifications to the ITS-48 were: the triple point of water, defined as being 0,01 °C, replaced the melting point of ice as the calibration point in this region; the freezing point of zinc, defined as being 419,505 °C, became a preferred alternative to the sulphur boiling point (444,6 °C) as a calibration point; the permitted ranges for the constants of the interpolation formulae for the standard resistance thermometer and the thermocouple were further modified; the restriction to « visible » radiation for optical pyrometry was removed. Inasmuch as the numerical values of temperature on the IPTS-48 were the same as on the ITS-48, the former was not a revision of the scale of 1948 but merely an amended form of it. #### The International Practical Temperature Scale of 1968 (IPTS-68) In 1968 the Comité International des Poids et Mesures promulgated the International Practical Temperature Scale of 1968, having been empowered to do so by the thirteenth Conférence Générale of 1967-1968. The IPTS-68 incorporated very extensive changes from the IPTS-48. These included numerical changes, designed to bring it more nearly in accord with thermodynamic temperatures, that were sufficiently large to be apparent to many users. Other changes were as follows: the lower limit of the scale was extended down to 13,81 K; at even lower temperatures (0,5 K to 5,2 K), the use of two helium vapour pressure scales was recommended; six new defining fixed points were introduced - the triple point of equilibrium hydrogen (13,81 K), an intermediate equilibrium hydrogen point (17,042 K), the normal boiling point of equilibrium hydrogen (20,28 K), the boiling point of neon (27,102 K), the triple point of oxygen (54,361 K), and the freezing point of tin (231,9681 °C) which became a permitted alternative to the boiling point of water; the boiling point of sulphur was deleted; the values assigned to four fixed points were changed — the boiling point of oxygen (90,188 K), the freezing point of zinc (419,58 °C), the freezing point of silver (961,93 °C), and the freezing point of gold (1 064,43 °C); the interpolating formulae for the resistance thermometer range became much more complex; the value assigned to the second radiation constant c₂ became $1{,}4388 \times 10^{-2} \,\mathrm{m \cdot K}$; the permitted ranges of the constants for the interpolation formulae for the resistance thermometer and thermocouple were again modified. ### The International Practical Temperature Scale of 1968 (Amended Edition of 1975) (IPTS-68) The International Practical Temperature Scale of 1968, amended edition of 1975, was adopted by the fifteenth Conférence Générale in 1975. As was the case for the IPTS-48 with respect to the ITS-48, the IPTS-68 (75) introduced no numerical changes. Most of the extensive textual changes were intended only to clarify and simplify its use. More substantive changes were: the oxygen point was defined as the condensation point rather than the boiling point; the triple point of argon (83,798 K) was introduced as a permitted alternative to the condensation point of oxygen; new values of the isotopic composition of naturally occurring neon were adopted; the recommendation to use values of T given by the 1958 ⁴He and 1962 ³He vapour-pressure scales was rescinded. #### The 1976 Provisional 0,5 K to 30 K Temperature Scale (EPT-76) The 1976 Provisional 0.5 K to 30 K Temperature Scale was introduced to meet two important requirements: these were to provide means of substantially reducing the errors (with respect to corresponding thermodynamic values) below 27 K that were then known to exist in the IPTS-68 and throughout the temperature ranges of the 4He and 3He vapour pressure scales of 1958 and 1962 respectively, and to bridge the gap between 5,2 K and 13,81 K in which there had not previously been an international scale. Other objectives in devising the EPT-76 were «that it should be thermodynamically smooth, that it should be continuous with the IPTS-68 at 27,1 K, and that is should agree with thermodynamic temperature T as closely as these two conditions allow ». In contrast with the IPTS-68, and to ensure its rapid adoption, several methods of realizing the EPT-76 were approved. These included: using a thermodynamic interpolation instrument and one or
more of eleven assigned reference points; taking differences from the IPTS-68 above 13,81 K; taking differences from helium vapour pressure scales below 5 K; and taking differences from certain well-established laboratory scales. Because there was a certain «lack of internal consistency» it was admitted that «slight ambiguities between realizations» might be introduced. However the advantages gained by adopting the EPT-76 as a working scale until such time as the IPTS-68 should be revised and extended were considered to outweigh the disadvantages.