Low Cost GPS Calibrator for G2-calibrations ?

-- towards a small size calibrator through Fedex service (V1f)

C Lin (TL) T Gotoh (NICT) K Liang (NIM) Z Jiang (BIPM)

* TL, NICT and NIM are the three G1 labs in APMP

Bureau
International des
Poids et
I Mesures

CCTF GNSS WG, 14 Sept.

ETPC

- Price of the calibrator (receiver, TIC, PC ...)
- Operation fees: shipment, assurance, costumes ...
- \rightarrow Not to replace but to complement the 'standard' calibrator

Motivation 1/3

- ~26% of uB 20 ns, a calibration whatever is more urgent
- ~20% of uB 7~10 ns, similar as above
- ~33% C1 code time transfer
- They are all the UTC G2 labs

Shipment charges from BIPM to Lab(k) and back

Lab(k)	Cost / Euros
PTB / Europe	1231
NIM / China	1090
NMIJ / Japan	2548
NIST / USA	2401
VINIIFTRI / Russia	5196

Motivation 2/3

Mandate of G1 (status Dec. 2013)

RMO	NMIs/DIs	N° of Labs	Associates	N° of GNSS receivers	
				NMIs/DIs	others
EURAMET	24		7	56	16
SIM	6		7	11	9
APMP	20	40	7	?	?
AFRIMETS	3		0	6	-
COOMET	4		0	3	1
GOLFMET	1		1	3	-
Total	51		21	103	35

The new guidelines requires a calibration every 2 years

Bureau International des

Motivation 3/3

- APMP has 3 G1 lab vs. 47 potential G2 → a G1-calibrator has 16 G2 :
 - expensive: hardware, assurance, transport, costumes ...
 - qualified G2-operators, conditions: damages of the G1 calibrator ?
 - uB~1.5-2 ns is in most case not necessary for the G2 labs
 - \rightarrow A G1 is less motivated to perform all the G2 calibrations
- → Low cost of code calibrator ?
 - \$2000~\$3000
 - uB = 3~7 ns with small size of several kg
 - Black-box, easier operation-transport and costumes-free
 - A G1 lab may have several calibrator for parallel-repeated calib.

➔ To complement the standard calibrator

Different calibrators for different usages

BIPM METODE Calibrator

- 95 kg
- 50,000 Euros
- 0.8 ~ 1.5 ns for G1

C1 GPS Receiver (NovAtel OEM) Win10/Linux compatible PC

Low cost Calibrator

- Laptop Size
- 2,000~3,000\$ (PC<100\$, TIC<1000\$, RCV<1000\$...)
- Target uB=3~7 ns (CirT uA(KZ)=1.5 ns)
- Commercialized (NMIJ,NIST,AOS...) ?
- Home made (TL, NIM, NICT ...) ?

General:

- 1. Controlled by Remote (G1) Lab
- 2. Compensate Latch-REF 1 PPS (get from TIC) into CGGTTS to get REFGPS
- 3. Calibrate/align Total delay with G1-PTB UTC time link using C1 All in View using the BIPM giving antenna position, the same height ! (TM229)

C1-Link Calibration, uB 3~7ns (METODE)

If the G1 calibrator is calibrated by GPS vs. the UTC network pivot PTB, we have the time link calibration correction :

 $DCD = Link(G2 - PTB) - Link(G1_{Tr} - PTB)$ $= LinkCAL_{G2-PTB} = RcvCAL_{G2} (PTB=0)$

A 'one for all' calibration: Using C1 link to calibrate all the time links of C1, P3, PPP, GPS/GLN and TW

Conclusion

- Low cost calibrator
 - to complement but replace the 'standard' calibrator
 - affordable for all the G1 labs
 - smaller in size & lighter in weight ... an express package?
 - assurance, transport, costumes, maintains ...
 - Black-Box, easy setup: Open, Connect power and the pre-cabled antenna, 1 PPS reference ...
 - Remote control by G1 lab
- N-calibrator parallel calibration is possible
 shorten the whole calibration duration
- If One calibrator uB 3~7 ns → Two calibrator uB 2~5 ns

Challenges

- Uncertainty (3~5 ns) ?
- Cost ?
- Costumes-free ?

Keep in mind:

- Who are the users?
- Different calibrators for different usages.

Thank you