

Systèmes de Référence Temps-Espace

SOME COMMENTS ON GNSS CALIBRATION GUIDELINES

P. Uhrich, G.D. Rovera

LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, 75014 Paris, France

> pierre.uhrich@obspm.fr daniele.rovera@obspm.fr

- Introduction: Relative calibration target
- Equations
- Data processing
- Validation of the results
- Calibration uncertainty
- Miscellaneous
- Role of Group 1 laboratories

Relative calibration target

• INT DLY P1 and P2 for GPS >>> Receiver calibration

CGGTTS GPS/GLONASS DATA FORMAT VERSION = 02 REV DATE = 2015 - 07 - 30RCVR = Z - XII3TR2CGGTTS v5.1 CH = 12 (GPS)IMS = Z - XII3TLAB = OPX = +4202777.38 m (GPS)Y = +171367.99 m (GPS)Z = +4778660.18 m (GPS)FRAME = ITRF, PZ-90->ITRF Dx = 0.0 m, Dy = 0.0 m, Dz = 0.0 m, ds = 0.0, Rx = 0.0, Ry = 0.0, Rz = 0.00000COMMENTS - delay P1 P2 cal RTDM INT DLY = 310.2 ns (GPS P1), 321.6 ns (GPS P2) CAB DLY = 156.5 ns (GPS)REF DLY = 100.2 ns REF = HM0889CKSUM = D8

• TOT DLY P3 = INT DLY P3 + CAB DLY – REF DLY

>>> Link calibration required by BIPM for UTC links

Equations

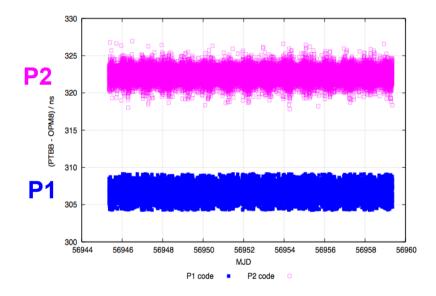
- Equations in the guidelines
- We suggest to add all equations like
 INTDLY(P1)V = RAWDIF(P1)V_T + [INTDLY(P1)T + CABDLY/T REFDLY/T_V] - CABDLY/V + REFDLY/V_T
 INTDLY(P2)V = RAWDIF(P2)V_T + [INTDLY(P2)T + CABDLY/T - REFDLY/T_V] - CABDLY/V + REFDLY/V_T
- We suggest all figures to appear explicitely

P3 = 2.546 x P1 – 1.546 x P2

Data processing [1/2]

- Guidelines ask for **RAWDIF**, which do not carry useful information, except in the case of offset/drift inside data.
- Why not consider the delays **CABDLY** and **REFDLY** when available for data processing ?

(Stability analysis would remain unchanged)


- **REFDLY** are the measurements on site
- **INTDLY/SYSDLY** are the results of a calibration campaign

>>> All this eventually leading to **TOTDLY**

Data processing [2/2]

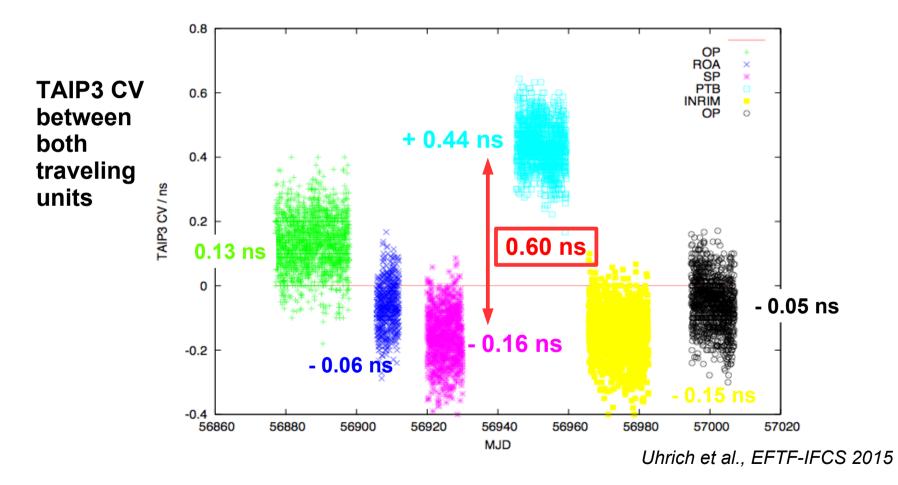
When using CAB DLY and REF DLY in data processing :

1e-08 1e-09 1e-09 1e-10 1e

>> direct access to INT DLY P1 and P2

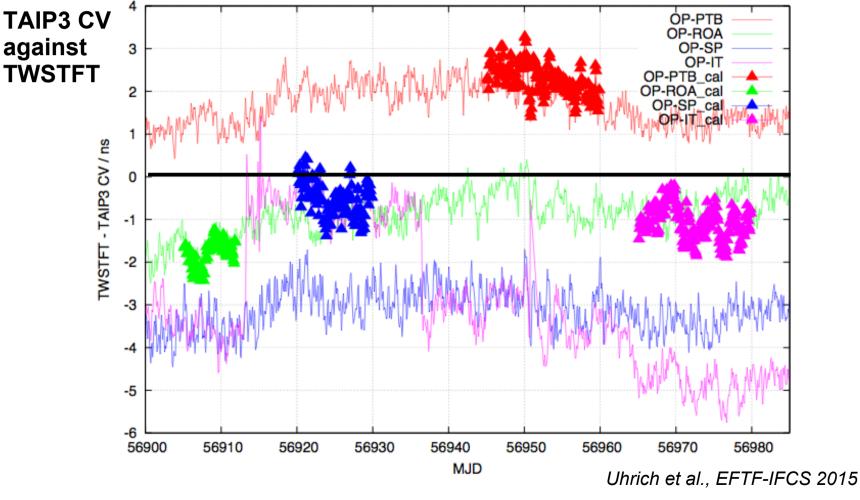
>> Identical stability analysis

Validation of the results [1/3]


TAIP3 CV after calibration	OPM7 (ns)	Standard deviation (ns)	OPM8 (ns)	Standard deviation (ns)
OPMT (start)	0.26	0.66	0.12	0.65
RO_5	- 0.07	0.70	- 0.02	0.70
RO_6	0.09	0.40	0.16	0.41
SP01	- 0.25	0.50	- 0.09	0.49
SP02	- 0.14	0.50	0.02	0.60
PT07	0.32	0.61	- 0.11	0.62
PT10	0.26	0.65	- 0.18	0.65
PTBB	0.29	0.53	- 0.14	0.53
GTRB	- 0.05	0.63	0.10	0.63
GTRI	- 0.02	0.65	0.13	0.65
IENG	0.06	0.47	0.20	0.48
OPMT (end)	0.00	0.61	0.07	0.61

CCTF WG GNSS September 14, 2015

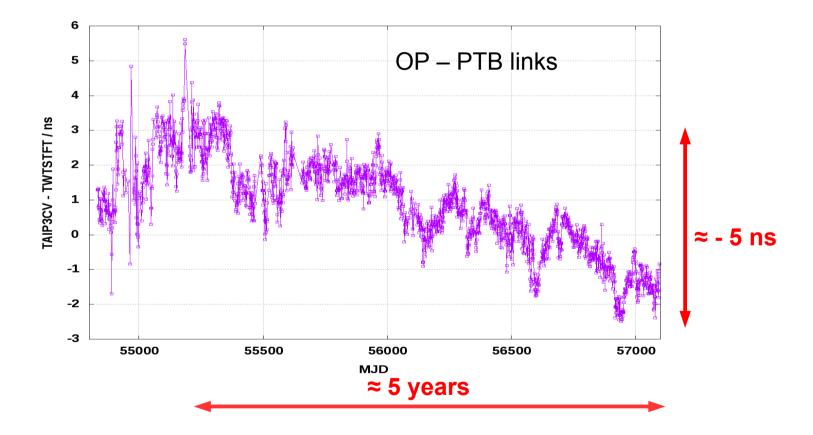
Uhrich et al., EFTF-IFCS 2015


Validation of the results [2/3]

CCTF WG GNSS September 14, 2015

Validation of the results [3/3]

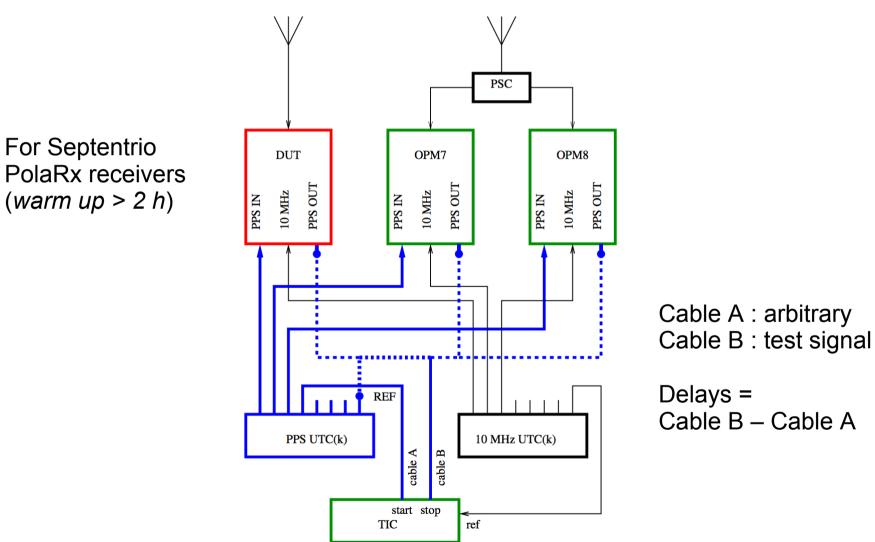
CCTF WG GNSS September 14, 2015



Calibration uncertainty [1/2]

- Conventional GNSS link uncertainty values ? [not the case for TWSTFT in Circular T ...]
- Conventional measurement uncertainties (TIC, ocilloscope, VNA, ...)?
- Conventional uncertainties for other effects (coordinates residuals, multipaths, ...)?
- To publish actual calibration results in BIPM website ?
- k = 1 ? k = 2 (*EURAMET*) ?
- Conventional degradation after 2 years without calibration ?
 CCTF WG GNSS September 14, 2015

Calibration uncertainty [2/2]


Miscellaneous [1/2]

- All signal distribution delays (1 PPS) should be measured by using a differential technique
- All trigger levels should be accurately defined :
 - Either from GNSS receiver manufacterer
 - Or from local signal distribution characteristics
 - Or even by agreement inside the WG
- Techniques for antenna cable delay measurements should be consistent

[see : Rovera et al., EFTF-IFCS 2015]

Miscellaneous [2/2]

Role of Group 1 laboratories [1/2]

- To welcome a remote equipment at home ?
- To send a traveling equipment to remote site ? (together with a calibration procedure)
- To attend calibration in remote site ?
- To provide raw data to BIPM ?
- To process raw data according to the guidelines ?
- To release a calibration report according to the guidelines (RAWDIF, ...)?

Role of Group 1 laboratories [2/2]

- To be responsible for the link uncertainty (against campaign reference receiver *which is not in PTB*)?
- Propagation of uncertainty in TAI ?
- GPS P-code unavailable beyond 2020 >>
 Which code ? Which signal (RINEX or CGGTTS) ?
- Other GNSS software developments ?
- Reference number RMO and BIPM ?
- Funding ?

>> EURAMET: 28 labs + 3 Group 1 >> 9 labs/Group 1

- We are grateful to P. Defraigne (ROB) for having provided freely her TAIP3 processing software and to BIPM for providing it in a user friendly way.
- We use International GNSS Service (IGS) products and National Resources Canada (NRCan) PPP software for some computations.
- Thank you to G. Petit (BIPM) for consistent dialog on the subject over the years.