RECOMMENDED VALUES OF STANDARD FREQUENCIES FOR APPLICATIONS INCLUDING THE PRACTICAL REALIZATION OF THE METRE AND SECONDARY REPRESENTATIONS OF THE DEFINITION OF THE SECOND

ALUMINIUM 27 ION \((f \approx 1121 \text{ THz}) \)

\(^{27}\text{Al}^+ \) ion, \(3s^{2} \, ^{1}\text{S}_0 \rightarrow 3s3p \, ^{3}\text{P}_0 \) unperturbed optical transition

1. **Recommended value** [1] of the frequency

\[
 f^{(^{27}\text{Al}^+)} = 1\,210\,015\,393\,207\,857.3\,\text{Hz}
\]

equivalent to

\[
 \lambda^{(^{27}\text{Al}^+)} = 267\,429\,385.730\,489\,\text{fm},
\]

with an estimated relative standard uncertainty of \(1.9 \times 10^{-15} \).

This radiation was endorsed as a secondary representation of the definition of the second.

2. **Source data**

\[
 f^{(^{27}\text{Al})} = 1\,210\,015\,393\,207\,857.3\,\text{Hz} \quad u_r / y = 1.9 \times 10^{-15}
\]

calculated from

<table>
<thead>
<tr>
<th>(f^{(^{27}\text{Al})} / \text{Hz})</th>
<th>(u / \text{Hz})</th>
<th>source data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,210,015,393,207,851</td>
<td>6</td>
<td>[2]</td>
</tr>
<tr>
<td>1,210,015,393,207,857.4</td>
<td>0.7</td>
<td>[3]</td>
</tr>
</tbody>
</table>

by a weighted mean.

As this value was issued from only one laboratory, the CCTF considered it prudent to estimate a relative standard uncertainty of \(1.9 \times 10^{-15} \).

3. **References**

