

RECOMMENDED VALUES OF STANDARD FREQUENCIES FOR APPLICATIONS INCLUDING THE PRACTICAL REALIZATION OF THE METRE AND SECONDARY REPRESENTATIONS OF THE DEFINITION OF THE SECOND

RUBIDIUM ($\lambda \approx 780$ nm)

87 Rb atom, crossover transition between the *d* and *f* hyperfine components of the saturated absorption at 780 nm (D2 transition)

1. Recommended value [1] of the frequency:

 $f(^{87}\text{Rb}_{d/f \text{ crossover}}) = 384\ 227\ 981.9\ \text{MHz}$

equivalent to

 λ (⁸⁷Rb_{d/f crossover}) = 780 246 291.6 fm,

with an estimated relative standard uncertainty of 5×10^{-10} applies to the radiation of a tunable Extended Cavity Diode Laser, stabilized to the d/f saturated absorption line in a well characterized magnetically shielded rubidium absorption cell by the third-harmonic technique,

• cell temperature $(22.5 \pm 1)^{\circ}$ C

- frequency modulation width, peak-to-peak, (5 ± 1) MHz;
- saturating beam intensity of (120 ± 20) mW cm⁻²

2. Source data

Adopted value:

 $f = 384\ 227\ 981.9\ MHz$

 $u_{\rm c}/y = 5 \times 10^{-10}$

calculated from

$f(^{87}\text{Rb}_{d/f \text{ crossover}}) / \text{kHz}$	$u_{\rm c}/y$	source data
384 227 981 877.3 (5.5)	1.5×10^{-11}	[2]
384 227 981 867.8 (165)	4.3×10^{-10}	[3]

as a weighted mean. The fractional uncertainty was evaluated to be approximately 4.3×10^{-10} for a 0.01 s averaging time [3]. For the recommendation this uncertainty was rounded to 5×10^{-10} .

3. References

[1] CIPM Recommendation 2 (CI-2015): Updates to the list of standard frequencies <u>http://www.bipm.org/jsp/en/CIPMRecommendations.jsp</u> [2] J. Ye, S. Swartz, P. Jungner, and J. L. Hall, "Hyperfine structure and absolute frequency of the 87 Rb 5P_{3/2} state", Opt. Lett. **21**, 1280 (1996).

[3] Y. Bitou, K. Sasaki, H. Inaba, F.-L. Hong, A. Onae, "Rubidium-stabilized diode laser for high-precision interferometer", Opt. Eng. **43**, 900 (2004).