

Small Angle X-ray Scattering for the Determination of Nanoparticle Concentration

Michael Krumrey

Physikalisch-Technische Bundesanstalt

IAWG and SAWG Joint Workshop Techniques used in CCQM-P194 to determine the gold nanoparticle number concentration

BIPM, Sèvres 8th April 2019

Small Angle X-ray Scattering (SAXS)

 Why X-rays?
 Image: Constraint of the second sec

- Wavelength of the radiation < 0.5 nm, well suited to study particles in the diameter range from a few nm up to several hundred nm
- SAXS is an ensemble technique (like DLS)
- Particles can be investigated in suspension
- Scattering sensitive to electron density contrast
- Straightforward scattering theory (form factor), traceability!

PTB approach: primary method

- dedicated in vacuum SAXS detector
- sample detector distance up to 4.5 m

J. Wernecke, C. Gollwitzer, P. Müller and M. Krumrey, J. Synchrotron Rad. 21, 529 (2014)

Traceable SAXS

Model fitting for sufficiently monodisperse particles:

- period of oscillations can be connected to the X-ray wavelength
- size can be made traceable to the SI unit meter

For size measurements, only the *q*-axis needs to be traceable

For concentration measurements, also the 'intensity' needs to be traceable

Direct measurement of all relevant parameters

For the *q*-axis, required for size determination:

- Photon energy E
- Distance between sample and detector *L*
- Detector pixel size s
- (Model fitting)

 $I \approx \langle f^2(q, R) \rangle$

$$f(q,R) = \frac{4}{3}\pi R^3 \left(3\frac{\sin(qR) - qR\cos(qR)}{(qR)^3} \right)$$

For the scattered intensity, additionally required for concentration:

- Differentially scattered photon flux $d\Sigma/d\Omega$
- Incident photon flux Φ_o
- Detection efficiency η_{QE}
- Sample transmittance T
- Sample thickness w
- Electron density difference $\Delta \rho_e$

 $\frac{d\Sigma}{d\Omega}(q) = r_e^2 \cdot C \cdot \Delta \rho_e^2 \int_0^\infty g(R) \cdot |f(q,R)|^2 dR$ $\frac{d\Sigma}{d\Omega}(q) = \frac{I_{meas}(q)}{\Phi_0 \cdot T \cdot \Delta \Omega \cdot t_{exp} \cdot \eta_{QE} \cdot w}$

Number concentration determination

Au NP, CCQM 0650

Nominal diameter 30 nm Measured diameter 29.1 nm

Uncertainty budget

Input x_i	$x_i \cdot \mathrm{unit}$	$U(x_i) \cdot \text{unit}$	U_C/ml^{-1}
8	$172.1\mu{ m m}$	$0.2\mu{ m m}$	$4.6\cdot 10^9$
L	$4501~\mathrm{mm}$	$5\mathrm{mm}$	$4.4\cdot 10^9$
Φ_0	$3.42 \cdot 10^9 { m ph/s}$	$3.42\cdot 10^7~{ m ph/s}$	$1.70\cdot 10^9$
T	1.68%	0.01%	$1.70\cdot 10^9$
E	$8000.0\mathrm{eV}$	$0.8\mathrm{eV}$	$4.0\cdot 10^8$
t	$150.00\mathrm{s}$	$< 0.15\mathrm{s}$	$1.70\cdot 10^8$
η_{QE}	97~%	3 %	$6.0\cdot 10^7$
Nfit	$2.49\cdot 10^{-5}$	$1.43\cdot 10^{-6}$	$9.8\cdot 10^9$
w	$0.981\mathrm{mm}$	$0.009\mathrm{mm}$	$2.32\cdot 10^9$
$(\Delta \rho)^2$	$1.88 \cdot 10^7 {\rm nm}^{-6}$	$4.05 \cdot 10^4 \text{ nm}^{-6}$	$3.93 \cdot 10^8$
C	$1.70 \cdot 10^{11} \mathrm{~ml}^{-1}$		$0.10\cdot 10^{11}$

EMPIR project InNanoPart, Au NP, nominal diameter 30 nm

A. Schavkan et al., Nanomaterials 9, 502 (2019)

Recent round robin organized by BAM proves good reproducibility: Ag particles, **diameter 6 nm**, Ag literature density

B. Pauw et al., J. Appl. Cryst. 50, 1280 (2017)

- Traceable size determination of spherical nanoparticles using Small-Angle X-ray Scattering (SAXS) has already been established, ISO standard 17867:2015 available
- Nanoparticle concentration determination with low uncertainties requires the knowledge or determination of all relevant parameters, including the (electron) density of the nanoparticles
- In the EMPIR project InNanoPart, SAXS and spICPMS were used as traceable reference methods for nanoparticle concentration determination
- Development of an ISO standard for nanoparticle concentration determination with SAXS has been started (ISO/PWI 23484)

Laboratory approach

Examples for commercial SAXS Instruments

From manufacturers websites

Laboratory approach

X-ray Radiometry

Reference material for *q*-axis calibration: e. g. silver behenate

Reference material for intensity calibration: lupolen, water or glassy carbon, NIST SRM 3600

A. Allen et al., J. Appl. Cryst. 50, 462 (2017)

No sorry, I don't know the price of a commercial SAXS set-up.

Please contact the manufacturers.

