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ABSTRACT 

This guide summarises the typical performance characteristics and sources of 

uncertainty for thermometers based on Negative Temperature Coefficient (NTC) 

thermistors. The discussion includes a brief summary of the principles of operation, 

typical resistance-temperature characteristics, instrumentation, limitations in 

performance, stability, temperature range, and calibration equations. The document 

concludes with two calibration examples demonstrating uncertainty calculations and 

giving an indication of the potential accuracy of thermistors. 

 



Guide on Secondary Thermometry 

Thermistor Thermometry  

 

 

                                                                          4 / 19 
 

 

 

1. Introduction 

Thermistors (thermal resistors) are temperature-sensitive semiconducting ceramic 

devices. While there are several types used in a very wide variety of applications, in 

the discussion that follows we are primarily interested in the negative temperature 

coefficient (NTC) thermistors designed and manufactured specifically for temperature 

measurement in the range –80 ºC to +300 ºC. For advice on thermistors used at low 

temperatures refer to the technical literature on cryogenic sensors, e.g. BIPM [1990]. 

 The main advantages of thermistors are very high sensitivity (typically ten times 

that of platinum resistance thermometers), small size (some smaller than 0.2 mm), 

and fast time constants (some as short as a few milliseconds).  Disadvantages include 

very high non-linearity, a limited temperature range, and a risk of high self-heating 

due to the sensing current. Traditionally, thermistors have had a reputation for 

instability, but thermistors are now readily available for temperature ranges within 

20 °C to 60 °C with stabilities of a few tenths of a millikelvin per year. For 

applications in this range, their stability, high sensitivity and simple instrumentation 

enable a short-term measurement accuracy approaching that of standard platinum 

resistance thermometers (SPRT), but at a much lower cost.  

 Reviews of the properties and applications of NTC and PTC (positive 

temperature coefficient) thermistors can be found in Sachse [1975] and Hyde [1971], 

with simpler overviews in McGee [1988], Michalski et al. [1991], and White and 

Sappoff [2014]. The physics of semiconductors is described in Sze [1981]. 

 

 

2. Principle of operation 

NTC thermistors are manufactured from mixtures of metal oxides heated to high 

temperatures to form a polycrystalline ceramic. Ordinarily, the individual oxides have 

a large energy gap between the full conduction bands and the empty valence bands, so 

the electrons are unable to move, and the oxides are electrical insulators. The mixture, 

however, has intermediate electronic states that make the ceramic a semiconductor. 

As the temperature increases, increasing numbers of electrons gain sufficient thermal 

energy to reach the higher energy states, thereby creating larger numbers of mobile 

holes and electrons, in the valence band and the conduction band, respectively. The 

total number of charge carriers, n, depends on the energies of the electrons as 

determined by the Boltzmann distribution, and on the density of electronic states near 

the band edges: 

 
3/2 exp( / 2 )gn T E kT  , (1) 

 

where Eg is the energy required for the carriers to jump to the higher-energy states, k 

is Boltzmann’s constant and T is temperature (in kelvin). The leading T
 

 term in 

Equation (1) is due to the electronic density of states at the band edge, and tends to be 
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compensated by a similar T
 term in the carrier mobilities (due to the density of 

states for phonons that scatter the carriers). The combination of the effects gives an 

overall resistance-temperature behaviour that is well approximated by 

 

0( ) exp( / 2 )gR T R E kT , 

 

(2) 

where R0 is a constant. Usually Equation (2) is rewritten in the form 

 

0

0

1 1
( ) ( )expR T R T

T T

  

   
  

, (3) 

 

where T0 is some convenient reference temperature, often 298.15 K (25 °C). The 

parameter  is a characteristic of the thermistor material with typical values in the 

range 2000 K to 6000 K. Figure 1 plots the resistance-temperature characteristic for a 

range of commercially available thermistors. Figure 2 plots the  values for the same 

set of thermistors and shows the typical variation in  with temperature.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The resistance-

temperature characteristics 

for a range of thermistors 

showing the typical 

resistance and temperature 

ranges. 

 

 

 

 

 The sensitivity, S, of a thermistor is the fractional change in resistance for a 1 C 

temperature change, and is given by 

 

2

1 ln( )dR d R
S

R dT dT T


    . (4) 
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 This constant occurs frequently in error and uncertainty analyses for thermistors. 

Figure 3 shows the sensitivities for the thermistors of Figure 1. At room temperature 

they range between about –0.03/ºC and –0.05/ºC. That is, thermistors are about 10 

times more sensitive to temperature than platinum resistance thermometers (S for 

PRTs is approximately equal to the alpha value,  = 3.8510


/°C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The  values for 

the thermistors of Figure 1. 

Some of the thermistors 

have the same  value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The sensitivities, 

Equation (4), as a function 

of temperature for the 

thermistors of Figure 1. 
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3. Instrumentation 

High sensitivity and high resistance are the main advantages of thermistors. The high 

resistance enables circuits operating at higher voltages and, in combination with the 

high sensitivity, ensures the errors that normally affect dc resistance measurements, 

such as thermoelectric effects and offset voltages, are much reduced. By exploiting 

these properties, it is relatively simple to make thermistor measurements yielding 

accuracies approaching 1 mK without, for example, the need for the expensive ac 

bridges normally associated with high-accuracy platinum resistance thermometry. 

Thermistors are also available with selected performance characteristics, including 

interchangeability to 0.05 °C, aged and selected for stability, as well as qualification 

for military and space applications. 

 The high sensitivity of thermistors comes at the price of high non-linearity and a 

wide range of resistance values for modest changes in temperature. A wide variety of 

measurement circuits have been developed to linearise thermistor responses, 

including: simple one-resistor circuits, which yield a linearity within 0.1 ºC over 

ranges of 20 ºC or so [Beakley 1951]; multiple thermistor and resistor circuits, which 

are linear to within 0.02 °C for ranges up to 100 ºC [Trolander et al. 1972, Renneberg 

and Lehman 2007]; as well as solutions based on antilog-amplifiers or threshold 

oscillator circuits (for an example incorporating several features see 

[Kaliyugavaradan et al. 1993]). In general, however, the most accurate and wide-

range measurements involve direct measurements of the thermistor resistance, e.g. 

using digital multimeters. 

 

 

4. Limitations in performance 

This section summarises the most significant factors limiting the thermometric 

performance of NTC thermistors.  For some of the subsections we provide a 

numerical example based on a thermistor with: 

 a nominal resistance of R(25 ºC) = 10 k; 

 a nominal beta value of   = 3600 K;  

 a thermal resistance in stirred oil of    = 125 ºC/W 

 (dissipation constant = 8 mW/ ºC); 

 a constant sensing current of I = 10 µA; 

 an operating temperature range of 0 ºC to 50 ºC.  

 

 Table 1 summarises the sensitivity (Equation (4)) at 0 ºC, 16.67 ºC, 33.33 ºC, and 

50 ºC, as well as the equivalent resistance and voltage sensitivities for this thermistor. 

Note, particularly, the wide range of values for the sensitivities that is characteristic of 

thermistor circuits. 
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Table 1. The various sensitivity coefficients for the example thermistor, where t indicates 

the temperature in °C. 

t   

ºC 

R(t)  

 

Sensitivity  S  

ºC
-1 

SR = dR/dT 

/ ºC 

SV = I dR/dT 

mV/ ºC 

0.00 30 196 0.0483 1450 14.5  

16.67 14 149 0.0429 607 6.07 

33.33 7 202 0.0383 276 2.76 

50.00 3 929 0.0345 135 1.35

 

 

 

4.1. Voltage resolution 

Typically, a thermistor-resistance measurement involves a voltage measurement, the 

accuracy of which may be limited by the resolution of a voltmeter, or the input-offset 

voltage and input bias currents of an operational amplifier. If the uncertainty in the 

voltage measurement is uV, then the uncertainty in the temperature measurement is 

 
2

V V

T

V

u uT
u

S IR
  , (5) 

            

where SV is the voltage sensitivity (Column 5 of Table 1). For the example thermistor 

and a standard uncertainty in the voltage measurement of 10 µV, the temperature 

uncertainties at 0 ºC and 50 ºC are 0.68 mK and 7.4 mK, respectively. The uncertainty 

in the temperature measurement increases very rapidly with increasing temperature 

because of the combination of the T 
 term and the falling thermistor resistance. 

 

4.2. Self heating 

In order to measure a resistance, a current must be passed through the thermistor, 

which dissipates heat and results in a small temperature increase called the self-

heating error. The self-heating error is proportional to the power dissipated and the 

thermal resistance between the thermistor and its environment: 

 

   
2

2

int ext int ext( )
( )

sh

V
T I R T

R T
        , (6) 

 

where I and V are the sensing current and the voltage across the thermistor, 

respectively, and int and ext are the internal and external thermal resistances 

associated with the thermistor and its surroundings. The internal thermal resistance 

depends on the dimensions of the thermistor and the material from which it is made, 

while the external thermal resistance depends on the thermal conductivity (and 

velocity and viscosity if a fluid) of the medium in which the thermistor is immersed. 
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Self-heating can be a serious problem for measurements made over a wide 

temperature range. If a constant sensing current is used, the power dissipated (I 
2
R) at 

low temperatures becomes large, and if constant voltage excitation is used, the 

dissipated power at high temperatures (V 
2
/R) becomes a problem. 

 Typical values of the total thermal resistance may vary from 50 °C/W to 

2000 °C/W in stirred oil, but are very dependent on the environment so may vary 

more than 100 times between still air and stirred water. The thermal resistance for the 

thermistor is commonly expressed as the dissipation constant, which is the power 

required to raise the thermistor temperature 1 °C, and is often expressed in units of 

mW/°C. The dissipation constant is the reciprocal of the thermal resistance, so the 

above range of thermal resistances corresponds to dissipation constants of 0.5 mW/°C 

to 20 mW/°C. For the example thermistor, which is driven by a constant current, the 

self-heating error is a maximum at low temperatures. For the example thermistor, at 

0 °C and in a stirred oil bath, the error is 0.4 mK, which is quite low. However, if the 

sensing current is ten times to 100 mA, then the self-heating would be 40 mK. Note 

that where thermistors are calibrated and used in similar thermal environment so that 

the self-heating is similar, then there effect of the error is much less. 

 In many applications, the part of the thermal resistance due to the environment 

may fluctuate due to turbulence in the air or stirred fluids. This causes the self-heating 

error to fluctuate and can limit the resolution of thermistors, for example, when used 

in precision temperature controllers or differential thermometers. 

 

4.3. Stray thermal influences 

The generally high thermal resistance between the thermistor and the environment 

means that thermistors are prone to stray thermal influences from either infrared 

radiation or heat conducted along the lead wires to the thermistor. This may be 

exacerbated by the poor thermal design of many commercial thermistor probes, and is 

a particular problem when thermistors are used to measure air or surface 

temperatures. In these cases, some care should be taken to thermally anchor the lead 

wires. For air temperature measurements, the lead wires should be long enough or 

thermally anchored to another object at the same temperature as the air, so that the 

leads adjacent to the thermistor come to thermal equilibrium with the air. With 

surface temperatures, a sufficient length of the leads must be thermally anchored to 

the surface. 

 

4.4. Lead resistance 

The high sensitivity and high resistance of thermistors means that for many 

measurements, a 2-wire resistance measurement is satisfactory and provides a useful 

simplification. However, the lead resistances, when neglected, can become a problem 

at higher temperatures when the thermistor resistance is low. The error due to lead 

resistance RL is 

 



Guide on Secondary Thermometry 

Thermistor Thermometry  

 

 

                                                                          10 / 19 
 

2

L L
L

R

R T R
T

S R
    , (7) 

 

where SR is the resistance sensitivity for the thermistor (Column 4 of Table 1). The 

error is largest at high temperatures. For the numerical example with a 1  lead 

resistance, the error at 50 °C is 7.4 mK. 

 

4.5. Insulation resistance 

At low temperatures, the thermistor resistance becomes very large, often greater than 

10 M. In such applications, care should be given to the insulation on the connecting 

leads to ensure that the insulation resistance does not shunt the measuring current. 

The temperature error due to an insulation resistance Rins is 

 

2

ins

ins ins

1 R T R
T

S R R
    , (8) 

 

which increases in proportion to the thermistor resistance (decreasing temperature). 

For the example thermistor, an insulation resistance of 100 M at 0 °C causes an 

error of 6.2 mK. 

 

4.6. Stability 

There are several intrinsic effects causing instability in thermistors [Zurbuchen and 

Case 1982], including: mechanical cracking of the thermistor body with temperature 

cycling, drift at high temperatures due to ingress of atmospheric gases, changes in the 

crystallographic structure, and changing contact resistance between the leads and the 

thermistor body. The most stable thermistors are bead thermistors encapsulated in 

glass. Within the range –20 °C to 60 °C, selected and pre-aged thermistors may be 

stable to better than a few tenths of a millikelvin per year. Thermistors with 

resistances in the range 2 k to 10 k also appear to be the most stable. Glass-

encapsulated disc thermistors and epoxy-encapsulated bead thermistors are also very 

good but not quite as stable as the glass beads. (See stability studies by Siwek et al. 

[1992a], Wise [1992], Edwards [1983], La Mers et al. [1982], Wood et al. [1978], 

and Strouse et al. [2012].) 

 The extrinsic sources of instability relate to the instrumentation: insulation 

resistances, stability of the measuring current and stability of the electronic 

components used in the measurement. 

 

4.7. Temperature range 

The temperature range of commercially available thermistors varies from 1 K to over 

1000 °C, and depends on the particular metal oxides used, and on the encapsulation. 

The most stable thermistors for temperature measurement have a much restricted 



Guide on Secondary Thermometry 

Thermistor Thermometry 

  

   

 
 

                                                                          11 / 19 
 

range: glass-encapsulated thermistors have a range of about –80 °C to 300 °C, while 

epoxy-encapsulated thermistors have an upper temperature limit of about 150 °C (see 

Figure 1 for examples of the temperature ranges).  

 The temperature range over which a thermistor is used has a significant effect on 

the non-linearity in the temperature measurements. Whether using linearising 

instrumentation or direct measurement and calibration equations, there is a residual 

error that increases in proportion to NT , where T is the temperature range and N is 

the number of adjustable parameters in the instrumentation or the number of 

parameters in the calibration equation. Beakley [1951] shows an example of a linear 

circuit with a residual non-linearity scaling as 3T , and Figure 4 below plots the 

interpolating errors in calibration equations, which scale as NT . 

 

 

 

Figure 4. Summary of interpolation errors, expressed as standard uncertainty, versus the 

number of terms used in Equation (9). The lines are indicative only and are based on a 

thermistor with a  value of 3800 K. The error will tend to be greater for temperatures 

below 0 C, for thermistors with a high  value, and may vary by a factor of 2 or more for 

different thermistors. 

 

 

5. Calibration equations 

A variety of calibration equations have been used for thermistors, including 

Equation (3). For high-accuracy applications, there are two extended series 

expansions of Equation (3) in common use: 

 

   
2 3

0 0 0

1
ln( / ) ln( / ) ln( / ) ...A B R R C R R D R R

T
     , (9) 
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and 

0 2 3
ln( / ) ...

B C D
R R A

T T T
     , (10) 

 

where R0 is a convenient reference resistance, e.g. 1  or 1 k, depending on the 

measurement units.  The number of terms in the equations, N, is chosen according to 

the temperature range and the accuracy required. Most commonly, the equations are 

used with two or four terms, but sometimes up to five terms.  

Equation (9) has the advantage over most other calibration equations of giving 

temperature directly from the measured resistance. Both Equations (9) and (10) are 

linear in the coefficients and hence amenable to least-squares fits and uncertainty 

analysis. Figure 4 summarises the performance of the various versions of 

Equation (9). Note that the N = 2 case corresponds to Equation (3).  

 Steinhart and Hart [1968] recommended Equation (9) with N = 3 but with the 

second-order term omitted (C = 0, D  0), and this equation is commonly 

recommended by thermistor manufacturers. However, the original recommendation 

for the equation was based on a numerical error, see Bennett [1971], and in practice, 

the performance of the Steinhart-Hart equation is only sometimes better than the 

normal 3-term equation with D = 0. The four-term version of Equation (9) is always 

more accurate than the Hart-Steinhart equation. Additionally, the accuracy of the 

Steinhart-Hart equation depends on the R(25 ºC) value of the thermistor and on the 

choice of R0, so its performance is much less predictable than the versions of 

Equation (9) summarised in Figure 4. The performance of the various calibration 

equations has been investigated by Bennett [1971], Siwek et al. [1992b], Sapoff et al. 

[1982], and Chen [2009]. 

 The propagation of uncertainties with Equation (9) is complicated, but when used 

as an interpolating equation, i.e., using just N calibration points to determine the N 

constants {A, B, C, …}, the total uncertainty in the measured temperature can be 

calculated in terms of the various calibration uncertainties [White and Saunders 

2007], 

 

6 2 24 24
2 2 2

2 2 2 2
1

( ) i

i

N
N

Ri R
T i T

i i i

uT uT T
u l T u

T R R 





   
             
 , 

(11) 

 

where (Ti, Ri) are the temperature and resistance measurements for each calibration 

point, (T, R) are the resistance and temperature at the unknown (measured) 

temperature, and li(T) are Lagrange polynomials: 

 

1,

( )
( )

( )

N
j

i

j j i i j

T T
l T

T T 





 . (12) 

 

 Equation (11) has the curious property that,  independent of the number of 

calibration points, the uncertainties associated with the calibration measurements 
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always extrapolate to higher temperatures as T  (this is not true of extrapolations to 

lower temperatures). Examples of the application of Equation (11) for uncertainty 

analysis are given in the next section. 

 

 

 

6. Calibration examples 

 

6.1. A narrow-range thermometer (N = 2) 

This section summarises the calibration and uncertainty analysis for a narrow-range 

thermistor thermometer operating between 15 °C and 25 °C with an expected 

accuracy of about 0.1 °C. Figure 4 shows that for a 10 °C range, the standard 

deviation of the interpolation error with two calibration points (N  = 2) is expected to 

be about 0.02 °C, so the error is small enough to be neglected. The appropriate 

calibration equation, Equation (9) with N = 2, is  

 

1
ln( )A B R

T
  , (13) 

 

where the resistance is measured in ohms (R0 = 1 ). By measuring the resistance at 

two temperatures we get two points, (T1, R1) and (T2, R2), to fix the values of A and B. 

If the calculated values of A and B are substituted back into (13), the calibration 

equation can be rearranged in the form of a Lagrange interpolation: 

 

2 1

1 1 2 2 2 1

ln( ) ln( ) ln( ) ln( )1 1 1

ln( ) ln( ) ln( ) ln( )

R R R R

T T R R T R R

    
    

    
. (14) 

 

Although more complicated than Equation (13), this equation explicitly includes all of 

the calibration data, R1, R2, T1, T2, and the measured resistance, R, from which an 

unknown temperature, T, is determined, and is a better starting point for an 

uncertainty analysis. 

 Partial differentiation of Equation (14) with respect to all five of the measured 

variables, followed by replacement of the terms in ln(R) using the approximation  

 

   0

0

ln ( ) ln ( )R T R T
T T

 
   , (15) 

 

which follows from Equation (3), leads to the propagation-of-error equation 

 
2 2 2

2 1 1 1 2 2

1 2

1 1 2 1 2 2 1 2

T T T dR T T T dRT T T dR
dT dT dT

T T T R T T T R R  

       
          

       
. (16) 
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 This equation relates small changes in the five measured variables, dR1, dR2, dT1, 

dT2, and dR, to a change in the measured temperature, dT. Note the presence of the 

sensitivity, S, from Equation (4) associated with all of the uncertainties in resistance. 

The propagation-of-uncertainty relation is obtained by calculating the sum of the 

squares of all of the terms in Equation (16) so that the total uncertainty is  

 
2 2 2 2

4 2 4 2 24
2 2 22 1 1 1 1 2

1 22 2 2 2 2 2

1 1 2 2 2 11 2

,R R R

T T T

T T T u T T T u uT T T
u u u

T T T T T TR R R  

           
              

           
 (17) 

 

where xu  indicates the standard uncertainty in x. This equation is the same as 

Equation (11) for the case when N = 2. Note that the uncertainties in the measured 

resistances all appear as relative uncertainties, uR/R.  All of the remaining terms in the 

equation are functions of temperature only, so that the effects of uncertainties can be 

calculated easily for any measured temperature. Table 2 below summarises an 

uncertainty calculation for this example, and Figure 5 plots the temperature 

dependence of the various contributions to the uncertainty.  

 

 

Table 2. Summary of data and uncertainty calculations for temperatures measured using a 

thermistor calibrated at 2 points. All uncertainties are expressed as standard uncertainties 

(one-sigma or k = 1values). The shaded cells show input data. 

 

 

 

 

Measured parameters  at T1 at T2 

Calibration temperature, Ti 
288.15 K 

(15 C) 

298.15 K 

(25 C) 

Thermistor resistance, Ri,  15 205  10 000  

Uncertainty associated with temperature 

Uncertainty in calibration temperature reading  0.05 C 0.05 C 

Uncertainty in calibration bath spatial uniformity 0.03 C 0.04 C 

Total uncertainty in temperature terms 0.058 C 0.064 C 

Uncertainty associated with resistance 

Relative uncertainty in resistance measurement (uRi/Ri) 0.2% 0.2% 

Sensitivity   2/ iT   0.0434 C


 0.0405 C


 

Equivalent temperature uncertainty 

2

iRi

i

uT

R

 
 
 
 

 0.046 C 0.049 C 

Combined Uncertainty 0.074 C    0.081 C 
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Figure 5. The propagation of uncertainty (k = 1) for a thermistor calibrated at two points. 

The numerical data is from Table 2, and the propagation equations for the 

three contributions are from Equation (17). 

 

 

6.2. A wide-range thermometer (N = 4) 

This section summarises the evaluation of Equation (11) for a high-accuracy 

thermistor operating between 0 ºC and 50 ºC. Figure 4 shows that the four-term 

version of Equation (9) should be used for the calibration equation. The interpolation 

errors are then below about 0.1 mK and can be neglected. The three-term equation 

would lead to interpolation errors of about 2.5 mK. 

 The thermistor is calibrated using a standard platinum resistance thermometer in 

a stirred water bath, achieving a standard uncertainty of about 1 mK. The thermistor 

resistance is measured using a digital voltmeter employing a 4-wire measurement to 

eliminate lead resistance effects, and achieves a relative uncertainty of about 0.003%. 

Table 3 summarizes the uncertainty calculation.  

 The total uncertainty propagated from the calibration is calculated from the sums 

at the bottom of Table 3, according to Equation (11). Each of the four sums is 

multiplied, in Equation (11), by one of four Lagrange polynomials.  The first 

Lagrange polynomial is 

 

2 3 4
1

1 2 1 3 1 4

( )( )( )
( )

( )( )( )

T T T T T T
l T

T T T T T T

  


  
, (18) 

and the other three polynomials l2(T), l3(T), and l4(T) can be found by permuting the 

indices in Equation (18). Note that l1(T) is equal to 1 at T = T1, and is zero at the other 

calibration points (where T = T2, T3, or T4), and the other polynomials have similar 

properties. Figure 6 shows the total uncertainty due to the calibration uncertainties 
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only, i.e., it excludes the additional uncertainty in measured resistance when 

measuring an unknown temperature (the uR/R term of Equation (11)). Note too, the 

rapid increase in uncertainty that occurs when the equation is extrapolated beyond the 

0 ºC to 50 ºC calibration range. 

 

Table 3. A summary of the uncertainty contributions for a four-point calibration of a 

high-accuracy thermistor. All uncertainties are expressed as standard uncertainties (one-

sigma values). The thermistor is calibrated at four temperatures equally spaced over the 

range 0 C to 50 C. The shaded cells indicate input data. 

Measured parameters T1 T2 T3 T4 

Calibration temperatures, Ti 
273.15 K 

(0.00 C) 

298.81 K 

(16.66 C) 

306.48 K 

(33.33 C) 

323.15 K 

(50.00 C) 

Thermistor resistance, Ri 30 196 14 149 7 202 3 929 

Uncertainties associated with temperature 

Standard platinum resistance 

thermometer including bridge, and 

standard resistor 

0.2 mK 0.5 mK 0.8 mK 1.0 mK 

Calibration bath, spatial non-

uniformity 
0.3 mK 0.3 mK 0.3 mK 0.3 mK 

Self-heating 0.2 mK 0.1 mK 0.0 mK 0.0 mK 

Stray thermal influences 0.1 mK 0.1 mK 0.1 mK 0.1 mK 

Insulation resistance (Rins = 1 G) 0.2 mK 0.1 mK 0.0 mK 0.0 mK 

Total of temperature terms  
iTu  0.4 mK 0.6 mK 0.9 mK 1.1 mK 

Uncertainties associated with resistance 

Digital multimeter  

(0.003 % R + 0.1 ) 
0.9  0.4  0.2  0.2  

Repeatability (includes DMM 

noise, self-heating fluctuations and 

calibration bath instability) 
0.6  0.3  0.15  0.1  

Total of resistance terms  
iRu  1.1   0.5  0.25  0.22  

Combined Uncertainty 
1/ 2

24
2

2 2

i

i

Ri
T

i

uT
u

R

 
  

 

 
0.85 mK 1.0 mK 1.3 mK 2.0 mK 
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Figure 6. The total standard uncertainty (k = 1) propagated from the calibration 

measurements of the thermistor using Equation (11), and the data tabulated in Table 3. 

 

  

 

 In practice, most calibrations are based on a least-squares fit of Equation (9) with 

to up to 20 calibration points. In that case the total propagated uncertainty may be less 

than that shown in Figure 6, but the curve will retain the same basic shape; it will be 

flat over the interpolation range, and rise very quickly where temperature is 

extrapolated beyond the calibration range. Other examples of thermistor calibrations 

are given in [Bennet 1971, Chen 2009 and Vaughn et al. 2005]. 
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