

RECOMMENDED VALUES OF STANDARD FREQUENCIES FOR APPLICATIONS INCLUDING THE PRACTICAL REALIZATION OF THE METRE AND SECONDARY REPRESENTATIONS OF THE DEFINITION OF THE SECOND

IODINE ($\lambda \approx 532$ nm)

Absorbing molecule ¹²⁷I₂, a₁₀ component, R(56) 32-0 transition⁽¹⁾

1. CIPM recommended values

The values $f = 563\ 260\ 223\ 513\ \text{kHz}$

 $\lambda = 532\ 245\ 036.104\ \mathrm{fm}$

with a relative standard uncertainty of 8.9×10^{-12} apply to the radiation of a frequency-doubled Nd:YAG laser, stabilized with an iodine cell external to the laser, subject to the conditions:

- cold-finger temperature (-15 \pm 1) °C ⁽²⁾
- frequency modulation width, peak-to-peak, (1 ± 0.2) MHz for 3*f* detection cases;
- saturating beam intensity of (17 ± 11) mW cm⁻²

2. Source data

Adopted value :	$f = 563\ 260\ 223\ 513\ (5)\ \text{kHz}$	$u_{\rm c}/y = 8.9 \times 10^{-12}$
	for which:	
	$\lambda = 532\ 245\ 036.104\ (5)\ \mathrm{fm}$	$u_{\rm c}/y = 8.9 \times 10^{-12}$

calculated from	
-----------------	--

f/kHz	u_{c}/y	source data
563 260 223 515.0	9.2×10^{-12}	2.1
563 260 223 514.5	8.9×10^{-12}	[1, 2]
563 260 223 510.1	5×10^{-13}	[3]
Unweighted mean:	$f = 563\ 260\ 223\ 513.2\ \text{kHz}$	

The standard uncertainty calculated from the dispersion of the three values is 2.7 kHz. Taking into account the frequency dependence on the cell quality and other effects, the CCL preferred to adopt a standard uncertainty of 5 kHz, corresponding to a relative standard uncertainty of 8.9×10^{-12} .

⁽¹⁾ All transitions in I₂ refer to the $B^3\Pi_{0_{II}}^+ - X^1 \sum_{g}^+$ system

⁽²⁾ For the specification of operating conditions, such as temperature, modulation width and laser power, the symbols \pm refer to a tolerance, not an uncertainty.

Since 2001, it was noted that the global mean has changed from513.2 to511.5 kHz, with a standard deviation of 2.6 kHz. Given the possible shifts due to beam alignment, etalon effects and other technical effects, it was decided not to change the 2001 value or uncertainty but rather to define more comprehensively the operating conditions as follows:

- cold-finger temperature (-15 ± 1) °C⁽²⁾
- frequency modulation width, peak-to-peak, (1 ± 0.2) MHz for 3*f* detection cases;
- saturating beam intensity of (17 ± 11) mW cm⁻²

Other ${}^{127}I_2$ absorbing transitions close to this transition may also be used by making reference to the following frequency differences, using the a_{10} component of the R(56) 32-0 transition as a reference, see also source data 2.2:

line no	transition	comp.	$f_{xy} = [f(y, x) - f(a_{10}, R(56) 32-0)] / kHz$		
	X	у	$f_{ m xy}$	$u_{\rm c}/{\rm kHz}$	
1111	P(53) 32-0	a ₁	2 599 708.0	5.0	
1110	R(56) 32-0	a ₁₀	0.0		
1109	P(83) 33-0	a ₂₁	-15 682 075.2	5.0	
	R(134) 36-0	a_1	-17 173 681.7	5.0	
1108	R(106) 34-0	a ₁	-30 434 763.4	5.0	
1107	R(86) 33-0	a_1	-32 190 406.0	5.0	
1106	P(119) 35-0	a ₁	-36 840 163.0	5.0	
1105	P(54) 32-0	a_1	-47 588 897.1	5.0	
1104	R(57) 32-0	a_1	-50 946 884.7	5.0	
1103	P(132) 36-0	a_1	-73 517 088.1	5.0	
1101	R(145) 37-0	a_1	-84 992 177.6	5.0	
	R(122) 35-0	a_1	-90 981 724.1	5.0	
1100	P(84) 33-0	a_1	-95 929 863.0	5.0	
1099	P(104) 34-0	a_1	-98 069 775.0	5.0	
	P(55) 32-0	a_1	-98 766 591.0	5.0	
1098	R(58) 32-0	a_1	-102 159 978.2	5.0	
1097	R(87) 33-0	a ₁	-111 935 173.1	5.0	

where f(y,x) represents the frequency of the transition denoted y,x and $f(a_{10}, R(56) 32-0)$ the frequency of the reference transition. The CCL preferred to assign an uncertainty of 5 kHz to all listed frequency differences, regarding the possible influence of the quality of the iodine cell, background slopes and the small number of data for each frequency difference available.

In 2007 the CIPM [24] at its 96th meeting on a proposition of the CCL [25] recommended (Recommendation 1; CI-2007) that the above list shall be extended to the following lines

transition	comp.	$f_{xy} = [f(y, x) - f(a_{10}, R(56) 32-0)] / kHz$		Ref.
X	У	f_{xy}	$u_{\rm c}/{\rm kHz}$	
P(142) 37-0	a ₁	20 123 511.4	5.0	[26]
R(121) 35-0	a_1	27 539 228.6	5.0	[26]
R(85) 33-0	a ₁	46 496 559.1	5.0	[27]

Source data

2.1 Holzwarth et al. [4] give $f_{a10} = 563\ 260\ 223\ 508.7\ \text{kHz}$ $u_c = 5.2\ \text{kHz}$ at a cold-finger temperature of $-5\ ^\circ\text{C}$ (iodine pressure $= 2.46\ \text{Pa}$)⁽³⁾. Nevsky et al. [5] give $f_{a10} = 563\ 260\ 223\ 507.8\ \text{kHz}$ $u_c/y = 2.0 \times 10^{-12}$ at a cold-finger temperature of $-5\ ^\circ\text{C}$ (iodine pressure $= 2.46\ \text{Pa}$).

These two measurements have been carried out with the same iodine cell. Therefore, the CCL decided to consider the arithmetic mean of these two data, i.e.

 $f_{a10} = (563\ 260\ 223\ 508.7 + 563\ 260\ 223\ 507.8)/2 = 563\ 260\ 223\ 508.25\ kHz$

For a reference temperature of -15 °C (iodine pressure = 0.83 Pa), using a pressure dependence of -4.2 kHz/Pa [5], a correction of +6.8 kHz has to be applied, giving

 $f_{a10} = 563\ 260\ 223\ 515.0\ \text{kHz}$ $u_c/y = 9.2 \times 10^{-12}.$

⁽³⁾ For the iodine cold-finger temperature to iodine pressure conversion the formula derived by Gillespie and Fraser [6] has been used.

line no	transition	comp.		$[f(y, x) - f(a_{10}, R(56) 32-0)] / kHz$				
	x	У	[7]	[8]	[4]	[5]	unw. mean	u / kHz
1111	P(53) 32-0	a ₁	2 599 708.0	2 599 708.0			2 599 708.0	0.0
1110	R(56) 32-0	a ₁₀	0.0	0.0	0.0		0.0	0.0
1109	P(83) 33-0	a ₂₁	$-15\ 682\ 074.1$	$-15\ 682\ 076.2$			-15 682 075.2	1.5
	R(134) 36-0	a ₁	-17 173 680.4	-17 173 682.9			-17 173 681.7	1.8
1108	R(106) 34-0	a ₁	-30 434 761.5	-30 434 765.2			-30 434 763.4	2.6
1107	R(86) 33-0	a ₁	-32 190 404.0	-32 190 408.0			-32 190 406.0	2.8
1106	P(119) 35-0	a ₁	-36 840 161.5	-36 840 164.4			-36 840 163.0	2.1
1105	P(54) 32-0	a ₁	-47 588 892.5	-47 588 898.2	-47 588 899.8	-47 588 898.0	-47 588 897.1	3.2
1104	R(57) 32-0	a ₁	-50 946 880.4	-50 946 886.4	-50 946 887.2		-50 946 884.7	3.7
1103	P(132) 36-0	a ₁		-73 517 088.1				
1101	R(145) 37-0	a ₁		-84 992 177.6				
	R(122) 35-0	a ₁		-90 981 724.1				
1100	P(84) 33-0	a ₁		-95 929 863.0				
1099	P(104) 34-0	a ₁		-98 069 775.0				
	P(55) 32-0	a ₁		-98 766 590.0	-98 766 591.9		-98 766 591.0	1.4
1098	R(58) 32-0	a ₁		-102 159 977.4	-102 159 979.0		-102 159 978.2	1.2
1097	R(87) 33-0	a_1		-111 935 173.1				

The following values have been obtained for the frequency differences between several ${}^{127}I_2$ absorbing transitions and the R(56) 32-0 transition, at an iodine cold-finger temperature of -15 °C (iodine pressure = 0.83 Pa):

where f(y,x) represents the frequency of the transition denoted y,x and $f(a_{10}, R(56) 32-0)$ the frequency of the reference transition.

3. Absolute frequency of the other transitions related to those adopted as recommended and frequency intervals between transitions and hyperfine components

These tables replace those published in BIPM Com. Cons. Long., 2001, **10**, 151-167 and *Metrologia*, 2003, **40**, 116-120.

The notation for the transitions and the components is that used in the source references. The values adopted for the frequency intervals are the weighted means of the values given in the references.

For the uncertainties, account has been taken of:

- the uncertainties given by the authors;
- the spread in the different determinations of a single component;
- the effect of any perturbing components;
- the difference between the calculated and the measured values.

In the tables, u_c represents the estimated combined standard uncertainty (1 σ).

All transitions in molecular iodine refer to the B-X system.

2.2

	Table 1						
	$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ R}(87) 33-0 \text{ [no 1097]}$						
an	$[f\left(a_{n}\right)-f\left(a_{1}\right)]/MHz$	<i>u</i> _c /MHz	a _n	$[f(a_n) - f(a_1)]/MHz$	$u_{\rm c}/{\rm MHz}$		
a ₁	0	_	a ₁₂	582.6721	0.0020		
a ₂	51.5768	0.0020	a ₁₃	622.8375	0.0020		
a ₃	101.4407	0.0020	a ₁₄	663.9140	0.0020		
a_4	282.4331	0.0020	a ₁₅	730.3226	0.0020		
a ₅	332.2313	0.0020	a ₁₆	752.4797	0.0020		
a ₆	342.2223	0.0020	a ₁₇	778.0522	0.0020		
a ₇	390.3168	0.0020	a ₁₈	799.4548	0.0020		
a ₈	445.6559	0.0020	a ₁₉	893.1211	0.0020		
a ₉	462.0620	0.0020	a ₂₀	907.5209	0.0020		
a ₁₀	497.5450	0.0020	a ₂₁	923.5991	0.0020		
a ₁₁	511.9546	0.0020					
Freque	ncy referenced to a_{10} , R(56) 32- $f(a_1, R(87) 3)$	0, ${}^{127}I_2$: $f = 563\ 26$ 3-0) - $f(a_{10}, R(56$	50 223 51) 32-0) =	3 kHz [9] -111 935 173 (5) kHz [9]			

Ref. [10]

	Table 2						
	$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ R}(58) 32-0 \text{ [no 1098]}$						
a _n	$[f(a_n) - f(a_1)] / MHz$	$u_{\rm c}/{ m MHz}$	a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}/{ m MHz}$		
a ₁	0		a ₁₀	571.5686	0.0020		
a ₂	259.1938	0.0020	a ₁₁	697.9347	0.0020		
a_5	311.8933	0.0020	a ₁₂	702.8370	0.0020		
a ₆	401.3702	0.0020	a ₁₃	726.0151	0.0020		
a ₇	416.7177	0.0020	a ₁₄	732.3220	0.0020		
a ₈	439.9735	0.0020	a ₁₅	857.9730	0.0020		
a ₉	455.4891	0.0020					
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, R(58) 32-0)$), ${}^{127}I_2$: $f = 563\ 26$) $-f(a_{10}, R(56)\ 32-0$	$0\ 223\ 51$	13 kHz [9] 159 978 (5) kHz [9]			

Ref. [11]

	Table 3 $\lambda \approx 532 \text{ nm}^{127} \text{I}_2 \text{ P}(55) 32-0$					
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz a_n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MH}$	u_c / MHz		
a ₁	0	a ₁₃	609.4478	0.0020		
a ₂	37.8987	0.0020 a ₁₄	648.9064	0.0020		
a ₃	73.8521	0.0020 a ₁₅	714.0690	0.0020		
a_4	272.2124	0.0020 a ₁₆	739.8350	0.0020		
a ₇	373.1260	0.0020 a ₁₇	763.0081	0.0020		
a ₈	437.4166	0.0020 a ₁₈	788.2234	0.0020		
a ₉	455.3851	0.0020 a ₁₉	879.7357	0.0020		
a ₁₀	477.0210	0.0020 a ₂₀	893.4676	0.0020		
a ₁₁	490.5588	0.0020 a ₂₁	910.3088	0.0020		
a ₁₂	573.0377	0.0020				
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, P(55) 32-0)$	$f_{127}I_{2}: f = 563\ 260\ 220$ $f_{10} - f(a_{10}, R(56)\ 32-0) = -1$	23 513 kHz 98 766 591 (5) kHz	[9] [9]		

Ref. [11]

	Table 4					
$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ P}(104) 34-0 \text{ [no 1099]}$						
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	<i>u</i> _c / MHz	a_n	$[f(a_n) - f(a_1)] / MHz$	u _c / MHz	
a ₁	0		a9	466.6137	0.0020	
a ₂	238.8227	0.0020	a ₁₀	570.8323	0.0020	
a ₃	277.4934	0.0020	a ₁₁	688.5193	0.0020	
a_4	293.3463	0.0020	a ₁₂	699.1488	0.0020	
a ₅	331.4333	0.0020	a ₁₃	727.8544	0.0020	
a_6	389.0585	0.0020	a ₁₄	739.2895	0.0020	
a ₇	405.6376	0.0020	a ₁₅	856.7001	0.0020	
a ₈	450.2193	0.0020			0.0020	
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, P(104) 34-0)$	127 I ₂ : f = 563 26	$50\ 223\ 51$ -0) = -98	13 kHz [9] 069 775 (5) kHz [9]		

Ref. [11]

	Table 5						
	$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ P(84) } 33-0 \text{ [no } 1100\text{]}$						
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz	a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz		
a ₁	0		a ₉	459.8476	0.0020		
a ₂	249.8445	0.0020	a ₁₀	571.2806	0.0020		
a ₃	281.2957	0.0020	a ₁₁	694.0020	0.0020		
a_4	290.0304	0.0020	a ₁₂	701.7501	0.0020		
a ₅	320.9041	0.0020	a ₁₃	726.3808	0.0020		
a ₆	396.5400	0.0020	a ₁₄	735.0562	0.0020		
a ₇	411.5392	0.0020	a ₁₅	857.4151	0.0020		
a ₈	444.9362	0.0020					
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, P(84) 33-0)$	$, {}^{127}I_2: f = 563\ 26$ $-f(a_{10}, R(56)\ 32-0)$	0 223 51)=-95 92	3 kHz [9] 29 863 (5) kHz [9]			

Ref. [12]

	$\frac{\text{Table 6}}{\lambda \approx 532 \text{ nm}^{127} \text{I}_2 \text{ R}(122) 35-0}$						
a _n	$[f(a_n) - f(a_1)] / MHz$	$u_{\rm c}$ / MHz a_n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	u _c / MHz			
a ₁	0	â9	475.9553	0.0020			
a ₂	224.7302	0.0020 a ₁₀	570.3004	0.0020			
a ₃	273.2394	0.0020 a ₁₁	681.2572	0.0020			
a_4	297.0396	0.0020 a ₁₂	695.4307	0.0020			
a ₅	344.9343	0.0020 a ₁₃	730.2395	0.0020			
a ₆	378.8637	0.0020 a ₁₄	745.1865	0.0020			
a ₇	398.2113	0.0020 a ₁₅	855.9386	0.0020			
a ₈	456.8479	0.0020					
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, R(122) 35-0)$	0, ${}^{127}I_2$: $f = 563\ 260\ 223$ 0) $-f(a_{10}, R(56)\ 32-0) = -9$	513 kHz [9] 00 981 724 (5) kHz [9]				

Ref. [12]

	Table 7							
$a_n \qquad [f(a_n) - f(a_1)] / MHz \qquad u_c / MHz a_n \qquad [f(a_n) - f(a_1)] / MHz \qquad u_c / MHz = a_n$								
a ₁	0		a ₁₂	608.2166	0.0020			
a ₂	111.3681	0.0020	a ₁₃	680.6255	0.0020			
a ₃	220.5695	0.0020	a ₁₄	752.7967	0.0020			
a_4	298.7582	0.0020	a ₁₅	769.5347	0.0020			
a ₅	376.9445	0.0020	a ₁₆	799.1414	0.0020			
a ₆	414.9517	0.0020	a ₁₇	846.4138	0.0020			
a ₇	469.8127	0.0020	a ₁₈	874.8758	0.0020			
a ₈	491.2288	0.0020	a ₁₉	940.0615	0.0020			
a ₉	495.5179	0.0020	a ₂₀	964.5342	0.0020			
a ₁₀	580.7013	0.0020	a ₂₁	990.2893	0.0020			
a ₁₁	605.3833	0.0020						
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, R(145) 37-0)$, ${}^{127}I_2$: $f = 563\ 26$)) $-f(a_{10}, R(56)\ 32$ -	$0\ 223\ 51$ 0) = -84	3 kHz [9] 992 178 (5) kHz [9]				

 a_{10} , R(56) 32-0, a_{12} : $f = 563\ 260\ 223\ 513\ \text{kHz}$ $f(a_1, R(145)\ 37-0) - f(a_{10}, R(56)\ 32-0) = -84\ 992\ 178\ (5)\ \text{kHz}$

Ref. [10]

	Table 8 $\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ P}(132) 36-0 \text{ [no 1103]}$						
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz	a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	u _c / MHz		
a ₁	0		a ₉	482.3956	0.0020		
a ₂	215.0115	0.0020	a ₁₀	569.8339	0.0020		
a ₃	270.3841	0.0020	a ₁₁	676.1016	0.0020		
a_4	299.4166	0.0020	a ₁₂	692.6715	0.0020		
a_5	354.1318	0.0020	a ₁₃	731.8283	0.0020		
a ₆	371.6729	0.0020	a ₁₄	749.1808	0.0020		
a ₇	393.0781	0.0020	a ₁₅	855.2633	0.0020		
a ₈	461.2856	0.0020					
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, P(132) 36-0)$	$f^{127}I_2: f = 563\ 26$ $f^{-127}I_2: f = 563\ 26$	(0 223 51) (0) = -73	3 kHz [9] 517 088 (5) kHz [9]			

Ref. [10]

	Table 9						
$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ R}(57) 32-0 \text{ [no 1104]}$							
a _n	$[f(\mathbf{a}_n)-f(\mathbf{a}_1)]/\mathrm{MHz}$	$u_{\rm c}$ / MHz	a_n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz		
a ₁	0		a ₁₃	610.925	0.001		
a ₂	39.372	0.001	a ₁₄	650.805	0.001		
a ₃	76.828	0.001	a ₁₅	715.550	0.001		
a_4	273.042	0.001	a ₁₆	741.175	0.001		
a ₇	375.284	0.001	a ₁₇	764.716	0.001		
a_8	438.243	0.001	a ₁₈	789.777	0.001		
a ₉	456.183	0.001	a ₁₉	881.116	0.001		
a ₁₀	479.201	0.001	a ₂₀	895.016	0.001		
a ₁₁	492.915	0.001	a ₂₁	911.901	0.001		
a ₁₂	573.917	0.001					
Freque	ncy referenced to a_{10} , R(56) 32-0	127 I ₂ : $f = 563.2$	60 223 51	3 kHz [9]			
	$f(a_1, R(57) 32-0)$	$-f(a_{10}, R(56))$ 32-	(0) = -50.94	l6 885 (5) kHz [9]			

Ref. [7, 13]

	Table 10						
$\lambda \approx 532 \text{ nm}^{127} \text{I}_2 \text{ P}(54) 32-0 \text{ [no } 1105\text{]}$							
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz	a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	u _c / MHz		
a ₁	0		a ₉	454.563	0.001		
a ₂	260.992	0.001	a ₁₀	571.536	0.001		
a ₃	285.008	0.001	a ₁₁	698.614	0.001		
a_4	286.726	0.001	a ₁₂	702.935	0.001		
a ₅	310.066	0.001	a ₁₃	725.834	0.001		
a ₆	402.249	0.001	a ₁₄	731.688	0.001		
a ₈	417.668	0.001	a ₁₅	857.961	0.001		
a ₈	438.919	0.001					
Freque	ncy referenced to a_{10} , R(56) 32-0. $f(a_1, P(54) 32-0)$	$f^{127}I_2: f = 563 20$ - $f(a_{10}, R(56) 32-0)$	50 223 51))=-47 58	3 kHz [9] 88 897 (5) kHz [9]			

Ref. [7, 13]

Table 11								
	$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ P}(119) 35-0 \text{ [no } 1106\text{]}$							
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	<i>u</i> _c / MH	$z a_n$	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	<i>u</i> _c / MHz			
a ₁	0		a ₁₃	645.617	0.002			
a ₂	75.277	0.002	a ₁₄	697.723	0.002			
a ₃	148.701	0.002	a ₁₅	747.389	0.003			
a_4	290.376	0.003	a ₁₆	771.197	0.003			
a_5	349.310	0.002	a ₁₇	804.769	0.003			
a ₆	371.567	0.002	a ₁₈	827.641	0.003			
a ₉	474.953	0.004	a ₁₉	912.125	0.002			
a ₁₀	530.727	0.002	a ₂₀	930.053	0.002			
a ₁₁	548.787	0.002	a ₂₁	949.288	0.003			
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, P(119) 35-0)$	$f^{127}I_2: f = 563\ 2$ $f^{-127}I_2: f = 563\ 2$	60 223 51 -0)=-368	3 kHz [9] 40 163 (5) kHz [9]				

Ref. [14, 15]

	Table 12 1274 Drop 22 or 5 11071						
$\lambda \approx 532 \text{ nm}^{-1} \text{I}_2 \text{ R}(86) 33-0 \text{ [no 1107]}$							
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz	a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz		
a ₁	0		a ₉	460.973	0.002		
a ₂	248.206	0.002	a ₁₀	571.262	0.002		
a ₃	280.802	0.002	a ₁₁	693.205	0.002		
a ₄	290.502	0.002	a ₁₂	701.377	0.002		
a ₅	322.524	0.002	a ₁₃	726.710	0.002		
a ₆	395.386	0.002	a ₁₄	735.795	0.002		
a ₇	410.696	0.002	a ₁₅	857.383	0.002		
a ₈	445.759	0.002					
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, R(86) 33-0)$	$f_{127}^{127}I_2: f = 563\ 26$ $f_{10} - f(a_{10}, R(56)\ 32-0)$	$0\ 223\ 51$ $)=-32\ 19$	3 kHz [9] 0 406 (5) kHz [9]			

Ref. [15, 16]

	Table 13 $\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ R}(106) 34-0 \text{ [no 1108]}$						
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz	$z a_n$	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	u _c / MHz		
a ₁	0		a ₉	467.984	0.002		
a ₂	236.870	0.002	a ₁₀	570.799	0.002		
a ₃	276.941	0.002	a ₁₁	687.539	0.002		
a ₄	293.861	0.002	a ₁₂	698.663	0.002		
a ₅	333.350	0.002	a ₁₃	728.261	0.002		
a ₆	387.636	0.002	a ₁₄	740.185	0.002		
a ₇	404.635	0.002	a ₁₅	856.675	0.002		
a ₈	451.175	0.002					
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, R(106) 34-0)$	$f^{127}I_2: f = 563 2$)) $-f(a_{10}, R(56) 32$	60 223 51 2-0)=-304	3 kHz [9] 34 763 (5) kHz [9]			

Ref. [15-17]

	$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ R}(134) 36-0$						
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	u _c / MHz	a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	u _c / MHz		
a ₁	0		a ₈	462.603	0.009		
a ₂	212.287	0.007	a ₉	484.342	0.007		
a ₃	269.634	0.022	a ₁₁	674.703	0.009		
a_4	300.097	0.011	a ₁₂	691.951	0.008		
a ₅	356.801	0.008	a ₁₃	732.405	0.008		
a ₆	369.644	0.008	a ₁₄	750.434	0.009		
a ₇	391.684	0.009					
Freque	ncy referenced to a_{10} , R(56) 32-0	127 I ₂ : $f = 563.26$	0 223 51	3 kHz [9]			

Ref. [15, 16]

Table 15							
$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ P(83) } 33-0 \text{ [no } 1109\text{]}$							
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz	a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz		
a ₁	0		a ₁₁	507.533	0.004		
a ₂	48.789	0.004	a ₁₃	620.065	0.004		
a ₃	95.839	0.008	a ₁₄	659.930	0.004		
a_4	281.343	0.010	a ₁₅	728.070	0.004		
a_5	330.230	0.004	a ₁₆	750.131	0.004		
a_6	338.673	0.004	a ₁₇	774.805	0.004		
a ₇	385.830	0.004	a ₁₈	796.125	0.004		
a ₈	444.365	0.006	a ₁₉	890.709	0.005		
a ₉	460.503	0.004	a ₂₀	904.712	0.005		
a ₁₀	493.533	0.006	a ₂₁	920.475	0.004		
Freque	ncy referenced to a_{10} , R(56) 32-0	127 I ₂ : f = 563 26	0 223 51	3 kHz [9]			
	$f(a_{21}, P(83) 33-0)$	$f(a_{10}, R(56)) = 32-0$) = -1568	32 075 (5) kHz [9]			

Ref. [15, 16]

$\lambda \approx 332 \text{ mm}$ $I_2 \text{ R}(36) 3240 [no 1110]$						
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathrm{MHz}$	u_{c} / MHz a_{n}	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{MHz}$	$u_{\rm c}$ / MHz		
a ₁	-571.542	0.0015 a ₁₀	0			
a ₂	-311.844	0.0015 a ₁₁	126.513	0.0015		
a ₅	-260.176	0.0015 a ₁₂	131.212	0.0015		
a ₆	-170.064	0.0015 a ₁₃	154.488	0.0015		
a ₇	-154.548	0.0015 a ₁₄	160.665	0.0015		
a ₈	-131.916	0.0015 a ₁₅	286.412	0.0015		
a 9	-116.199	0.0015				

Ref. [15, 16, 18–23]

Table 17 $\lambda \approx 532 \text{ nm}^{127} \text{I}_2 \text{ P}(53) 32-0 \text{ [no 1111]}$						
a ₁	0		a ₁₇	762.623	0.006	
a_2	37.530	0.006	a ₁₈	788.431	0.008	
a ₃	73.060	0.007	a ₁₉	879.110	0.006	
a_4	271.326	0.016	a ₂₀	892.953	0.009	
a ₁₅	712.935	0.012	a ₂₁	910.093	0.006	
a ₁₆	739.274	0.008				
Freque	ncy referenced to a_{10} , R(56) 32-0 f(a, P(53) 32, 0)	$f_{127}I_2: f = 563.26$	022351	3 kHz [9]		
	$\int (a_1, F(55), 52-0)$	$-j$ (a_{10} , $R(30)$ 32-0	- 2 399	(U0(J)MIZ [9]		

Ref. [15, 16]

Table 18 $\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ P}(142) 37-0 \text{ [no 1112]}$						
a ₁	0		a ₈	467 369.1	2	
a ₂	201 862.3	2	a ₉	491 394.9	2	
a ₃	266 700.6	2	a ₁₀	569 318.6	2	
a_4	302 571.3	2	a ₁₁	669 162.1	2	
a_5	361 836.0	2	a ₁₂	688 963.6	2	
a ₆	366 696.9	2	a ₁₃	734 239.7	2	
a ₇	386 204.6	2	a ₁₄	754 848.4	2	
			a ₁₅	854 522.3	2	
Freque	ency referenced to a_{10} , R(56) 32-0 $f(a_{21}, P(142) 37)$), ${}^{127}I_2$: $f = 563\ 26$ -0) $-f(a_{10}, R(56)\ 32$	50 223 51 -0) = 20 1	3 kHz [9] 23 511.4 (5.0) kHz [25, 26	5]	

Ref. [25, 26]

Table 19 $\lambda \approx 532 \text{ nm}^{127} \text{I}_2 \text{ P}(121) 35-0 \text{ [no 1113]}$								
a ₁	0		a ₁₁	553 248.7	2			
a ₂	78 094.0	2	a ₁₂	594 812.8	2			
a ₃	154 328.5	2	a ₁₃	594 812.8	2			
a_4	291 034.5	2	a ₁₄	702 090.3	2			
a ₅	351 499.2	2	a ₁₅	749 153.7	2			
a ₆	374 970.5	2	a ₁₆	773 429.2	2			
a ₇	433 704.3	2	a ₁₇	808 079.0	2			
a ₈	456 783.2	2	a ₁₈	831 410.9	2			
a ₉	476 593.6	2	a ₁₉	914 362.6	2			
a ₁₀	534 662.3	2	a ₂₀	932 813.8	2			
			a ₂₁	952 564.0	2			
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_{21}$, P(121) 35-	0, ${}^{127}I_2$: $f = 563\ 260$ 0) $-f(a_{10}, R(56)\ 320$	50 223 51 -0) = 27 5	3 kHz [9] 39 228.6 (5.0) kHz [25, 26	5]			

File last updated August 2012

Ref. [25, 26]

$\lambda \approx 532 \text{ nm}^{-127} \text{I}_2 \text{ R(85) } 33-0$								
a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{k} \mathbf{H} \mathbf{z}$	$u_{\rm c}$ / kHz	a _n	$[f(\mathbf{a}_n) - f(\mathbf{a}_1)] / \mathbf{k} \mathbf{H} \mathbf{z}$	$u_{\rm c}$ / kHz			
a ₁	0		a ₁₁	510 619.4	2			
a ₂	50 732.5	2	a ₁₂	582 132.0	2			
a ₃	99 742.3	2	a ₁₃	621 988.5	2			
a_4	281 946.2	2	a ₁₄	662 825.5	2			
a ₅	331 678.7	2	a ₁₅	729 463.3	2			
a ₆	341 087.6	2	a ₁₆	751 718.8	2			
a ₇	389 099.9	2	a ₁₇	777 078.3	2			
a ₈	445 205.3	2	a ₁₈	798 584.8	2			
a ₉	461 608.4	2	a ₁₉	892 318.3	2			
a ₁₀	496 293.9	2	a ₂₀	906 642.5	2			
			a ₂₁	922 692.5	2			
Freque	ncy referenced to a_{10} , R(56) 32-0 $f(a_1, R(85) 33-0)$	$f = 563 \ 26$	50 223 51))= 46 490	3 kHz [9] 5 559.1 (5.0) kHz [25, 2'	7]			

Ref. [25, 27]

4. References

- [1] Diddams S. A., Jones D. J., Ye J., Cundiff S. T., Hall J. L., Ranka J. K., Windeler R. S., Holzwarth R., Udem T., Hänsch T. W., Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb, *Phys. Rev. Lett.*, 2000, 84, 5102-5105.
- [2] Ye J., Ma Long Sheng, Hall J. L., Molecular Iodine Clock, Phys. Rev. Lett., 2001, 87, 270801/1-4.
- [3] Sugiyama K., Onae A., Hong F.-L., Inaba H., Slyusarev S. N., Ikegami T., Ishikawa J., Minoshima K., Matsumoto H., Knight J. C., Wadsworth W. J., Russel P. St. J., Optical frequency measurement using an ultrafast mode-locked laser at NMIJ/AIST, 6th Symposium on Frequency Standards and Metrology, Ed. Gill P, World Scientific (Singapore), 2002, 427-434.
- [4] Holzwarth R., Nevsky A. Yu., Zimmermann M., Udem Th., Hänsch T. W., von Zanthier J., Walther H., Knight J. C., Wadsworth W. J., Russel P. St. R., Skvortsov M. N., Bagayev S. N., Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer, *Appl. Phys. B*, 2001, 73, 269-271.
- [5] Nevsky A. Yu., Holzwarth R., Reichert J., Udem Th., Hänsch T. W., von Zanthier J., Walther H., Schnatz H., Riehle F., Pokasov P. V., Skvortsov M. N., Bagayev S. N., Frequency comparison and absolute frequency measurement of I₂-stabilized lasers at 532 nm, *Optics Commun.*, 2001, **192**, 263-272.
- [6] Gillespie L. J., Fraser L. A. D., J. Am. Chem. Soc., 1936, 58, 2260-2263.
- [7] Ye J., Robertsson L., Picard S., Ma L.-S., Hall J. L., Absolute Frequency Atlas of Molecular I₂ Lines at 532 nm, *IEEE. Trans. Intrum. Meas.*, 1999, 48, 544-549.
- [8] Zhang Y., Ishikawa J., Hong F.-L., Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator, *Opt. Commun.*, 2001, **200**, 209-215.
- [9] Recommendation CCL3 (*BIPM Com. Cons. Long.*, 10th Meeting, 2001) adopted by the Comité International des Poids et Mesures at its 91th Meeting as Recommendation 1 (CI-2002).
- [10] Hong F.-L., Zhang Y., Ishikawa J., Onae A., Matsumoto H., Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of ¹²⁷I₂ near 532 nm, *J. Opt. Soc. Am. B.*, 2001, **19**, 946-953.
- [11] Hong F.-L., Ishikawa J., Onae A., Matsumoto H., Rotation dependence of the excited-state electric quadrupole hyperfine interaction by high-resolution laser spectroscopy of ¹²⁷I₂, *J. Opt. Soc. Am. B.*, 2001, **18**, 1416-1422.
- [12] Hong F.-L., Ishikawa J., Hyperfine structures of the R(122) 35-0 and P(84) 33-0 transitions of ¹²⁷I₂ near 532 nm, Opt. Commun., 2000, **183**, 101-108.
- [13] Macfarlane G. M., Barwood G. P., Rowley W. R. C., Gill P., Interferometric Frequency Measurements of an Iodine Stabilized Nd:YAG laser, *IEEE. Trans. Intrum. Meas.*, 1999, 48, 600-603.
- [14] Arie A., Byer R. L., The hyperfine structure of the ¹²⁷I₂ P(119) 35-0 transition, *Opt. Commun.*, 1994, **111**, 253-258 and Arie A., Byer R. L., Erratum, *Opt. Commun.*, 1996, **127**, 382.
- [15] Eickhoff M. L., Thesis, University of Colorado, 1994.
- [16] Arie A., Byer R. L., Laser heterodyne spectroscopy of ¹²⁷I₂ hyperfine structure near 532 nm, *J. Opt. Soc. Am., B*, 1993, **10**, 1990-1997, and A. Arie, R. L. Byer, Errata, *J. Opt. Soc. Am. B*, 1994, **11**, 866.
- [17] Eickhoff M. L. and Hall J. L., Optical Frequency Standard at 532 nm, *IEEE Trans. Instrum. Meas.*, 1995, 44, 155-158.

- [18] Jungner P., Eickhoff M. L., Swartz S. D., Ye Jun, Hall J. L., Waltman S., Stability and absolute frequency of molecular iodine transitions near 532 nm, *Laser Frequency Stabilization and Noise Reduction*, SPIE, 1995, 2378, 22-34.
- [19] Jungner P. A., Swartz S. D., Eickhoff M., Ye J., Hall J. L., Waltman S., Absolute Frequency of the Molecular Iodine Transitions R(56)32-0 Near 532 nm, *IEEE trans. Instrum. Meas.*, 1995, 44, 151-154.
- [20] Robertsson L., Ma L.-S., Picard S., Improved Iodine-Stabilized Nd:YAG Lasers, Laser Frequency Stabilization, Standards, Measurement, and Applications, *Proceedings of SPIE*, 2000, **4269**, 268-271.
- [21] Picard S., Robertsson L., Ma L.-S., Nyholm K., Merimaa M., Ahola T. E., Balling P., Křen P., Wallerand J.-P., International comparison of ¹²⁷I₂-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the MIKES, the BNM-INM and the CMI, May 2001, *Appl. Opt.*, 2003, **42**, 1019-1028 and CCL/MePWG/2001-07.BIPM.
- [22] Hong F.-L., Ye J., Ma L.-S., Picard S., Bordé Ch. J., Hall J. L., Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy, J. Opt. Soc. Am. B, 2001, 18, 379-387.
- [23] Quinn T. J., Practical realization of the definition of the metre (1997), Metrologia, 36, 1999, 211-244.
- [24] Procès-Verbaux des Séances du Comité International des Poids et Mesures, 96th meeting (2007) 2008, Recommendation 1 (CI-2007): Revision of the *Mise en pratique* list of recommended radiations. p. 185 (see <u>http://www.bipm.org/utils/en/pdf/CIPM2007-EN.pdf#page=77</u>).
- [25] Report of the 13th meeting (13 14 September 2007) of the Consultative Committee for Length (CCL) to the International Committee for Weights and Measures p. 34 -35 (see e.g. <u>http://www.bipm.org/utils/common/pdf/CCL13.pdf#page=34</u>).
- [26] Hong F.-L., Zhang Y., Ishikawa J., Onae A., Matsumoto H., Hyperfine structure and absolute frequency determination of the R(121)35-0 and P(142)37-0 transitions of ¹²⁷I₂ near 532 nm, *Opt. Commun.* 2002, 212, 89–95.
- [27] Hong F.-L., Diddams S., Guo R., Bi Z.-Y., Onae A., Inaba H., Ishikawa J., Okumura K., Katsuragi D., Hirata J., Shimizu T., Kurosu T., Koga Y., Matsumoto H., Frequency measurements and hyperfine structure of the *R*(85)33–0 transition of molecular iodine with a femtosecond optical comb, *J. Opt. Soc. Am. B, 2004,* 21, 88-95.