CCTF WG on GNSS time transfer

2012-2015 Summary of the activities

Terms of Reference

- to report to the CCTF on the state of the art in GNSS time and frequency transfer and to provide recommendations concerning receiving systems, calibration and data processing;
- in collaboration with the BIPM, to gather and share the information and the experience on available equipment, characterization of the hardware delays, data processing and scientific results;
- to maintain contacts with the receiver manufacturers in order to inform them about our needs;
- to stimulate the collection and analysis of code and carrier phase data from all GNSS constellations;
- to stimulate the development of calibration procedures in agreement with new GNSS receiving systems;
- to establish contacts with the parallel scientific communities working on the definition of the receiver output standards;
- to study the clock results formats in agreement with the user needs.

members

Chairman: Dr Pascale Defraigne (ORB) Secretary: Dr Gérard Petit (BIPM) Members:

- One representative from the CCTF-WGTAI;
- One representative of the CCTF-WGATFT; TBD
- Experts from laboratories contributing to UTC;
- Experts from the International GNSS Service (IGS);
- Experts from time/frequency sections of NMIs;
- Members of the BIPM Time Department, one of them acting as the WG secretary

Agenda

- 1. P. Defraigne: Introduction, summary of items in the WG report to the CCTF
- 2. G. Petit: Group 1-2 calibration : update on results and plans for changes in Circular T
- **3. P. Uhrich**: Some comments on the Calibrations guidelines
- 4. S. Römisch: Calibration campaign between NIST, OP and PTB
- 5. **P. Defraigne**: Receiver P1-P2 stability analysis and comparison with calibration results COFFEE
- 6. **Z. Jiang**: A low cost GPS calibrator for the G2 calibrations
- 7. M. Wouters: A low-cost time-transfer system to support dissemination of national standards
- 8. D. Matsakis : Carrier Phase frequency biases in receivers used for UTC-generation
- 9. Discussion of Recommendations to the CCTF, to recommend that: (20-30 min)

CGGTTS 1/3

V2E : extended version of the format 2.0

• Published in *Metrologia* 2015 **52** G1

With a link to

http://metrologia.bipm.org/guides-stds-conventions/2015/G1.pdf

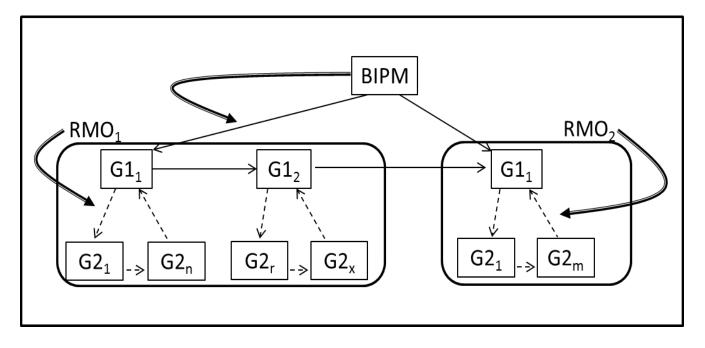
- Includes : GPS GLONASS Galileo BeiDou QZSS
- Single-frequency (L1 band) OR 2-frequency (the combination of the broadcast clocks → ONLY one combination)

CGGTTS 2/3

• 13 minute tracks

+ Explains that interpolations should be done if for some reasons some files use 5-minute tracks

(but not for the computation of TAI)


- No mixed CGGTTS files will be provided, each file will contain only the results for a given constellation and all the results reported will be associated with the same code measurement or the same ionosphere-free combination.
- The number of lines in the header can be variable as the hardware delays can be presented as SYSDLY (INTDLY+CABDLY) or TOTDLY (INTDLY+CABDLY+REFDLY)
- The CAL_ID must appear after the INTDLY (or SYSDLY or TOTDLY)
- The title "PRN" in the line header is replaced by "SAT"
- The constellation code for GPS was blank, it is now "G"
- The constellation code was "1" for GLONASS, is now "R"
- The Issue of Ephemeris (IOE) for GLONASS which was not specified is now defined as the index between 1 and 96

CGGTTS 3/3

Case 2: ion	ospheric	measureme	ents av	vailable, s	<u>in</u> gle-fr	requency or o	dual-fre	equend	cy re	sult	s					
CGGTTS	GENERIC I	DATA FORM	AT VERS	SION = 2E												
REV DATE =	2014-02-2	20			-											
RCVR = RRRR	RRRRR															
CH = 12																
IMS = IIIII	IIII															
LAB = ABC																
X = +402788	1.79 m								_							
Y = +30699	8.67 m				or S	SYS DLY = 01	r TOT I	DLY =								
Z = +491949	9.36 m		_		/											
FRAME = ITR	F, PZ-90-	->ITRF Dx	= 0.0	m, Dy = 0.	0 m, Dz	= 0.0 m, ds	= 0.0,	Rx =	0.0,	Ry	= 0.0,	Rz =	= 0.00	0000		
COMMENTS =	NO COMMEN	TS														
INT DLY =	53.9 ns	(GLO C1)	49	.8 ns (GLO	C2)	CAL_ID = 1nr	nn-yyyy									
CAB DLY =	237.0 ns															
REF DLY =	149.6 ns															
REF = UTC (A	.BC)															
CKSUM = 3B																
SAT CL MJE	STTIME	TRKL ELV	AZTH	REFSV	SRSV	REFSYS	SRSYS	DSG	IOE	MDTR	SMDT	MDIO	SMDI	MSIO	SMSI	ISG
<u> </u>	hhmmss	s .1dg	.1dg	.1ns	.1ps/s	.1ns	.1ps/s	.1ns	:::::	.1ns	.1ps/s	.1ns	.1ps/s	.1ns	.1ps/s	.1ns
R74 FF 5700	0 000600	780 347	394	+1186342	+0	163	+0	40	2	141	+22	23	-1	23	-1	29

SAT CL MJD	STTIME	TRKL ELV AZTH	REFSV	SRSV	REFSYS	SRSYS	DSG	IOE	MDTR	SMDT	MDIO	SMDI	MSIO	SMSI	ISG FR	HC FRC CK
<u> </u>	hhmmss	s .1dg .1dg	.1ns	.1ps/s	.1ns	.1ps/s	.1ns	1000	.1ns	.1ps/s	s.1ns.	lps/s	.1ns.	.1ps/s	.lns	2000
R24 FF 5700	0 000600	780 347 394	+1186342	+0	163	+0	40	2	141	+22	23	-1	23	-1	29 +2	0 L3P 5C
R05 FF 5700	0 000600	780 70 2325	+22617	+6	165	-3	53	2	646	+606	131	-9	131	-9	37 +1	0 L3P 8C
R.7 FF 5700	000600	780 539 1217	-1407831	-36	154	-54	20	2	100	-8	24	+0	24	0	13 +4	0 L3P 7A
R16 FF 5700	000600	780 370 3022	+308130	-18	246	-28	29	2	134	-22	63	+4	63	4	21 -1	0 L3P 80
								- No. 4								a da ser da s

Calibration guidelines (1)

- 1. BIPM will organize the calibration of some stations (called "group 1" here after) in each RMO,
- 2. the RMOs, together with these "group 1" laboratories, will organize calibration campaigns for the other laboratories (called "group 2") of their region.
- 3. In addition, the BIPM will conduct "Group 2" trips as necessary to accommodate special cases, using either one BIPM system or a "Group 1" system as a reference.

Calibration guidelines (2)

- Procedure is based on "differential calibration with closure" trips
- the reference values are provided by a set of systems operated in selected (G1) laboratories.
- The guidelines for calibration procedure have been defined for the different receiver types used as traveling or station equipment
- The standard process of calculation is also defined as well as a Template of calibration report to the BIPM.
- <u>ftp://tai.bipm.org/TFG/GNSS-Calibration-Results/Guidelines/</u>
- Calibration uncertainty : conventional value depending only on the technique (single-frequency or dual-frequency) and the age of the oldest calibration trip

Calibration guidelines (3)

The Group 1 laboratories per RMO have been designated:

- **EURAMET**: OP, PTB, ROA
- **SIM**: NIST, USNO
- **APMP**: NICT, NIM, TL
- COOMET: SU
- no G1 laboratories in **AFRIMETS** and **GULFMET**.

A first G1 trip was organized by the BIPM in 2014, the results are available at

ftp://tai.bipm.org/TFG/GNSS-Calibration-Results/1001-2014/.

Calex format

Single file reporting all the calibration results

<pre>1.3 CGTTS header ####################################</pre>	COMMENT COMMENT COMMENT COMMENT COMMENT
	END OF HEADER
	START OF STATION CAL
USNO USN3 US03	LABO / RINEX / BIPM
RT920012203 ASHTECH Z-XII3T	REC # / TYPE
KW5-0258 AOAD/M T NONE	ANT # / TYPE
GPS 1008-2014	GNSS / CAL_ID
2004 10 01 0 00 00	VALID FROM
REF = UTC(USNO)	LAB REFERENCE
2 TOTDLY P1= 287.9 P2= 304.1	# / DLY / TYPE=VAL END OF STATION CAL

PPP

- Look for continuous PPP solutions (comparison of optical clocks)
 - Long batches/moving windows/ ...
 - Solving Integer ambiguities : need for specific clock
 products → need for continuation of the collaboration
 with the geodetic community
- Need synchronized measurements of code an phase in the receiver → need for continuation of the collaboration with the receiver manufacturers

Recommendations to the CCTF

- the calibration guidelines be applied and Group 2 calibration be organized;
- receiver manufacturer and R2CGGTTS provider implement the CGGTTS format V2E in their new issues
- The receiver manufacturers minimize the offset between the latching of code and carrier phase measurements.

WG Meetings

Meeting PTTI2012 (28 Nov 2012) Meeting EFTF-IFCS 2013 (24 July 2013) Meeting PTTI2013 (4 December 2013) Meeting EFTF2014 (24 June 2014) Meeting EFTF-IFCS 2015 (13 April 2015) Meeting CCTF2015 (15 September 2015)