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APPENDIX 1 

Derivation of an approximate relation between the equilibrium 

distribution coefficient and thermodynamic quantities 

At an equilibrium solid-liquid phase transition, the chemical potentials of the host 

material A in the liquid (µlA) and solid phases (µsA) have to be equal: 

µlA = µsA , (A1.1) 

where their general expressions are: 
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In these expressions, a is the symbol for the chemical activity, and the zero marks the 

reference values. If the pure host material A is used as the reference, one has 

0 0
sA lA 1a a= =  , and (A1.4) 

lA sA

0 0 0
A MAG∆ = − =∆µ µ µ  , (A1.5) 

with ∆GMA being the free enthalpy of fusion of material A. For ideal solutions, the 

chemical activity a is equal to the concentration c. In a binary system, the 

concentrations of the components A and B are directly linked: csA = 1-csB and 

clA = 1-clB. From Equations (A1.1) to (A1.5) it follows in this case: 
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For small concentrations of component B, the following approximation can be used: 
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(A1.7) 

The application of the Gibbs-Helmholtz equation (∆G = ∆H – T∆S) to the melting 

yields 

MA MA MAG H T S∆ = ∆ − ∆  , (A1.8) 
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where ∆HMA is the enthalpy of fusion and ∆SMA = ∆HMA/TMA is the entropy of fusion 

(TMA melting temperature of the pure material A). Since the equilibrium distribution 

coefficient is defined by B
0 sB lB/k c c= , Equations (A1.6) to (A1.8) yield 
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For small concentrations of component B, it is furthermore possible to assume that 

T ≈ TMA and ∆HMA is independent of concentration and temperature, i.e. 

Equation (A1.9) can be simplified further: 
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(A1.10) 

In Equation (A1.10), A is the first cryoscopic constant. Since the ratio (T-TMA)/clB is 

practically equal to the slope of the liquidus line B
l l lB/m c= ∂ ∂Τ , one obtains finally 

the following approximate relation 

B B
l l lB 0/ (1 ) /m c k A= ∂ ∂ = − −Τ  . (A1.11) 

In summary, the following assumptions were made for deriving Equation (A1.11) at 

low concentrations of component B: (i) ideal solution, (ii) Relation (A1.7), (iii) 

T ≈ TMA, and (iv) ∆HMA is independent of concentration and temperature. 
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