Updated Estimates of the Differences between Thermodynamic Temperature T and the ITS-90 Temperature T_{90}

In 2010, at the CCT's request, Working Group 4 (WG4) critically reviewed all available measurements of T- T_{90} including constant-volume gas thermometry, acoustic gas thermometry, spectral radiation thermometry, total radiation thermometry, noise thermometry, and dielectric-constant gas thermometry. These were published in 2011 [1]. Consensus estimates were provided for $T - T_{90}$, deduced from selected measurements from 4.2 K to 1358 K, as well as a recommendation for analytic approximations to T- T_{90} for the range 0.65 K to 1358 K [1]. Due to significant progress in the field of contact thermometry below 335 K since that time, CCT working group on contact thermometry (WG-CTh) according to its terms of reference reviewed all new available T- T_{90} data sets since 2011 leading to updated values for T- T_{90} [2] with in part a reduction of one order of magnitude in uncertainty compared to the 2011 estimates. Note that the best estimate of the thermodynamic temperature of the triple point of water remains 273.1600(1) K with the standard uncertainty given in brackets, and readers who wish to use the triple point of water as a thermodynamic reference point should continue to use this value and uncertainty.

Table of Differences

Above 335 K, Table 1 summarizes the best estimates of $T-T_{90}$ in 2011. These are still considered the best estimates in this temperature region due to the paucity of new values between 2011 and 2022. In this case a weighted average was formed using the uncertainties identified by WG4 (details see [1]), and the values in Table 1 were, therefore, the direct representation of the best estimates of $T-T_{90}$ and their respective uncertainties.

In the range below 335 K, the primary representation of the updated values is given by a 12^{th} -order polynomial (coefficients given in Table 2). These were determined as a result of a weighted least squares fit to all the relevant data [2]. For convenience, below 335 K, the calculated T- T_{90} estimates together with the uncertainties derived at these temperatures (a combination of the fit uncertainty and further components (for details see [2])) are given in Table 1. The uncertainties below 335 K, given in Table 1, have further been fitted for convenience using a 6th order polynomial obtained by a least-squares fit to the data and the coefficients are given in Table 2.

Table 1 Estimates of T- T_{90} between 4.2 K and 1358 K. The substances of the defining fixed points and secondary reference points of the ITS-90 are marked in the 2nd and 6th columns. All uncertainties are standard uncertainties (k = 1). Values below 335 K have been updated in 2022, the values above 335 K are identical with the 2011 estimates.

T_{90}		$T - T_{90}$	и	T_{90}		$T - T_{90}$	и
Κ		mK	mK	Κ		mК	mК
4.2		0.00	0.13	161.405	Xe	-7.34	0.27
5		0.07	0.13	195		-4.73	0.23
6		0.16	0.12	234.3156	Hg	-2.89	0.13
7		0.22	0.12	255		-1.97	0.15
8		0.27	0.13	273.16	TPW	-0.07	0.12
9.288	Nb	0.32	0.13	290		2.29	0.23
11		0.36	0.15	302.9146	Ga	3.84	0.34
13.8033	e-H ₂	0.36	0.19	335		7.09	0.60
17.035	e-H ₂	0.29	0.19	373.124	H_2O	9.74	0.6
20.27	e-H ₂	0.16	0.19	429.7485	In	10.1	0.8
22.5		0.05	0.19	505.078	Sn	11.5	1.3
24.5561	Ne	-0.06	0.20	600.612	Pb	9.21	6.1
35		-0.76	0.26	692.677	Zn	13.8	6.9
45		-1.51	0.17	800		22.4	6.4
54.3584	O_2	-2.21	0.14	903.778	Sb	27.6	7.6
70		-3.30	0.15	933.473	Al	28.7	6.6
77.657		-3.80	0.15	1052.78	Cu/Ag	40.9	26
83.8058	Ar	-4.21	0.15	1150		46.3	20
90		-4.62	0.16	1234.93	Ag	46.2	14
100		-5.32	0.20	1337.33	Au	39.9	20
130		-7.30	0.27	1357.77	Cu	52.1	20

Interpolation Functions

From 0.65 K to 2 K, the polynomial for the temperature scale PTB-2006 (based on the 3 Helium vapor-pressure) should be used [3] with

$$T - T_{90} \equiv T_{2006} - T_{90.}$$

The recommendation is supported by a recently performed direct comparison of the melting and vapor pressures of helium-3 at the LNE [4].

Below 1 K, T₂₀₀₆ is identical to T_{PLTS-2000}. From 2 K to 4 K,

$$T - T_{90} = 0.$$

From 4 K to 335 K,

$$D(T_{90}) / \mathrm{mK} = (T - T_{90}) / \mathrm{mK} = \sum_{i=0}^{n} a_i (T_{90} / \mathrm{K})^i$$
(1)

with the coefficients given in Table 2:

Table 2 (Published as Table 3 in [2] Copyright 2022 Author(s), licensed under a Creative Commons Attribution 4.0 IGO (CC BY 4.0 IGO) license.) Fitting coefficients for the

power series approximating the $(T - T_{90})$ input data in the range from 4 K to 335 K $(D(T_{90}): a_i)$ and its combined standard uncertainty estimates $(u(D(T_{90})): b_i)$ resulting from a least-squares fit to *u* listed in Table 1 in the specific temperature range.

i	a_i	b_i
0	-6.393509785E-01	6.362639E-02
1	2.044362025E-01	1.251359E-02
2	-1.453482491E-02	-3.880108E-04
3	4.860355653E-04	4.878407E-06
4	-1.152913045E-05	-2.789077E-08
5	1.932372065E-07	7.268939E-11
6	-2.222708123E-09	-6.999818E-14
7	1.722390583E-11	
8	-8.878574513E-14	
9	2.985516966E-16	
10	-6.273436285E-19	
11	7.467125710E-22	
12	-3.840581614E-25	

From 335 K to 1357.77 K (copper point):

If it is not convenient to use Table 1, the differences $T-T_{90}$ may be approximated by the following expressions. The relative differences of the interpolation functions (with respect to the values of Table 1) are less than 15 %, except at 600 K and the gold point.

$$D_{2011}(T_{90}) / \text{mK} = (T - T_{90}) / \text{mK} = (T_{90} / \text{K}) \sum_{i=0}^{4} c_i (273.16 \text{ K} / T_{90})^{2i}$$
(2)

with the coefficients:

$$c_0 = 0.0497$$
 $c_1 = -0.3032$ $c_2 = 1.0254$ $c_3 = -1.2895$ $c_4 = 0.5176$

Users working in a broader temperature range above and below 335 K might be interested in a smooth correction. A smooth transition from the new function $D(T_{90})$ to the old WG4 fitting function for temperatures from the TPW up to the copper point, $D_{2011}(T_{90})$, is the point of intersection at $T_{90} = 288.418$ K. In addition, the change of slope at the transition point is very small. If the user is only interested in the temperature range below 335 K, the new function $D(T_{90})$ is recommended.

References

- [1] J. Fischer, M. de Podesta, K. D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, *Int. J. Thermophys.* **32**, 12-25 (2011).
- [2] C. Gaiser, B. Fellmuth, R. M. Gavioso, M. Kalemci, V. Kytin, T. Nakano, A. Pokhodun, P. M. C. Rourke, R. Rusby, F. Sparasci, P. P.M. Steur, W. L. Tew, R. Underwood, R. White, I. Yang, J. Zhang, J. Phys. Chem. Ref. Data 51, 043105 (2022)
- [3] J. Engert, B. Fellmuth, K. Jousten, *Metrologia* 44, 40-52 (2007).
- [4] C. Pan, F. Sparasci, M. Plimmer, L. Risegari, J.-M. Daugas, G. Rouille, B. Gao, and L. Pitre, *Metrologia* **58**, 025005 (2021)

Fig. 1 Overview of consensus estimates for T- T_{90} . The red line shows the updated estimates $D(T_{90})$ and the red dashed lines envelop the range $\pm u(D(T_{90}))$, with the combined standard uncertainty $u(D(T_{90}))$. The blue crosses show the WG4 data contained in Table 1 as published in [1] and the corresponding error bars. The blue line shows $D_{2011}(T_{90})$.

Fig. 2 (published as Fig 5 in [2] Copyright 2022 Author(s), licensed under a Creative Commons Attribution 4.0 IGO (CC BY 4.0 IGO) license.)) Left: $(T - T_{90})$ data versus temperature T_{90} . The institutes at which the data has been obtained are listed in the legend. WG4 is the data contained in Table 2 of Ref. [1] and shown for comparison purposes. The red full line shows the fitting function $D(T_{90})$, and the dashed lines envelop the range $D(T_{90}) \pm u(D(T_{90}))$, with the combined standard uncertainty $u(D(T_{90}))$. Right: The same as on the left but in a restricted temperature range.