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Counting statistics of a Poisson process with dead time

Part | : General relations
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1. Introduc tion

In most experiments in nuclear physics, the numerical results are ultimately

based on the counting of events which arrive at random. The permanent demand

for improved precision and accuracy has given rise to a renewed interest in
counting statistics permitting a reliable and efficient interpretation of the measured
data.

A number of problems connected with dead time corrections of experimental
counting distributions, first treated in the early thirties and fourties, have recently
been the subject of new studies |1 to 6] . However, their practical usefulness

is often somewhat limited, either by basing the arguments on over=simplified
assumptions [ 1, 2, 4jﬂor by the restricted evaluation of asymptotic expressions

for the moments [5, 6 J . A comprehensive survey [3_}, although including

the case of extended dead times, is also incomplete and not always reliable in the
details. In particular; the equilibrium or stationary process, which corresponds
nowadays to a very common experimental situation, is hardly ever mentioned

in these papers.

In view of the fact that a rigorous mathematical method for dealing with such.
problems, based on the operational calculus, has been indicated a long time ago
L73 ; this is somewhat surprising. It seems that the very concise and elegant
treatment of Jost [83 ; as well as the lucid exposition of Feller [9] ; which
rightly emphasizes the narrow connection that exists between counting problems
and renewal theory {107, have not always been well considered. In fact,

the two papers '-8] and [9] s still classics in this field, provide us practically
with all which is needed for tackling counting problems in a rigorous way.

We must conclude, therefore, that R. Jost has been too optimistic in stating

at the end of his paper: "It will be evident how this method can be applied

to other problems®.

Apart from the papers mentioned above (and prokably many others of which we may
be unaware), there is a certain number of articles that treat problems in counting
statistics which arise e.g. in connection with variable dead times, pulsed
sources, or dead times in series. However, all these more specialized questions
will not be considered in what follows. In the present elementary review,

of which this is the first part, emphasis lies primarily on exact results for the
probability distributions, the expectations and the variances for the number

of registered counts for some simple and well defined experimental situations.
They should offer optimum conditions for a reliable comparison with the
measurements and for extracting thereby a maximum of information. It is true
that these exact expressions are usually more complicated than the corresponding
approximations used till now. But this drawback seems to be largely compensated
by the advantage -especially when an elecironic computer is available - of
avoiding possible systematic errors. In deriving the results, which are not always



new, the essential steps will be discussed ot some length. In particular, due
attention will be given to the different possibilities of choosing the beginning
of the counting-interval. The corresponding details will be worked out in
later reports, whereads in this first part we shall resirict ourselves to the
discussion of some general principles. More specific assumptions about the
stochastic character of the original process and the effect of the dead time
will be made in chapter four only. )

2. Some definitions and basic facts

The simplest and probably the most powerful approach to problems in counting
statistics consists in looking primarily af the development in time, i.e. af
the interval-distributions. At a later stage only, the probability=distributions
for the number of events in a given time interval will be determined. The
reason for this procedure lies in the fact that the arrivals of pulses form

what is called o renewal process [103 , the statistical behaviour of which

is completely defined by the probability density of successive events and

a prescription relative to the choice of the time origin. As Feller I?J has
clearly demonstrated, the problems then reduce to special instances

of the theory of summation of independent random variables,

Since the time origin does not necessarily coincide with the arrival of an
event, the density for the first renewal will in general be different from those
for the subsequent intervals. In what follows we shall always use the following
notation:

g(t) = density for the arrival of the first event,

f(t) = density for intervals between subsequent pulses.

In genercrl*), g(t) is only identical with #(t) if the time origin is determined
by the arrival of a pulse. In this case the sequence is said to form an ordinary
renewal process |10 ] .

Since the interval from the beginning to the arrival of event number k can
evidently be thought of as composed of the waiting time to the first event and
the sum of the k=1 independent intervals between succeeding pulses, the
density gk('r) for event number k is given by the convolution

o ) = g« f_® ,  for ky 1, M
where fi(f)={f(f)} *i

is a j-fold auto~convolution of the basic interval-density f(t).

x)

The only, but important,exception is given by the Poisson process
with its complete lack of memory.



* In particular, we define fo(f) =9 () and F](t) = f(t); thus g‘](t) =g(t) .
The function g, (1) represents therefore the density for the effective arrival
time of event number k. We may mention that all the densities fk(f) and gk(f)
are correctly normalized to unity, provided this is the case for the initial

densities f(t) and g(i).

It will soon be convenient to have also the cumulative distributions at our
disposal. Therefore, we define for k > |

t ‘
_Fk(t) = J fk(x) dx aond
°
(2)
t
Gk(f) .-'-—:j gk(x) dx .
o

For formal reasons, we may demand for k=0 that
F &) =G (1= U@,

where U is the unit step function defined by

w-f oo

Mote, however, that the fictitious event at t = 0 is never counted.
The normalization of ‘Fk(f) and gk(i‘) implies that

fim Fk(t) = lim Gk(t) =1,

= o0 b~ ™0

By means of the operational calculus, the relations can often be brought in
a more convenient form. Therefore, whenever this seems to be advantageous,
Laplace transforms will be used according to the definition

o)

F(s) E;f{f(f)} = f )« et dr .
(o}

As is well known, the main advantage in using operational methods stems
from the fact that original convolutions reduce to simple products of the transforms.
With this in mind, relation (1), for example, can be immediately transposed
into the equivalent form (k > 1) :
a4
f

g, () =7g(s) « £, _;(s) = g(s) - ]f(S)] | o (1)
whereas its transformed cumulative distribution is

3w =Ll 5@ =9, E’(s)] -t | (2



So far, we have considered exclusively the interval-distributions. Now we
have to establish o connection between them and the number of events in

a given time interval since it is the probability for g given number of renewals
that we are finally interested in.

If we designate by kf the total number of random events that take place within

a given time interval t and by t, the time up to the k-th event, it is evident
L]D] that a relation of the form

kf Ck
implies the simultaneous validity of
fk > t

In terms of the corresponding probabilities, this means

Prob (k, < k) = Prob {1, > 1 =j 9, () dx = 1-GC () . 3)
: P

On the other hand, the probability Wk(f) for exactly k renewals within

an interval t is determined by the difference

W, () = Prob (k < k+1) = Prob (k < k)

thus

1

W) = G M - G () 4

This is the general relation for the probability that, in a renewal process with
a known interval density, exactly k events happen during a time t. The
practical evaluation of this expression for some specific cases will be studied
later.

3. Expectation and variance for the number of events

A detailed comparison between the experimental and the theoretical distribution
functions provides a sensitive check for the validity of the different assumptions
made with regard to the underlying process. If this does not seem needed,

or if the main interest lies in arriving at corrected mean values only, the
evaluation of the first few moments may be appropriate.

The first moment, or expectation of k, is defined by



Using (4), this leads to

R e S =

E () = k% k - ]_ka - Gk+](i‘):, = 12 k + G, (1) - Iz (k=1) = G, (1) =k2_l G () . (5)
The corresponding Laplace transform is

~ L 1 22~

E, (s) =k§7 G 6 = 7 %gk(S)
But since according to (1)

G0 = G- ],
we obtain

oy 2 36 € 0k 36)

E () = --S-—E_O [f(s):! = . (6)

-]

For the second moment about the ori’g‘in*), we have likewise

E(r)-—%kz-w(f)‘—Skz-G(f)zkz'G (1)
2T = kT = kYT k+1
k=1

= S G, (1) -> (k=12 - G =3 @k-1) -G
Qa

SR RCNORER0

—

For the variance, i.e. the second moment with respect to the expectation,
this leads to

2 _

il

2
(t) - E (1)
2 k™

k* G () -E () - Ei(f) )

M

k

—

The sum in the first term, i.e.

=}
J) = > k- G .,
k=1 |

*) A method for obtaining moments of higher order is outlined in the Appendix.



can be written, after transformation, as

~ (w24 ~ ~, SO -1 ~
= . -TOM Ao k=T _ gls)
J(s) = E k Gk,(s) = —?— Ek ]:f(S)_J = "":——-;——- . (8)
1 1 s E‘- (s
These expressions will _be needed later for evaluating the asymptotic values,
i.e. in the limit + » T

Whereas for the expectation this is done by means of (6), the corresponding
expression for the variance

V.0 - 256 . _36)__ i{k“} ©)

s E - f(s)]2 [ - f(s

confains in the last term the fransform of fhe square of the expectation which
will have to be evaluated first.

4. Poisson process and non-extended dead time

All the relations given so far are quite general and thus independent of
any specific counter model. The only fundamental hypothesis is the recurrent
nature of the underlying process.

In order to arrive at formulae for distributions which can be compared directiy
with the results of measurements, more specific assumptions have to be made.
For practical as well as theoretical reasons, we shall assume that the following
two simplifications hold strictly:

a) The initial series of events, e.g. the pulses originating from a radioactive
source, forms a Poisson process with constant count rate £ .

b) The dead time inserted into the original series is of the non-extended type,
i.e. every registered event is followed by a constant time interval during
which eventual other pulses are ignored.

We are aware, of course, that weaker assumptions could have been chosen and
that o good part of the corresponding formalism has actually been worked out,
in particular for o more general type of dead time (see e.g. [H 7. However,
instead of discussing the corresponding problems here, we rather prefer to
restrict ourselves to a more detailed description of the snmple situation outlined
above.

As a matter of fact, this limitation does not narrow too much the practical
usefulness of the results since reliable electronic circuits imposing a constant
dead time of the non-extended type are readily available nowadays and the
strictly Poissonian character of the radiation emitted in a radicactive decay



can hardly be seriously questioned.*)

Qur first thypothesis, namely that the original sequence of events forms o
Poisson process with density  , implies that, for a fixed time interval of
length t > 0, the probability for exactly k events is given by

K N
P(k) =i£3-§->— cmPt (10)

This corresponds to an exponential infervo|=dens‘ity**) of(f) for consecutive
pulses for

= « O = . . ‘j)f
of(i‘) Plo) - ¢ U@t * P e ; (11)
where U is the unit step function defined earlier.

The Laplace transform of (11) is simply

P

el (12)

5(5) =

Since the densities of multiple intervals correspond to repeated self-
convolutiors, i.e.

|k
‘ Ofk(i’) - {Of(t)J 7
its transform is given by
Pk
pts
By the use of tables, for instance, the corresponding original is found to be
a gamma density of the form

okl L Bt
RGO Bl e | (13)

.

o -

*)  As for the recent observations of Berkson [123 . we think that no conclusion .
can be drawn. The fact that the experimental values for variance and
expectation are not always equal, as would be expected for a pure Poisson
process, is not too surprising. Whereas a reduction of the variance is
a simple consequence of the presence of o dead time, as will be discussed
later in more detail, any instability of the source or of the electronic
counting device would result in an increase of the relative variance.
Therefore, conclusive evidence for possible deviations from ¢ Poisson
process can only be expected from a more critical and elaborate analysis
of experimental data.

**) The subscript "oV reminds that all this is without dead time. At a later
stage, it will therefore automatically disappear.

~



Now, the effect of the dead time has to be taken into account, which is
supposed to be of the non=extended type. In general, the change in the interval-
density, caused by the insertion of such a dead time, can be quite involved

[13] . However, this happens to be very simple just for our case of a Poisson
process where the exponential function (11) is simply shifted in time by the
amount of the dead time, thus

) = _f0 0« 8G-T) = u@-T) - p - T (14)
The Laplace transform of this new density is therefore

~ o~ _SA‘L“: P. e"st

fs) = OF(S) ‘e = -T;T-s'—— (15)

Likewise, the density for multiple infervals is now given by

fL() = {f(f)}*k

with the transform

B = [fo]* = T (16)

The correspondin g original is therefore of the type (13), where all the times
are retarded by k « T, thus

0 [P (f—-k'?:):] k=1 . _-¢(t-kT)
(k=1) 1 ’

fk(t) = U@t =-kT) - (17)

We may ccll this a shifted gamma density (for k ) 1).

The corresponding cumulative distribution is

t
F (1) = ( Fk(x) dx

v
o

t 1 ooy | k=1
=f U(X"k?) . PLP (&-l:;,):‘ . e— ?(X"‘kt) dx

(o]

P(i-kT) k-1 .

= j U(Z)'m‘e dz

o



Putting | |
pl-kT) =T o (18)
we obtain
T ,
F (1) = i:%% J M e gy , (19)

which is an incomplete gamma function. Although this function has been
extensively tabulated []4] ; it is much more convenient for our purpose
to take advantage of the relation which connects it with the cumulative
Poisson distribution, namely []5]

X . .
=} n-1 _ S x ! =X '
je .t di‘——r(n)'; T!-'e . . (20)
I=n :
o
Again, tables for the cumulative Poisson probabilities would be readily
available (e.g. [16]’ ), but the use of numerical values at this early stage

of the development cannot be recommended. If (29) is applied to (19), ‘instead,
F can be expressed by o sum of Poisson-like terms, namely

[l
F L) = u(T)) -Ll ; P . 21)
: - - A
where Pk(i) stands for the shifted Poisson probability
T -T , «
N - k. k
Pk(') =TT e _ (22)

with Tk defined in (18).

Thus, Fo(f) = U(t) and Fk(i') vanishes for kT >t .

The latter statement follows from the fact that, according to the definitions

of U and Tk ’

where - |
K ‘-_—EE !:—;:;—]] : (23)

denotes the largest integer below t/T .
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5. On the choice of the time origin

The general formula (4) shows how the probabilities \f\;’k(f) are determined by
the functions Gk(i‘) which, in turn, depend on g(i), i.e. the density for

the first interval. On the other hand, this first interval is not uniquely
determined by the nature of the underlying renewal process, which is completely
specified by f(t). On the contrary, g(t) can also be strongly influenced by

the way the time origin, i.e. the beginning of the counting=interval, is chosen.
Therefore, since the resulting distributions depend on the choice of the time
origin, our description, too, must take info account the specific experimental
conditions if we want fo arrive at formulae which can be really applied to

the results of measurements.

From now onwards, therefore, some definite assumption has to be made about
the selection principle according to which the beginning of the time interval
for the counting period is determined. This will then permit to specify the
function g(t) for the first interval-density.

For this purpose, essentially two different models will be proposed. In the first
case, the time origin is chosen completely at random. This situation and the
corresponding statistics will be studied in some detail in part il. The other
case, where the beginning is related to o counted event, gives rise to some
different developments, to be described in part Il from a general point of view.
From this it will be easy to obtain results for the special situations where

the counting=-period is initiated by a registered event or where the beginning
never falls within the dead time of a previous pulse.
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 APPENDIX

Evaluation of higher moments for the number of renewals

The direct way for determining moments, as used in deriving formulae (6) to (8),
cannot be followed in general since the corresponding summations would become
too much ihvolved. However, there is o method of circumventing this difficulty.
It consists in determining first the so-cclled factorial moments and then using
their relation to the ordinary moments for obtaining these.

The factorial moment of order n of o positive integral random variable x is
defined by the expectation

miy ) = E{x(n)} , | (A1)

= X ) 62) s et D) = (%)

where X(
is a "falling n-factorial" []7] .

In our case, this yields as a factorial moment of order n the expression

kT2 Y T 2 e G 2 kT G @
Since for k+1 = k!

'k'-n

K@ = TR Ky

we can also write

E, W)= Sk G M-S 0-2)k, G, 0
k(n) % (n) k % k (n) k

T2 TR Gk a2k gy Gy

But according to (1)

~ 9 ~ | k=1
G 6 = —gf—s—)— . [f(S) ,
which gives

T OIS AT 1K

Ek (s) NS > k(n-]) I:F(s)] . (A2)
(n)

Among the formulae which look promising for evaluating this sum the best we

found was [183

XL (m=1) !
2 z * (n+l) - (n+2) - (n+3) « ... (ntm=1) = "_“n("l-"_ ).m ’
n:O . z

where n and m are positive integers cmd_!zf 1
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Putting ntm=1 =x and m=1 =r, we obtain in fact

< x oz ! for 1> 0 (A3)
X,y * 2 = e——— ’ or r . 3
e, L (1=z)™!

This allows us to evaluate the Laplace transform of the factorial of order n as

et = =]
L R
E (s) = nt - g(s) . L - - (A4)

() : [] :f\(s)] :

The corresponding relation for the ordinary moments is now easily obtained
by applying a general relation which connects powers with factorials in o
general way, i.e. the decomposition []7“‘

n
x" = z S(n, k) * x
' k=1

where S are the Stirling numbers of the second kind for which tables are
available E]S, 193 . In view of the definitions

(k) ;, forn>0 (A5)

mn(x) = E {xn} and

E §x<n)}

for the ordinary and the factorial moments, respectively, (A5) is equivalent to

™ () )

mn(x) = %: S(n, k) * m(k)(x) .

Applying this relation to (A4) gives [ﬁs)j i-1
e — ~ FaY —r]—
E n(S) = ZS(n,l) . Ek (s) = _g__(_s__ .>_ i !S(n,i) . o= . (A6)
k i

(i) = _P —’?Zs)j !

This is the general formula for the Laplace transform of the ordinary moment of

order n for the number of renewals in t. A similar result is given without
proof by Takdcs 1207 .

The numerical values for the coefficientsare listed below for n € 5.

=1 2 3 4 5
n=1 1 - - - =
2 ] 2 - - -
3 ] 6 6 - -
4 1 14 36 24 -
5 1 30 150 2490 120

Table for the coeff‘icienfs q! ~S(,j) in equdﬁon (A6).

“w o o e
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