

National Institute of Information and Communications Technology

NICT station report

Miho Fujieda Hideo Maeno Masanori Aida Tadahiro Gotoh Ryo Tabuchi Jun Amagai Ryuichi Ichikawa Kuniyasu Imamura Yuko Hanado

- Current status
- Interference problem in Rx frequency band of Eu-Asia link
- R&D status DPN Recent results by Carrier-phase TWSTFT

Current status

	No.	Link	Satellite	BW [MHz]	Modem & Repetition	Objective	Participants
Same frequency	1	Asia	GE23	2.5	NICT, Once/hour	Monitor of clocks at LF stations (JJY40/60)	NICT, JJY40, JJY60, TL
	2	Asia- Hawaii	GE23	2.5	SATRE, Once/hour	Connection with USNO	NICT, TL
	3	R&D	GE23	0.2 x 2	AWG & sampler, Random	R&D using DPN, carrier-phase TWSTFT	NICT, domestic station, TL
	4	Eu-Asia	AM2	2.5	SATRE,	Contribution for	NICT, NIM, NPLI,
					Once/hour (UTC 13- 22h)	ΤΑΙ	NTSC, PTB, SU, TL

AWG: Arbitrary waveform generator

Interference problem for Rx band of Eu-Asia link at NICT

After April 1 in 2012, link stability at NICT degraded suddenly!

Interference problem for Rx band of Eu-Asia link at NICT

Date: 22.AUG.2012 17:13:53

We found large signals in adjacent channels, which come from ground-ground communication for base stations of mobile phone. Output power of LNA might be saturated. Insertion of a BPF in front of LNA is planned.

DPN; Dual Pseudo random Noise

 DPN measurement via GE23 has been done in a newly allocated frequency band since April 2011.

 The measurements with a domestic station or TL has been performed occasionally.
 Instability due to instrument will be compensated by additional

measurement in internal calibration loop.

• Details will be presented by T. Gotoh in PTTI 2012.

- Measurement setup
- Common clock measurement in zero baseline
- Short baseline measurement
- Summary & Future plan

• Common clock measurement in zero baseline

• H-maser comparison in a 150-km baseline

• H-maser comparison in a 150-km baseline

[1] T. Gotoh et al., "Development of a GPU-Based Two-Way Time Transfer Modem", IEEE IM 60 7 2495 (2011).
 [2] M. Fujieda et al., "Carrier-phase-based Two-Way Satellite Time and Frequency Transfer", submitted to IEEE TUFFC.

- Summary of common clock measurement
 - Short-term stability: 2x10⁻¹³ @ 1 s
 Limited by phase jitter in frequency converters
 - Mid-, Long-term stability: 1x10⁻¹⁵@4000 s, 1x10⁻¹⁶@1 day Affected by phase variation due to temperature variation Frequency converter gives a large impact.
- Future plan
 - Long baseline measurement to evaluate ionosphere effect
 - Trial to improve short-term stability
 Tightly phase-locked frequency converter is necessary.
 - Temperature stabilization of indoor equipment

Thank you for your kind attention.

