COMITÉ CONSULTATIF DE THERMOMÉTRIE

SESSION DE 1958.

PROCÈS-VERBAUX DES SÉANCES

RAPPORT ET ANNEXES

PRÉSIDENT du Comité International des Poids et Mesures

A. DANJON

LISTE DES MEMBRES

DU

COMITÉ CONSULTATIF DE THERMOMÉTRIE

Président

J. DE BOER, Membre du Comité International des Poids et Mesures; Professeur à l'Université, Amsterdam.

Membres

- PHYSIKALISCH-TECHNISCHE BUNDESANSTALT (P. T. B.), Braunschweig (H. MOSER, Leitender Direktor, P. T. B.;
 M. RICHTER, Chef principal des Laboratoires de Thermométrie du Deutsches Amt für Mass und Gewicht [D.A.M.G.]).
- NATIONAL BUREAU OF STANDARDS (N. B. S.), Washington 25, D. C. (H. F: STIMSON, Heat Division).
- NATIONAL RESEARCH COUNCIL (N. R. C.), Ottawa (H. PRESTON-THOMAS, Chief of Heat and Solid State Physics).
- CONSERVATOIRE NATIONAL DES ARTS ET MÉTIERS (C.N.A.M.), Paris (G. A. BOUTRY, Professeur au C. N. A. M.).

- CENTRAL INSPECTION INSTITUTE OF WEIGHTS AND MEASURES (C.I.I.W.M.), Tokyo (Y. TOMONAGA, Chief of the 1st Division).
- KAMERLINGH ONNES LABORATORIUM (K. O. L.), Leiden (H. Van DIJK, Conservateur pour la Thermométrie).
- NATIONAL PHYSICAL LABORATORY (N. P. L.), Teddington (J. A. HALL, Senior Principal Scientific Officer, Standards Division).
- INSTITUT DE MÉTROLOGIE D. I. MENDÉLÉEV (I. M.), Leningrad (E. T. TCHERNICHEV, Sous-Directeur de l'I. M.).
- BUREAU INTERNATIONAL DES POIDS ET MESURES (B. I. P. M.), Sèvres (Ch. Volet, Directeur).
- J. TIMMERMANS, Directeur du Bureau International des Étalons Physico-chimiques, *Boitsfort-lez-Bruxelles*.
- G. Bozza, Professeur de Physique technique au Politecnico, Milano.

Invités

- F. G. BRICKWEDDE, Consultant to the Director, N.B.S., Washington.
- H. J. KOSTKOWSKI, High Temperature Measurements Laboratory, N. B. S., Washington.
- M. DEBURE, Chef du Service de Métrologie, Laboratoire d'Essais, C. N. A. M., *Paris*.
- C. R. BARBER, Principal Scientific Officer, N. P. L., Teddington.

Mme P. ORLOVA, Chef du Laboratoire de Thermométrie, Moscou.

M^{me} N. R. BATARCHOUKOVA, Membre de l'I. M., Leningrad.

- W. R. KEMP, Senior Research Officer, Heat Section, National Standards Laboratory of Australia, *Chippendale*.
- J. TERRIEN, Sous-Directeur du B. I. P. M., Sèvres.
- H. HIRAYAMA, Electrotechnical Laboratory, *Tokyo* (en stage au B. I. P. M., *Sèvres*).

ORDRE DU JOUR DE LA SESSION

- 1. Échelle thermodynamique.
 - a. Thermomètre à gaz.
 - b. Température thermodynamique des points fixes primaires.
 - c. Autres méthodes de mesure de la température thermodynamique.
- Reproductibilité des points fixes primaires (actuels ou envisagés).
- 3. Thermomètre à résistance de platine.
 - a. Comparaison internationale de thermomètres.
 - b. Extension du domaine au-dessus de 630,5° C.
 - c. L'échelle du thermomètre à résistance au-dessous de -- 182,970° C.
- 4. Écart entre l'Échelle Internationale et l'Échelle thermodynamique au-dessus du point du soufre.
- 5. Comparaison internationale de lampes pyrométriques (étalons de luminance monochromatique).
- 6. Échelle du thermomètre à tension de vapeur de l'hélium.
- 7. Échelle Internationale de Température.
 - a. Désignation.
 - b. Révision du texte.
- 8. Points fixes secondaires.
- 9. Définition de la pression atmosphérique normale.
- 10. Rôle et équipement du B. I. P. M.
- 11. Questions diverses. Publications aux Procès-Verbaux du Comité Consultatif.

COMITÉ CONSULTATIF DE THERMOMTÉRIE.

5° SESSION (1958)

PROCÈS-VERBAL

DE LA PREMIÈRE SÉANCE

TENUE AU BUREAU INTERNATIONAL

Vendredi 20 juin 1958

PRÉSIDENCE DE Mr J. de BOER

La séance est ouverte à 9h55m.

Sont présents : MM. de Boer, Bozza, Van Dijk, Hall, Moser, Preston-Thomas, Stimson, Tchernichev, Timmermans, Tomonaga, Volet, Membres du Comité Consultatif.

Assistent à la séance : M^{mes} BATARCHOUKOVA, ORLOVA, MM. BARBER, DEBURE, HIRAYAMA, KOSTKOWSKI, RICHTER, TERRIEN, invités;

MM. A. BONHOURE, MOREAU, J. BONHOURE, GIRARD, du Bureau International.

Excusé : Mr Boutry.

Mr le Président souhaite la bienvenue aux délégués et propose de désigner Mr Hall comme Rapporteur, et Mr Terrien comme Secrétaire de la session.

Comparaison internationale de thermomètres à résistance de platine.

Les questions couvertes par les points 1 et 2 de l'Ordre du Jour devant revenir ultérieurement, Mr le Président aborde le point 3 et invite Mr HALL à exposer les résultats de mesures comparatives sur trois thermomètres à résistance de platine dans dix Laboratoires, comparaisons recommandées en 1952 par le Comité Consultatif.

Mr HALL commente son rapport d'ensemble qui résume les résultats obtenus dans ces dix Laboratoires (Annexe T 1, p. T 35). La résistance à o^o C des thermomètres a augmenté d'une quantité correspondant à 0,007 deg pendant ces comparaisons, qui se sont étendues sur cinq années; le rapport R_{100}/R_0 a diminué d'une quantité correspondant à environ 0,002 deg sur l'intervalle 0–100° C.

D'après les résultats communiqués, Mr HALL conclut que l'intervalle de température entre o et 100° C est reproduit dans les divers laboratoires avec des écarts de l'ordre de 0,001 deg. Aux laboratoires japonais la valeur obtenue pour R_0 en ohms absolus paraît un peu élevée, mais ceci ne peut avoir aucune influence sur l'exactitude du rapport R_{100}/R_0 .

Échelle du thermomètre à résistance de platine au-dessous de — 182,970° C.

Mr Van DIJK expose que l'on pourrait repérer les basses températures à $_{0,01}$ deg près avec un thermomètre à résistance de platine dans le domaine compris entre les points d'ébullition de H₂ et de O₂, après étalonnage en ces deux points, et à quelques millièmes de degré si l'étalonnage est fait à un troisième point intermédiaire, qui pourrait être le point triple de O₂ (Annexe T 2, p. T 42); il souhaite que l'on se mette d'accord sur la valeur à attribuer au point d'ébullition de l'hydrogène.

Mr BARBER commente les conclusions qu'il a exposées (Annexes T 3 et T 4, p. T 52) en faveur d'une fonction quadratique pour l'interpolation de $\Delta Z = Z - Z_1$, où $Z = \frac{R_T - R_{H_z}}{R_{e_z} - R_{H_z}}$ pour le thermomètre utilisé, et où Z_0 est calculé par la même formule d'après une table R = f(T) admise comme référence.

Un critère de pureté peut être proposé d'après la valeur maximum de ΔZ , ou peut-être mieux d'après la valeur maximum de Z afin de ne pas exclure le platine de la plus grande pureté. Les différences entre les tables obtenues expérimentalement aux États-Unis d'Amérique et en U. R. S. S. sont de l'ordre de 0,01 degré; l'adoption d'une table de référence pour la définition de l'échelle de température entre 20 et 90° K devrait donc être facile.

Mr STIMSON rappelle que, d'après Mr Brickwedde, la précision des comparaisons effectuées au N. B. S. en 1938 dans ce domaine de température entre des thermomètres à résistance de platine et un thermomètre à hélium était de 0,02 deg (*Procès-Verbaux C. I. P. M.*, 21, 1948, p. T 84). Le platine utilisé à cette époque n'était toutefois pas aussi pur que celui dont on dispose maintenant; de nouvelles mesures, avec du platine plus pur, seraient donc utiles. Il est cependant intéressant de noter que les résultats obtenus en U. R. S. S. en 1954 avec du platine très pur confirment à 0,01 deg près ceux du N. B. S.

Mr HALL exprime ainsi le résultat désiré : *a*. étendre vers les basses températures les services que rend l'Échelle Internationale de Température par sa reproductibilité; *b*. présenter en 1960 une proposition qui pourrait contenir une table de référence donnant R = f(T) ou Z = f(T) entre les points d'ébullition de H_2 et O_2 et une formule des écarts par rapport à cette table, formule dont une des constantes serait déterminée à un troisième point fixe.

Mr VOLET ajoute qu'il faut tout d'abord assigner des valeurs aux points fixes d'étalonnage.

Mr Van DIJK a fait une étude critique des résultats obtenus au thermomètre à gaz pour les points d'ébullition de l'oxygène et de l'hydrogène normal (Annexe T 5, p. T 61); il conclut en faveur des valeurs suivantes :

> Point d'ébullition de O_2 : 90,168° K » » H_2 : 20,378° K.

Entre la température thermodynamique ci-dessus du point de l'oxygène et la valeur assignée à ce point dans l'Échelle Internationale (T_{int} 1948 = 90,18°K), la différence est environ 0,01 deg. Le choix d'une valeur pour la température thermodynamique du point triple de O₂ est plus difficile. Il est désirable d'effectuer de nouvelles mesures avec le thermomètre à gaz; des préparatifs pour de telles mesures sont en cours au N. P. L. à Teddington et au N. R. C. à Ottawa.

Pour le point d'ébullition de l'hydrogène, le choix d'une valeur

semble facile. Mr TCHERNICHEV indique à ce sujet que les résultats expérimentaux les plus récents obtenus en U. R. S. S. sont en accord avec la valeur 20,38° K.

Mr BARBER confirme que des mesures au thermomètre à gaz sont en préparation au N. P. L. pour ces basses températures. De plus, il compte avoir la possibilité de comparer dans ce laboratoire des thermomètres à résistance en platine très pur d'origine américaine, soviétique, allemande et anglaise.

Mr le PRÉSIDENT constate que personne n'élève d'objection contre la valeur 20,38° K à attribuer au point d'ébullition de l'hydrogène de composition normale en para et ortho à la température ordinaire, et se félicite de cet accord qui va être très utile.

Mr Van DIJK préférerait utiliser l'hydrogène en équilibre, ce qui d'ailleurs ne présente aucune difficulté, car la différence des points d'ébullition (0,116 à 0,117 degré) est connue avec précision.

Mr le PRÉSIDENT, au nom du Comité Consultatif, donne mission à MM. Hall, Barber et Van Dijk d'organiser des comparaisons de thermomètres à résistance de platine et des mesures au thermomètre à gaz, puis d'étudier et de mettre au point, en accord avec les Laboratoires, un projet d'extension de l'Échelle Internationale de Température entre les points d'ébullition de H_2 et O_2 .

Mesures au thermomètre à gaz au-dessus de 444,6° C.

Mr Mosen commente les mesures de la température thermodynamique qu'il a faites avec J. Otto et W. Thomas aux points de congélation de l'or, de l'argent, du zinc, de l'antimoine et au point d'ébullition du soufre, par trois méthodes, avec cinq gaz différents, et en faisant varier les conditions expérimentales (Annexe T 6, p. T 67). Il insiste sur une innovation qu'il estime essentielle : le réservoir de gaz était immergé dans le corps fondu en équilibre avec la phase solide, au lieu d'être raccordé par thermocouple. Les résultats des mesures, cohérents et estimés exacts à mieux que o, r deg près, indiquent que les températures de l'Échelle Internationale sont trop basses de o, o6 deg au point du soufre (Blaisdell et Kaye ont indiqué une différence de 0,12 deg) et au point du zinc, de 0,22 deg au point de l'antimoine, de 1,36 deg au point de l'argent, et de 1,76 deg au point de l'or.

Malheureusement, d'après les mesures de J. Oishi et M. Awano (Annexe T 7, p. T 75), ces écarts ne seraient que 0,69 deg au point de l'or et 0,4 à 0,5 deg au point de l'argent. Il est donc nécessaire d'obtenir des résultats concordants avant de réviser les valeurs assignées aux points fixes de l'Échelle Internationale. De nouvelles déterminations du point de l'argent, plus faciles que celles du point de l'or, suffiraient peut-être pour décider en faveur d'un de ces deux groupes de résultats, puisque leur différence paraît bien systématique et excède 1 deg au point de l'argent.

Mr Moser rappelle aussi que C. Tingwaldt et H. Kunz ont confirmé à 0,2 deg près, par des mesures de pyrométrie optique, la différence entre les températures qu'il a obtenues pour les points de l'or et de l'argent.

Mr STIMSON espère qu'une mesure de la température thermodynamique du point de l'argent sera achevée prochainement au N. B. S., avec un four à quatre enveloppes assurant une uniformité de température de l'ordre de 0,003 à 0,004 deg dans un réservoir de 500 cm³. Il rappelle que Day et Sosman, il y a de cela 40 ans, estimaient déjà que la principale difficulté des mesures au thermomètre à gaz est d'assurer l'uniformité et l'estimation correcte de la température du réservoir.

Mr STIMSON a appris que J. Oishi avait l'intention de visiter cette année plusieurs Laboratoires d'Europe et des États-Unis, ce qui sera l'occasion d'utiles échanges de vues.

Mr TCHERNICHEV annonce que des mesures au thermomètre à gaz des points de l'or, de l'argent et du zinc sont au stade préliminaire en U. R. S. S.; le réservoir doit être immergé, soit dans le métal lui-même, soit dans un thermostat à bain d'étain; des résultats pourraient être obtenus en 1959.

Mr RICHTER signale que le D. A. M. G. envisage aussi de telles mesures avec un thermomètre à gaz à volume constant; on n'a toutefois pas encore décidé si les mesures seront faites avec le réservoir immergé ou simplement chauffé dans un four à température uniforme.

Formule d'interpolation du thermocouple Pt--Pt-Rh.

Mr Moser a trouvé que la formule quadratique d'interpolation prescrite par l'Échelle Internationale pour le couple platine-platine rhodié est insuffisante pour raccorder les températures thermodynamiques déterminées au thermomètre à gaz (Annexe T 8, p. T 78), et que des formules plus compliquées ne sont pas beaucoup plus satisfaisantes. Il recommande l'abandon du thermocouple et son remplacement par le thermomètre à résistance de platine, dont l'emploi est possible jusqu'au point de congélation de l'or, avec des formules d'interpolation simples, comme il l'a déjà rappelé au Comité Consultatif de 1954 (Procès-Verbaux C. I. P. M., 24, 1954, p. T 31) (¹).

Mr STIMSON remarque en effet que la validité de la formule de Callendar pour la résistance du platine est un hasard heureux, un « don du ciel » dont il convient de profiter.

Mr TIMMERMANS estime préférable, en principe, le thermomètre à résistance de platine, car il ne nécessite qu'un seul métal pur.

Mr PRESTON-THOMAS révèle au Comité le résultat d'un contrôle expérimental de la formule d'interpolation du thermomètre à résistance de platine. Neuf thermomètres différents, construits avec du platine de plusieurs origines, ont été étalonnés au point triple de l'eau, au point d'ébullition de l'eau, et au point de congélation du zinc; ils ont été comparés en deux autres points de congélation, ceux du cadmium et de l'étain. L'accord est aussi bon qu'on pouvait l'espérer, c'est-à-dire à 0,000 5 degré.

Point de congélation du zinc.

Mr le PRÉSIDENT présume, d'après les Rapports présentés (Annexes T 10, 11, 12, 13, 14, 15, p. T 84), que l'accord sera unanime en faveur du point de congélation du zinc, préférable au point d'ébullition du soufre. La température thermodynamique du point du zinc a été mesurée à la P. T. B., et trouvée supérieure de 0,06 degré à celle que fournit l'Échelle Internationale actuelle.

⁽¹⁾ Des observations sur la stabilité de thermomètres à résistance portés à 1100° C sont également en cours au C.I.I.W.M. (Annexe T 9, p. T 83).

MM. HALL et Van DIJK remarquent qu'il serait prématuré de changer l'Échelle Internationale pour la rapprocher de l'échelle thermodynamique; on désire seulement, pour le moment, améliorer la reproductibilité de l'Échelle Internationale par la substitution du point du zinc à celui du soufre pour la détermination des constantes de la formule d'interpolation du thermomètre à résistance. Les valeurs assignées aux points fixes seront modifiées plus tard, lorsque des résultats concordants seront acquis aux points du zinc et de l'or.

Les Instituts de Métrologie de l'U. R. S. S. considèrent à ce sujet qu'il serait utile non seulement d'introduire le point du zinc au nombre des points fixes thermométriques en remplacement de celui du soufre, mais aussi d'effectuer prochainement, dans les Laboratoires métrologiques, des mesures au thermomètre à gaz de la température de congélation du zinc et de l'or. Les résultats de ces mesures pourraient être présentés à la Onzième Conférence Générale des Poids et Mesures en 1960.

Mr le PRÉSIDENT conclut qu'il faudra spécifier nettement que l'introduction du point du zinc dans l'Échelle Internationale ne change pas cette Échelle, et qu'après la révision dont nous avons à nous occuper à cette session (voir p. T 18), le Comité Consultatif présentera un deuxième texte de l'Échelle 1948, mais non une nouvelle Échelle. Il reste donc à discuter sous quelle forme le point du zinc doit être introduit dans ce deuxième texte pour qu'aucun doute ne soit suscité sur la permanence de l'Échelle.

La séance est levée à 12h30m.

PROCÈS-VERBAL

DE LA DEUXIÈME SÉANCE

TENUE AU BUREAU INTERNATIONAL Vendredi 20 juin 1958

PRÉSIDENCE DE Mr J. de BOER

La séance est ouverte à 14^h40^m.

Sont présents : MM. de Boer, Bozza, Van Dijk, Hall, Moser, Preston-Thomas, Stimson, Tchernichev, Timmermans, Tomonaga, Volet, Membres du Comité Consultatif.

Assistent à la séance : M^{mes} BATARCHOUKOVA, ORLOVA, MM. BARBER, BRICKWEDDE, DEBURE, HIRAYAMA, KEMP, KOST-KOWSKI, RICHTER, TERRIEN, invités;

MM. A. BONHOURE, MOREAU, LECLERC, J. BONHOURE, GIRARD, du Bureau International.

Excusé : Mr Boutry.

Pyrométrie optique.

Mr RICHTER présente un travail de H. Wagenbreth (Annexe T 16, p. T 123) sur les corrections dues à l'ouverture d'un corps noir.

Mr Kostkowski commente les résultats de la comparaison de deux lampes à ruban de tungstène au pyromètre visuel dans plusieurs Laboratoires nationaux (Annexe T 17, p. T 133); la stabilité des lampes et l'accord entre les Laboratoires sont conformes aux prévisions; les écarts-types des résultats moyens ne dépassent pas 1,2 deg entre 800 et 1400° C (lampe à vide) et 2,9 deg entre 1270 et 2 220° C (lampe à gaz). Une précision meilleure serait possible, soit par l'emploi de récepteurs physiques, soit encore par l'étude de l'efficacité lumineuse V_{λ} des radiations monochromatiques pour chaque observateur; on pourrait ainsi doubler la précision; un appareil pour la mesure de V_{λ} est prêt au N. B. S.

Mr TCHERNICHEV mentionne les études de pyrométrie optique objective et subjective effectuées en U. R. S. S. (Annexes T 18 et 19, p. T 142), et exprime le désir de l'Institut de Métrologie D. I. Mendéléev de participer à des comparaisons internationales d'étalons pyrométriques, pour lesquelles ce laboratoire peut fournir des lampes.

Mr TOMONAGA exprime aussi le vœu que le Japon soit admis dans de telles comparaisons.

Mr HALL rappelle que le N. P. L. a fait des mesures très soignées sur un second groupe de lampes étalons pyrométriques qui sont actuellement en Australie (voir à ce sujet Procès-Verbaux C. I. P. M., 24, 1954, p. T 177).

Mr KEMP déclare que ces lampes sont disponibles et qu'il peut les faire parvenir à un autre laboratoire.

Mr HALL propose le circuit suivant : Sydney, Tokyo, Leningrad, Braunschweig (¹); Mr Tingwaldt pourrait alors, au moyen des étalons de la P. T. B., raccorder ce deuxième groupe de lampes au groupe dont Mr Kostkowski a parlé.

Mr le PRÉSIDENT prie Mr Hall, au nom du Comité Consultatif, de surveiller la circulation de ce second groupe de lampes et de centraliser les résultats des comparaisons.

Échelle du thermomètre à tension de vapeur de l'hélium.

Mr BRICKWEDDE expose que le meilleur instrument de repérage des températures entre 5 et 10° K est le thermomètre à tension

⁽¹⁾ Note ajoutée aux épreuves : Le Laboratoire japonais ne pouvant entreprendre les comparaisons avant plusieurs mois, le circuit a été modifié comme suit : les lampes ont été envoyées de Sydney à Teddington, où elles feront l'objet de quelques mesures de contrôle au N.P.L.; elles seraient ensuite transmises à l'I.M., à la P.T.B. et au C.I.I.W.M.

de vapeur de l'hélium. Après 1948, une table donnant la relation entre la température et la tension de vapeur a été utilisée avec l'approbation de l'Union Internationale de Physique Pure et Appliquée, mais sans avoir été sanctionnée par le Comité International, qui s'est contenté de la publier dans les Annexes de ses Procès-Verbaux (*Procès-Verbaux C. I. P. M.*, 23-B, 1952, p. T 151). A la suite de travaux poussés activement de divers côtés en 1954, deux autres tables ont été proposées : L 55 par H. Van Dijk (Annexe T 20, p. T 165), 55 E par J. R. Clement (Annexe T 21, p. T 177); ces tables diffèrent de quantités petites, voisines des incertitudes expérimentales.

MM. H. Van Dijk, M. Durieux, J. R. Clement et J. K. Logan viennent de proposer une troisième table voisine des précédentes, mais qui est mieux qu'une moyenne parce que a. la dérivée seconde $\frac{d}{dT} \frac{d \ln p}{d(1,T)}$ de la tension de vapeur de l'hélium est mieux continue et plus régulière dans cette nouvelle table (Échelle T_{xx}) que dans les tables L 55 et 55 E, et b. cette nouvelle table est en accord avec les mesures de tension de vapeur effectuées à l'aide de thermomètres magnétiques étalonnés au point λ (2,172° K), au point d'ébullition normal de l'hélium (4,215° K) et au point d'ébullition normal de l'hydrogène normal (20,38º K). Les physiciens intéressés sont prêts à accepter l'échelle définie par cette table, et il est vivement désirable que le Comité Consultatif lui accorde sa recommandation et la propose au Comité International, comme l'ont demandé C. J. Gorter et F. G. Brickwedde dans une lettre adressée au Président de notre Comité Consultatif (Annexe T 22, p. T 188).

Mr Van DLJK fait remarquer que la température du point d'ébullition de l'hélium dans cette table est égale à la température qu'il a admise comme la plus probable (Annexe T 5, p. T 61).

Mr HALL ayant demandé l'utilité de six chiffres significatifs dans la table, Mr Van DIJK explique que les dérivées sont ainsi calculables plus facilement que si les quatre chiffres véritablement utiles avaient seuls été conservés.

Mr BRICKWEDDE précise que le nombre de chiffres dans la table proposée n'a aucun rapport avec la précision qui, dans une mesure de température, dépend avant tout des difficultés rencontrées pour assurer l'équilibre thermique entre l'enceinte et le thermomètre; cette table est la définition d'une échelle, et elle comporte les chiffres utiles pour l'utilisation pratique de cette définition.

Mr le PRÉSIDENT conclut qu'une note devrait être ajoutée à la table pour indiquer que les six ou sept chiffres figurés sont donnés pour faciliter l'interpolation et la dérivation, et propose au Comité Consultatif d'adopter la recommandation suivante, qui est approuvée à l'unanimité :

RECOMMANDATION.

« Le Comité Consultatif de Thermométrie,

« ayant reconnu la nécessité d'établir dans le domaine des très basses températures une échelle de température unique,

« ayant constaté l'accord général des spécialistes dans ce domaine de la physique,

« recommande pour l'usage général l' « Échelle ⁴He 1958 », basée sur la tension de vapeur de l'hélium; comme définie par la table annexée (p. T 192).

« Les valeurs des températures dans cette échelle sont désignées par le symbole $T_{3\,\rm S}$, »

Désignation de l'Échelle Internationale de Température.

Mr le PRÉSIDENT expose la difficulté qui se présente depuis que le Comité International a décidé en 1956 de donner le nom de Système International d'Unités au système fondé sur les six unités de base : m, kg, s, A, °K, cd; le qualificatif « international » appliqué à l'Échelle Internationale de Température risque de faire croire qu'elle fait partie du S. I. U., et que les températures déterminées dans cette échelle sont les températures vraies. Un changement de dénomination n'est pas agréable, mais semble nécessaire. On pourrait, par exemple, l'appeler « Échelle 1948 ».

Mr HALL rappelle que depuis 1927 il a fallu de nombreuses publications explicatives pour faire comprendre aux utilisateurs ce qu'était l'Échelle Internationale, qui est maintenant bien connue sous ce nom donné par le Comité International luimême.

Mr STIMSON propose que l'on attende, pour changer le nom de l'Échelle Internationale, que l'on révise l'Échelle elle-même, comme il est prévu de le faire pour la rapprocher de l'échelle thermodynamique, car il faut éviter de donner deux noms différents à une même chose.

Mr le PRÉSIDENT se déclare d'accord pour que l'on suggère au Comité International de prendre cette question en considération.

Révision du texte de l'Échelle Internationale de Température.

Le National Bureau of Standards avait été chargé par le Comité Consultatif en 1954 de mettre en harmonie l'Introduction de l'Échelle Internationale de Température et la nouvelle définition de l'échelle thermodynamique à un point fixe. Mr le PRÉSIDENT remercie Mr Stimson pour la préparation d'un projet de texte révisé (Annexe T 23, p. T 194) qui sera la base des discussions, et qui a déjà suscité de nombreuses remarques exprimées dans les documents distribués aux Membres du Comité Consultatif (²). Il ne croit pas possible d'achever, au cours de cette session, l'établissement d'un texte à soumettre au Comité International; ce texte sera rédigé après la session, compte tenu du résultat des discussions, puis soumis à l'approbation par correspondance afin qu'il soit prêt un an avant la Conférence Générale de 1960.

Mr le PRÉSIDENT demande d'abord si le Comité approuve la proposition de l'U. R. S. S. de supprimer le chapitre I « Introduction », qui contient des renseignements historiques et qui n'a aucun rapport direct avec la reproductibilité de l'Échelle. Mr TCHERNICHEV précise que cette proposition porte plus sur la longueur de l'Introduction que sur les indications qu'elle renferme.

Mr le PRÉSIDENT ainsi que MM. Van DIJK et HALL sont du même avis; ces renseignements, qui étaient justifiés en 1927, ne présentent plus maintenant le même intérêt. Mr Moser voudrait conserver la mention que l'on s'efforce de faire coïncider au mieux l'Échelle Internationale de Température et l'échelle thermodynamique. Mr STIMSON exprime une opinion analogue. Mr HALL observe à ce sujet que le chapitre IV « Ren-

^(*) Le Comité Consultatif a jugé inutile de publier ces documents dans les Annexes; leur substance se trouve dans les procès-verbaux des présentes séances.

seignements complémentaires » contient des indications sur les écarts entre ces deux échelles.

Mr Bozza propose la forme abrégée suivante :

« L'échelle de température thermodynamique Kelvin, dans laquelle les températures sont désignées par °K et représentées par le symbole *T*, est reconnue comme l'échelle thermodynamique fondamentale à laquelle toute mesure de température doit pouvoir être finalement rapportée. La grandeur du degré Kelvin a été définie par l'adoption de la valeur 273,16 exactement pour le point triple de l'eau (Dixième Conférence Générale des Poids et Mesures, 1954). « Les difficultés expérimentales inhérentes aux mesures de température dans l'échelle thermodynamique ont rendu désirable l'adoption d'une échelle pratique, l'Échelle Internationale de Température de 1927, révisée en 1948, aisément et exactement reproductible, et qui s'accorde aussi étroitement que possible avec l'échelle thermodynamique. »

Le Comité Consultatif estime qu'une Introduction de ce genre serait suffisante.

Mr le Président considère ensuite le tableau de désignation et de définition des échelles avec leurs symboles, approuvé par le Comité International (Procès-Verbaux C. I. P. M., 24, 1954, p. 82). Un tel tableau ne figurait pas dans le texte de l'Échelle Internationale de Température de 1948; son introduction est proposée dans le projet actuellement en discussion. Mr le Président hésiterait à l'inclure dans le texte de l'Échelle Internationale de Température car on ne pourrait plus le changer après son acceptation par la Conférence Générale; or ce tableau semble déjà périmé, à la suite des projets en discussion à l'I. S. O./T. C. 12 : le symbole T convient parfaitement à la température thermodynamique Kelvin, mais les principales organisations internationales préfèrent le symbole t pour la température thermodynamique Celsius, plutôt que de l'attribuer à la température internationale Celsius. Les températures de l'Échelle Internationale auraient pour symboles t_{int} et T_{int} .

De plus, poursuit Mr le PRÉSIDENT, on devrait faire apparaître nettement si les égalités qui figurent dans ce tableau sont des équations aux grandeurs ou des équations aux valeurs numériques; la présentation actuelle n'est pas claire à ce point de vue. Une confusion analogue existe dans plusieurs équations du texte de l'Échelle Internationale de Température. Mr le Mr Van DIJK préférerait des équations aux valeurs numériques; d'autre part, il n'approuve pas le qualificatif « usuelle » (customary) proposé par l'I. S. O. pour l'échelle thermodynamique Celsius.

Mr le PRÉSIDENT et Mr VOLET, devant les divergences d'opinions, estiment plus prudent de ne pas introduire le tableau de nomenclature.

MM. MOSER et STIMSON regretteraient que ce tableau, qui est utile, n'y figure pas.

M. HALL ne voit aucune liaison directe entre ce tableau et la définition de l'Échelle. Il propose donc que le tableau soit reporté au chapitre IV « Renseignements complémentaires ».

Cette dernière proposition est adoptée.

On convient encore que les auteurs de la rédaction initiale de l'Échelle Internationale de Température ont écrit les équations en ayant dans l'esprit de choisir des équations aux grandeurs, et qu'il est préférable de s'en tenir à cette forme de rédaction.

Mr le PRÉSIDENT met en discussion les deux premiers alinéas du chapitre II du projet de texte de l'Échelle. On s'accorde sur des modifications, et ces deux alinéas sont approuvés sous la forme suivante :

« Les températures dans l'Échelle Internationale de Température de 1948 sont exprimées en degrés Celsius, désignées par °C ou °C (Int. 1948) et représentées ici par le symbole *t*.

« L'Échelle Internationale de Température est fondée sur six températures reproductibles (points fixes de définition) auxquelles sont assignées des valeurs numériques, et sur des formules spécifiées établissant la relation entre la température et les indications des instruments étalonnés au moyen des valeurs assignées aux points fixes de définition. Ces points fixes sont définis.... »

La séance est levée à 18h30^m.

PROCÈS-VERBAL

DE LA TROISIÈME SÉANCE,

TENUE AU BUREAU INTERNATIONAL

Samedi 21 juin 1958

PRÉSIDENCE DE Mr J. DE BOER

La séance est ouverte à 9h55m.

Sont présents : MM. de Boer, Bozza, Van Dijk, Hall, Moser, Preston-Thomas, Stimson, Tchernichev, Timmermans, Tomonaga, Volet, Membres du Comité Consultatif.

Assistent à la séance : M^{mes} Batarchoukova, Orlova, MM. Barber, Brickwedde, Debure, Hirayama, Kemp, Kostkowski, Richter, Terrien, invités;

MM. A. BONHOURE, MOREAU, LECLERC, J. BONHOURE, GIRARD, du Bureau International.

Excusé : Mr Boutry.

Révision du texte de l'Échelle Internationale de Température (suile).

Mr le PRÉSIDENT reprend la discussion sur le projet de révision de l'Échelle au tableau I du chapitre II « Définition de l'Échelle ». On s'accorde pour donner à ce tableau le titre suivant : « Valeurs exactes assignées aux points fixes de définition, sous la pression de 1 atmosphère normale, sauf pour le point triple », afin qu'il soit clair que ces valeurs ont le caractère conventionnel d'une définition et que, par conséquent, le nombre des chiffres significatifs inscrits n'a aucun rapport avec l'exactitude des températures dans l'échelle thermodynamique. La spécification que l'eau du point triple doit être « normale » (en composition isotopique) a été supprimée, sa signification n'étant pas assez explicite; toutes les eaux naturelles paraissent d'ailleurs convenir à la précision actuelle. La mention « point fixe fondamental » (de l'échelle thermodynamique) a été supprimée.

Immédiatement après le tableau I, la phrase du texte de 1948 « Les procédés d'interpolation conduisent à un partage de l'Échelle... » a été rétablie afin que les raisons de ce partage soient expliquées; au début du paragraphe a on ajoute, après 630,5° C, la parenthèse : (point de congélation de l'antimoine); la première phrase de ce paragraphe a a été allégée par la suppression des mots suivants : « entre les points de bifurcation.... conducteur de potentiel », détails expérimentaux superflus dans une définition générale.

Le critère de limite de pureté du platine par le rapport R_{100}/R_0 a été ramené à 1,392 o (au lieu de 1,392 2).

Mr le PRÉSIDENT remarque qu'il faut alors introduire le point de congélation du zinc, et demande au préalable quelle température il faut assigner à ce point dans l'Échelle Internationale 1948.

Mr BARBER attire l'attention sur la petite correction de température, due à la pression du métal fondu, qu'il faut appliquer à plusieurs résultats communiqués; le résultat du N. P. L., à la pression atmosphérique normale, est $419,505_{5}$ °C.

Mr le PRÉSIDENT constate que la moyenne des résultats obtenus au Canada, aux États-Unis, au Royaume-Uni, et en U. R. S. S., ramenés éventuellement à la pression normale, est 419,5047, et propose 419,505°C (Int. 1948) pour le point du zinc. Cette valeur est adoptée.

Mr Bozza estime qu'on ne peut pas introduire ce point du zinc dans le tableau I au même titre que les autres points (de l'eau, du soufre, etc.), car ceux-ci sont des points de coïncidence entre l'échelle thermodynamique et l'Échelle Internationale; au contraire, la valeur pour le point du zinc est interpolée dans l'Échelle Internationale entre les points fixes de définition de l'eau et du soufre.

Mr TIMMERMANS renouvelle ses critiques contre le point

d'ébullition du soufre, qui est mal défini; il désirerait faire disparaître le point du soufre du tableau des points fixes de définition, en lui substituant le point du zinc.

Mr HALL remarque que le point du zinc pourrait occuper une position analogue à celle qu'occupe actuellement le point triple de l'eau; ce serait un point préféré pour réaliser l'Échelle, bien qu'il ne figurerait pas parmi les points fixes de définition.

Mr MOSER n'est pas d'accord, car la température thermodynamique du point triple de l'eau est parfaitement connue, tandis que celle du point du zinc nécessite des mesures délicates; il préfère maintenir le point du soufre, et ajouter dans le paragraphe a le point du zinc, dont la valeur devra être changée ultérieurement.

Pour Mr Bozza, la substitution du zinc au soufre comme point de définition serait un changement révolutionnaire.

Mr le Président propose finalement de maintenir le point du soufre, et d'ajouter au paragraphe a le texte suivant, qui est adopté :

« Au lieu du point d'ébullition du soufre, il est recommandable d'utiliser le point d'équilibre entre le zinc solide et le zinc liquide (point de congélation du zinc) en lui attribuant la température $419,505^{\circ}$ C (Int. 1948). Ce point est mieux reproductible que celui du soufre et la valeur qui lui a été attribuée a été choisie de façon qu'elle conduise au même résultat dans la détermination des constantes R₀, A et B. »

Au paragraphe c, après une discussion provoquée par le désir du C. I. I. W. M. (Japon) et de l'I. M. (U. R. S. S.) de préciser que 630,5° C est le point de congélation de l'antimoine, point que Mr TIMMERMANS affirme être fort mal défini, la dernière phrase du premier alinéa « La température t à laquelle se fait l'étalonnage... » devient, selon la proposition de Mr Bozza, qui est acceptée : « La valeur de la force électromotrice à 630,5° C doit être déterminée en mesurant cette température avec un thermomètre à résistance ».

Mr le Président fait adopter que les spécifications relatives au thermocouple achevé soient exprimées par des équations entre les valeurs numériques en microvolts.

Au paragraphe d, Mr le Président propose d'écrire la for-

mule de Planck en fonction des grandeurs; ainsi, dans cette formule, 273,15 serait remplacé par T_0 . De son côté, Mr HALL préfère la notation exp x à e^x qui devient incommode lorsque xest une fraction. Ces propositions sont acceptées.

Mr le PRÉSIDENT observe que la définition de la grandeur J dans le projet en discussion est incomplète parce qu'on n'y parle pas de l'angle solide. Il rappelle que, selon les définitions recommandées par la Commission Internationale de l'Éclairage, cette grandeur est la « densité spectrale de luminance énergétique »; cette désignation est acceptée par le Comité Consultatif.

Mr STIMSON précise, en réponse à une demande de Mr Volet, qu'il a intentionnellement supprimé la condition, imposée autrefois, que λ soit une longueur d'onde du spectre visible.

Mr le Président met en discussion le chapitre III « Recommandations » du projet.

Au paragraphe III.1, deux petites modifications demandées par Mr HALL sont acceptées.

Au sujet du recuit des thermocouples (III.2), en présence des nouvelles études effectuées (¹) et de la remarque de Mr Moser,

(¹) Une Note sur cette question a été présentée par l'Electrotechnical Laboratory (Annexe T 24, p. T 211).

De son côté, l'Institut de Métrologie a indiqué, dans ses commentaires au projet de révision du texte de l'Échelle Internationale de Température, la méthode qu'il a adoptée depuis cinq années :

« On a proposé dans ce projet (Annexe T 23, p. T 202, § 2) de soumettre les fils du thermocouple à un recuit pendant une heure à environ 1450° C. Un tel régime de recuit ne s'est pas justifié dans la pratique. Un fil de platine de grande pureté devient très actif à 1450° C et il y a toujours le danger de le contaminer par la poussière. On pourrait proposer une autre méthode de recuit des thermocouples, telle que la méthode plus sûre qu'emploie avec succès l'Institut de Métrologie. Les fils du thermocouple étalon sont recuits séparément : le fil de platine est recuit par effet Joule pendant quatre heures à 1100° C, le fil de platine rhodié pendant deux heures à 1400° C; le thermocouple est ensuite soudé et muni d'une isolation correspondante. Pour éviter les contraintes mécaniques qui apparaissent lors du montage, le thermocouple est placé dans un long four tubulaire à une température uniforme et constante de 1100°C, à une profondeur - telle que la région d'uniformité de la température embrasse une partie plus grande du thermocouple que celle qui se trouve chauffée lors de l'emploi du thermocouple. On maintient le thermocouple dans le four jusqu'à ce que sa force électromotrice soit stabilisée; ce traitement dure ordinairement 3 à 4 heures. »

selon laquelle un nouveau recuit à 1100° C est utile après le montage pour éliminer l'effet des contraintes inévitables, Mr le PRÉSIDENT prie Mr Hall de préparer des recommandations en accord avec les Laboratoires.

A propos de l'atmosphère normale (III.3), Mr VOLET rappelle que la connaissance de l'accélération due à la pesanteur (g)est nécessaire pour toute mesure pratique de pression en un lieu donné et que, par convention, g doit être mesuré dans le système de Potsdam. Or les valeurs exprimées dans ce système, adopté depuis plus de 50 ans, seront sans doute prochainement modifiées de 13 milligals environ, ce qui aurait pour effet de changer la pression réelle exprimée par le même nombre de newtons par mètre carré. Si l'on veut alors que l'atmosphère normale désigne toujours la même pression physique réelle, il faudra changer la définition de l'atmosphère normale. En prévision de cette éventualité, Mr VOLET engage les Membres du Comité Consultatif à réfléchir à cette question.

Mr STIMSON préférerait ne pas voir changer la définition de l'atmosphère normale; le changement envisagé des valeurs de g se traduirait par 4.10^{-4} deg sur le point d'ébullition de l'eau, ce qui est de peu d'importance actuellement.

Mr HALL pense qu'un changement serait plus acceptable si les baromètres étaient gradués en millibars, plutôt qu'en millimètres de mercure.

Au paragraphe III.4. *a*, Mr HALL propose, avec l'assentiment du Comité Consultatif, un petit changement de rédaction au premier alinéa, et la suppression du deuxième alinéa. Il demande également, au paragraphe III.7, la suppression du membre de phrase relatif au soufre de la région du Golfe du Mexique.

Une discussion est provoquée par Mr TIMMERMANS, qui attire l'attention sur la contamination de l'eau d'un point triple par dissolution du verre de l'ampoule; la stabilité de la température obtenue ne prouve rien sur la pureté de l'eau s'il y a saturation; on sait depuis vingt ans que les ampoules doivent être faites en quartz et non en verre.

Mr PRESTON-THOMAS indique que les ampoules utilisées au N. R. C. pour l'étude de la stabilité de la réalisation du point triple étaient en pyrex (voir Annexe T 15, p. T 116). D'après Mr Bozza, le pyrex est plus soluble dans l'eau que le verre d'Iéna.

Mr BARBER rappelle qu'au N. P. L., comme au N. R. C. et sans doute ailleurs aussi, le pyrex est lavé longuement à la vapeur d'eau; aucun changement de la température n'est observable quatre ans après le remplissage d'une ampoule à point triple. D'ailleurs, la technique de congélation à chaque emploi élimine l'effet des impuretés.

Mr le PRÉSIDENT demande si le Comité Consultatif peut répondre à la proposition du C. I. I. W. M., qui désire que soient ajoutés au paragraphe III.8 des critères de pureté pour les métaux (Ag et Au).

Mr Kostkowski, consulté, ne peut que répéter la réponse qu'il avait donnée à Mr Stimson, selon laquelle la rédaction actuelle est ce que l'on peut faire de mieux pour le moment.

Un échange de vues a lieu entre Mr HALL et Mr MOSER sur la contamination possible de l'argent par la silice; on observe que la silice se colore au contact de l'argent en fusion, mais Mr MOSER n'a décelé aucun changement du point de congélation, à 0,05 degré près, lorsqu'il a remplacé par de l'argent frais de l'argent qui était resté 24 heures en contact avec le réservoir en silice d'un thermomètre à gaz.

Mr le PRÉSIDENT engage la discussion sur le tableau II (chapitre IV, Renseignements supplémentaires). Dans le titre de ce tableau, on remplace « Points fixes secondaires... » par « Repères secondaires... ».

Mr TIMMERMANS propose de supprimer le point de l'antimoine (630,5° C) qui n'est pas reproductible, ce qui est accepté.

Il critique vivement l'expression « point de solidification » qui est incorrecte pour un physicochimiste : un verre se solidifie à une température qui ne peut être située qu'avec une incertitude considérable, 25 degrés par exemple. On devrait dire « point de congélation », ou mieux encore « point de cristallisation ».

Mr Moser n'aime guère l'expression « point de cristallisation », qui n'est pas usuelle (on dit « Erstarrungspunkt » en allemand et « freezing point » en anglais). Mr le Président propose « point de fusion », qui serait accepté par Mr TIMMERMANS, mais non par les physiciens thermométristes. Sur la proposition de MM. HALL et VOLET, on conclut en faveur de « température d'équilibre entre solide et liquide » ou « entre liquide et vapeur » pour figurer au tableau II en discussion.

Mr TIMMERMANS remarque qu'à cause de la solubilité des gaz, la température des points de congélation ne peut pas être définie à 0,001 degré près si l'on ne spécifie pas la composition de l'atmosphère où est placé le métal; il propose, en conséquence, de ne jamais indiquer plus de deux décimales (sauf pour le zinc) pour les températures des repères secondaires du tableau II, ce qui est accepté.

Le point de congélation de l'eau, 0,000 1° C dans le projet, est remplacé par 0,000° C, selon la proposition du C. I. I. W. M.

Mr TIMMERMANS recommande que le tableau II soit complété par au moins un repère vers — 120° C; on connaît un certain nombre de repères entre — 78 et — 180° C, mais il faudrait que leur valeur soit confirmée par des mesures faites dans des laboratoires différents.

Tous les Membres du Comité Consultatif sont d'accord sur l'utilité de cette recommandation.

Mr le PRÉSIDENT met en discussion le paragraphe IV.3 (Relation entre l'Échelle Internationale de Température et l'Échelle thermodynamique), mais Mr HALL fait remarquer que dans les deux ans à venir de nouveaux et importants résultats de mesures au thermomètre à gaz seront sans doute acquis; il paraît donc préférable de remettre à plus tard l'examen de ce paragraphe.

Mr le PRÉSIDENT rappelle enfin que le Comité Consultatif a préféré insérer le tableau de désignation des températures dans ce chapitre IV. Il propose de donner à ce tableau la forme suivante (p. T28), qui tient compte d'une partie des propositions de l'I. S. O. et évite le mélange des valeurs numériques et des grandeurs.

En conclusion de ces échanges de vues sur une nouvelle édition de l'Échelle Internationale de Température de 1948, Mr le PRÉSIDENT annonce qu'un second projet, révisé conformément aux désirs exprimés au cours de la discussion, sera établi

ÉCHELLE INTERNATIONALE.

Consultatif à une date aussi rapprochée que la fin de 1959.

Température internationale .^tini indication : °C(Int. 1948) degré Celsius international 1948 Température internationale Kelvin $T_{int} = t_{int} + T_0$ indication : $^{\circ}K(Int. 1948)$ degré Kelvin international 1948

Échelle thermodynamique.

Température thermodynamique Celsius $t = T - T_0$ indication : °C (therm.) degré Celsius thermodynamique Température thermodynamique T indication : oK degré Kelvin

 $(T_0 = 273, 15)$

Le Comité Consultatif examine enfin la liste des documents communiqués à cette cinquième session, et dresse la liste de ceux qui devront être publiés en annexes aux procès-verbaux des séances.

Mr TIMMERMANS, au nom de tous ses Collègues, remercie le Président pour la patience et l'efficacité avec lesquelles il a dirigé les débats. Il remercie également tous ceux qui ont contribué par leur travail à rendre fructueuse cette cinquième session du Comité Consultatif de Thermométrie.

La séance est levée à 13h30m.

CINQUIÈME RAPPORT

DU

COMITÉ CONSULTATIF DE THERMOMÉTRIE

AU

COMITÉ INTERNATIONAL DES POIDS ET MESURES

Par J. A. HALL, Rapporteur

Le Comité Consultatif a tenu trois séances, le vendredi 20 et le samedi 21 juin 1958 au Bureau International des Poids et Mesures à Sèvres.

Étaient présents : Mr de Boer, Président; MM. Bozza, Van DIJK, HALL, MOSER, PRESTON-THOMAS, STIMSON, TCHERNICHEV, TIMMERMANS, TOMONAGA, VOLET, Membres du Comité Consultatif; M^{mes}BATARCHOUKOVA, ORLOVA, MM. BARBER, BRICKWEDDE, DEBURE, HIRAYAMA, KEMP, KOSTKOWSKI, RICHTER, TERRIEN, invités.

Mr Hall fut nommé Rapporteur et Mr Terrien Secrétaire.

Intercomparaison de thermomètres a résistance.

Les résultats de la comparaison internationale de trois thermomètres à résistance de platine ont été présentés au Comité. On a noté que la résistance à 0° C des thermomètres avait augmenté d'une quantité équivalant à environ 0,007 deg pendant ces comparaisons, qui se sont étendues sur une période de cinq années, et que le rapport R_{100}/R_0 avait diminué d'une quantité équivalant à environ 0,002 deg sur l'intervalle 0-100° C. On peut affirmer que les dix Laboratoires participants ont obtenu la même valeur pour cet intervalle à \pm 0,001 degré près.

Des Rapports du Kamerlingh Onnes Laboratorium et du National Physical Laboratory ont été étudiés, et il a été reconnu qu'en utilisant une table de la fonction $Z = (R_t - R_{H_s})/(R_{O_s} - R_{H_s})$ il est possible de reproduire une échelle de température avec une approximation de 0,01 ou 0,02 degré au moyen d'un thermomètre à résistance de platine étalonné aux points d'ébullition de l'oxygène et de l'hydrogène. Si l'on emploie un troisième point fixe de température intermédiaire, par exemple le point triple de l'oxygène, il devient possible d'améliorer la reproductibilité jusqu'à une approximation de 0,002 ou 0,003 degré.

Il a été convenu d'organiser une intercomparaison de thermomètres entre les Laboratoires spécialisés dans ce domaine de température, d'effectuer de nouvelles mesures au thermomètre à gaz au point triple de l'oxygène, et de mettre au point un projet d'extension de l'Échelle Internationale de Température entre les points d'ébullition de O_0 et H_0 .

Pour ce travail, il a été admis que tous les Laboratoires devraient utiliser la valeur 20,38° K pour le point d'ébullition de l'hydrogène normal.

TEMPÉRATURE THERMODYNAMIQUE DES POINTS FIXES.

Les résultats obtenus par J. Oishi et M. Awano (Japon) d'une part, et par H. Moser, J. Otto et W. Thomas (Allemagne) d'autre part, pour les points de congélation de l'or et de l'argent ont été discutés; il a été reconnu, étant donné le désaccord d'environ 1 degré entre ces deux résultats, que de nouveaux travaux étaient nécessaires sur la température thermodynamique des points fixes de l'Échelle Internationale. Dans la méthode employée en Allemagne, le réservoir du thermomètre à gaz était immergé directement dans le métal en fusion; ce n'était pas le cas des mesures japonaises, qui ont été effectuées en plaçant le réservoir du thermomètre à gaz dans un four avec des thermocouples étalonnés au point de congélation de l'or et de l'argent. J. Oishi a communiqué qu'il préparait une nouvelle mesure par la méthode à température du réservoir constante.

On a appris que le travail de l'Institut de Métrologie de Leningrad, dans lequel le thermomètre à gaz doit être comparé à des thermocouples dans un bain d'étain fondu agité, serait achevé au cours de 1959. Ce travail serait complété par des mesures avec le réservoir immergé directement dans l'argent ou l'or en fusion, comme cela a été fait en Allemagne. Le Deutsches Amt für Mass und Gewicht a l'intention d'effectuer des mesures avec un thermomètre à volume constant, le réservoir étant, soit dans l'air d'un four à température uniforme, soit immergé dans le métal en fusion.

Le National Bureau of Standards va effectuer des mesures avec un réservoir d'une capacité de 500 cm³ dans une enceinte à température uniforme comportant plusieurs enveloppes concentriques de cuivre, mais cet équipement ne conviendrait pas pour des températures aussi élevées que le point de l'or.

POINT DE CONGÉLATION DU ZINC.

Des valeurs pour le point de congélation du zinc dans l'Échelle Internationale de Température de 1948 ont été communiquées par le N. R. C. (Canada), le N. P. L. (Royaume-Uni) et l'I. M. (U. R. S. S.). Le N. R. C. a également communiqué d'autres valeurs en relation avec l'échelle du National Bureau of Standards. Ces résultats s'échelonnent entre 419,504 0 et 419,505 5° C sous la pression atmosphérique normale, la moyenne étant 419,504 7° C.

On est tombé d'accord que le point de congélation du zinc fournit un point fixe mieux reproductible que le point d'ébullition du soufre et il a été décidé d'adopter la valeur de $419,505^{\circ}$ C (Int. 1948).

INTERCOMPARAISON DE LAMPES A RUBAN DE TUNGSTÈNE.

Les résultats de la comparaison au pyromètre visuel, dans plusieurs Laboratoires nationaux, de deux lampes à ruban de tungstène, l'une à vide, l'autre à gaz, ont été communiqués au Comité Consultatif; la lampe à vide a été étudiée entre 800 et 1400° C, la lampe à gaz entre 1270 et 2 220° C. Ces lampes, de fabrication anglaise, avaient été soumises à un étalonnage courant au N. P. L., l'une en 1951, l'autre en 1947. Des études soignées faites au N. R. C., au N. B. S., à la P. T. B. et au D. A. M. G. ont présenté des écarts-types de 0,8 à 1,2 deg pour la lampe à vide et de 1,1 à 2,9 deg pour la lampe à atmosphère gazeuse. Les résultats initiaux du N. P. L. ont été inclus dans le calcul des écarts-types.

Il a été convenu que cette intercomparaison devrait être rattachée à celle qui avait déjà été entreprise sur l'initiative du N. P. L. avec deux lampes de chaque type. Les mesures effectuées au N. S. L. d'Australie sur ces dernières lampes sont achevées, et il a été décidé que ces lampes seraient envoyées de nouveau au N. P. L. pour contrôle, puis à l'I. M., à la P.T. B. et au C. I. I. W. M. (Japon).

Thermométrie

AUX TRÈS BASSES TEMPÉRATURES.

Une lettre de MM. Gorter et Brickwedde a été reçue, proposant l'adoption d'une nouvelle échelle pour le thermomètre à tension de vapeur de l'hélium. Cette proposition a été adoptée dans les termes suivants

RECOMMANDATION.

« Le Comité Consultatif de Thermométrie,

« ayant reconnu la nécessilé d'établir dans le domaine des très basses températures une échelle de température unique,

« ayant constaté l'accord général des spécialistes dans ce domaine de la physique,

« recommande pour l'usage général l'« Échelle 'He 1958 », basée sur la tension de vapeur de l'hélium, comme définie par la table annexée (voir p. T 192).

« Les valeurs des températures dans cette échelle sont désignées par le symbole T_{58} ».

L'ÉCHELLE DU THERMOCOUPLE.

La P. T. B. a communiqué quelques résultats sur une comparaison du thermocouple étalon au thermomètre à gaz. En utilisant la formule d'interpolation spécifiée, des écarts atteignant environ o,4 degré à 800° C ont été trouvés. Des formules plus compliquées ne montrent pas d'amélioration sensible. On a exprimé l'opinion qu'il serait désirable de remplacer le thermocouple par le thermomètre à résistance de platine en tant que procédé spécifié d'interpolation.

Des Rapports concernant les techniques de recuit des thermocouples étalons ont été communiqués par l'Institut de Métrologie (U. R. S. S.) et l'Electrotechnical Laboratory (Japon), et l'on a convenu d'étudier plus complètement cette question.

Désignation de l'Échelle Internationale de Température.

Le Comité International des Poids et Mesures a décidé en 1956 de donner le nom de « Système International d'Unités » au système fondé sur les unités de base : mètre, kilogramme, seconde, ampère, degré Kelvin, candela. On a remarqué que cette dénomination pourrait conduire à des confusions car l'Échelle Internationale de Température ne fait pas partie du Système International d'Unités. Le Comité Consultatif a été d'avis qu'un changement du nom de l'Échelle Internationale de Température, qui est maintenant bien établi après 31 ans d'usage, pourrait conduire à beaucoup de difficultés et de malentendus. On a convenu que le Comité International serait prié de reconsidérer la question en tenant compte de cette difficulté.

RÉVISION DU TEXTE DE

L'ÉCHELLE INTERNATIONALE DE TEMPÉRATURE DE 1948.

Un projet de révision du texte de l'Échelle Internationale de Température a été examiné. A part des points de détail, les décisions les plus importantes ont été les suivantes :

1º Abréger le chapitre « Introduction » par l'élimination des parties d'intérêt purement historique, qui ne sont plus nécessaires.

2º Remplacer le point de fusion de la glace par le point triple de l'eau en lui attribuant la température + 0,01° C (Int. 1948).

3° Supprimer la distinction entre « points fixes fondamentaux » et « points fixes primaires », en adoptant la désignation unique « points fixes de définition ».

4° Unifier les équations qui figurent dans le texte, afin qu'elles soient toutes des équations aux grandeurs et non pas aux valeurs numériques.

5° Utiliser les symboles T et t pour désigner les températures thermodynamiques Kelvin et Celsius, et les symboles T_{int} et t_{int} pour désigner les températures internationales Kelvin et Celsius.

6º Maintenir le point d'ébullition du soufre comme point fixe de définition de l'Échelle, mais recommander l'emploi du point de congélation du zinc, avec la valeur 419,505° C (Int. 1948), ce point permettant de réaliser la même Échelle d'une façon mieux reproductible.

(Teddington, 3 juillet 1958)

3

ANNEXE T1

National Physical Laboratory (Royaume-Uni)

RÉSULTATS DE LA COMPARAISON INTERNATIONALE DES THERMOMÈTRES A RÉSISTANCE DE PLATINE S 167, R 13 ET Nº 109 DANS DIX LABORATOIRES

(mesure de l'intervalle 0-100° C de l'échelle internationale de température)

Par C. R. BARBER et J. A. HALL

(Traduction)

Dans le but de déterminer le degré de concordance dans la réalisation de l'intervalle fondamental de l'Échelle Internationale de Température aux divers Laboratoires nationaux, le Comité Consultatif de Thermométrie a suggéré en 1952 qu'un groupe voyageur de thermomètres à résistance de platine soit étalonné dans chaque Laboratoire au point de fusion de la glace et au point d'ébullition de l'eau.

Ce travail a commencé en 1952, avec les thermomètres R 10 construit au National Physical Laboratory et S 167 construit au National Bureau of Standards. Ces deux thermomètres ont été étalonnés au N. B. S. et au Massachusetts Institute of Technology en septembre 1952; le N. B. S. ayant trouvé R 10 instable, ce qui a été confirmé ensuite au N. P. L., ce thermomètre a été remplacé par un autre thermomètre de même type (R 13), construit au N. P. L. en même temps que R 10. Alors que R 13 et S 167 avaient déjà été étalonnés dans plusieurs Laboratoires, un troisième thermomètre (N° 109), fourni par l'Institut de Métrologie D. I. Mendéléev, a été introduit dans la comparaison; les premières mesures sur ce thermomètre ont été faites au N. P. L en mars 1954. Les noms des Laboratoires ayant participé à la comparaison, avec leur abréviation utilisée dans ce Rapport, sont les suivants :

National Bureau of Standards (N. B. S.), États-Unis d'Amérique.

Massachusetts Institute of Technology (M. I. T.), États-Unis d'Amérique.

National Physical Laboratory (N. P. L.), Royaume-Uni.

Physikalisch-Technische Bundesanstalt (P. T. B.), Allemagne. Kamerlingh Onnes Laboratorium (K. O. L.), Pays-Bas.

Institut de Métrologie D. I. Mendéléev (I. M.), U. R. S. S.

Tokyo Institute of Technology (T. I. T.), Japon.

Central Inspection Institute of Weights and Measures (C. I. I. W. M.), Japon.

National Standards Laboratory (N. S. L.), Australie. National Research Council (N. R. C.), Canada.

Les thermomètres, confiés en principe aux bons soins d'un membre de l'un des Laboratoires, ont été transportés d'un Laboratoire à l'autre par les moyens indiqués à la colonne 1 du tableau I. Durant les transports par bateau d'Australie en Angleterre et d'Angleterre au Canada, la caisse contenant les thermomètres a été suspendue de façon à éviter les chocs par mer agitée.

Les résultats de toutes les mesures sont rassemblés au tableau I; ces résultats ne concernent que les valeurs moyennes communiquées par chaque Laboratoire. Pour rendre les résultats comparables, il a été nécessaire d'apporter à quelques-uns d'entre eux de petites corrections, qui figurent sous les valeurs correspondantes. Ces corrections sont dues :

a. à l'écart entre l'ohm national et l'ohm B. I. P. M.;

b. au passage à la valeur de la gravité exprimée dans le système de Potsdam;

c. à l'extrapolation pour réduire les mesures à un courant nul.

Quelques indications sur les bases du calcul des corrections sont données aux colonnes 10, 11 et 12 du tableau I. On voit que seules la valeur α du K. O. L. et les valeurs R₀ et α du C. I. I. W. M. ont fait l'objet d'une correction de courant, le courant de mesure employé par ces deux Laboratoires étant de 1 mA; les corrections appliquées sont celles qui ont été obtenues au N. P. L. quand les thermomètres sont directement immergés dans la vapeur; elles sont en bon accord avec celles qui ont été indiquées par le N. R. C. pour un « puits humide ». En prenant les résultats donnés par le N. R. C. pour un « puits sec », les valeurs corrigées de α seraient plus basses d'une quantité équivalente à 3 ou 4.10⁻⁴ deg pour 100 deg.
TABLEAU

Résumé	des	valeurs	de	R	et	α	des	the
		4	com	nun	iqu	ée	s_par	le

Mode de		Data das	S 1	RJ	
transport entre les Laboratoires	Laboratoire	mesures	R ₀ (Ω)	a.10 ³	R ₀ (Ω)
(1)	(2)	(3)	(4)	(5)	(6)
	N.B.S.	9/1952	25,478 720 (a) -8	3,924 487 (b) -11	
Route —	M.I.T.	9/1952	25,478 782	3,924 493	
mer et Fer	N.P.L.	1/1953	25,479 057 (a) -76	3,924 514 (b) -14	28,638 642 (a) -86
Mer et Fer	P.T.B.	10/1953	25,479 11 (a) +4	3,924 54	28,638 71 (a) +5
fer —	K.O.L.	1/1954	25,479 07 (a) -8	3,924 55 (c) +1	28,638 75 (a) -9
Mer et Fer —	N.P.L.	3/1954	25,479 188 (a) -79	3,924 485 (b) -14	28,638 851 (a) -89
Mer et Fer —	I.M.	5-11/1954	25,479 30 (a) +4	3,924 42	28,638 97 (a) +4
	N.P.L.	11/1954	25,479 360 (a) -82		28,639 156 (a) -92
Air —	T.I.T.	2/1955	25,479 631 (a) -10	3,924 511	28,639 310 (a) -11
Houte —	C.I.I.W.M.	5/1955	25,479 784 (c) -47 (a) -8	3,924 541 (c) +10	28,639 488 (c)-225 (a)9
Alr —	N.S.L.	4/1956	25,479 683 (a) -84	3,924 546	28,639 251 (a) -95
mer et Fer -	N.P.L.	11/1956	25,479 685 (a) -87	3,924 494 (b) -14	28,639 273 (a) -97
Mer et Fer —	N.R.C.	8-10/1957	25,479 690 (a)-132	3,924 424	28,639 273 (a)-149

(a) correction pour tenir compte de l'écart entre l'ohm national et l'o
(b) correction pour la valeur de g exprimée dans le système de Potsdam.
(c) correction pour l'extrapolation à un courant de mesure nul.
S.P. système de Potsdam.

ètres S 167, R 13 et Nº 109

boratoires

				Notes		
103		109 α.10 ³	$\Omega_{nat} - \Omega_{BIPM}$ (µΩ)	<u>g</u> (cm.s ⁻²)	Courant de mesure (mA)	
7)	(8)	(9)	(10)	(11)	(12)	
			- 0,3	980,082 2 093 7 S.P.	0	
			inconnue	980,400 S.P.	0	
4 942) -14			- 3,0	981,183 2 196 3 S.P.	0	
4 93			+ 1,7	981,262 263 S.P.	0	
4 83) +2			- 3,1 (Ω NPL)	981,275 S.P.	0 pôur R _o 1 pour a	
4 910) -14	10,156 191 (a) -31	3,924 342 (b) -14	- 3,1	981,183 2 196 3 S.P.	0	
4 86	10,155 69 (a) +1	3,924 25	+ 1,4	981,931 S.P.	0	
	10,155 793 (a) -33		- 3,2		0	
4 921	10,155 871 (a) -4	3,924 181	- 0,4	979,787 S.P.	0	
4 862) +20	10,155 951 (c) -34 (a) -3	3,924 242 (c) +16	- 0,3	979,791 S.P.	1	
4 949	10,155 827 (a) -34	3,924 220	- 3,3 (Ω NPL)	979,680 9 S.P.	0	
4 886) -14	10,155 819 (a) -35	3,924 220 (b) -14	- 3,4	981,183 2 196 3 S.P.	0	
4 842	10,155 861 (a) -53	3,924 136	- 5,2	S.P. (Valeur non communiquée)	0	

.I.P.M.

Procès-Verbaux. - Annexe T 1, page T 36.

Les valeurs finales corrigées de R_0 et α sont résumées au tableau II et sur les figures 1 à 3.

TABLEAU II.

Valeurs corrigées de Ro et a, des thermomètres S 167, R 13 et Nº 109.

		S 167.		R 1	3.	Nº 109.	
Laboratoire.	Date.	$R_0(\Omega).$	x.103.	$R_0(\Omega).$	2.103.	$R_{\mathfrak{o}}(\Omega).$	x.10 ³ .
N.B.S	9/1952	25, 178 71	3,924 48				
M.I.T	9/1952	8 78	49				
N.P.L	1/1953	8 98	50	28,638 56	3,924 93		
P.T.B	10/1953	9 15	51	8 76	93		
K.O.L	1/1954	8 99	56	8 66	85		
N.P.L	3/1954	9 1 1	47	8 76	90	10,156 16	3,924 33
I.M	8/1954	934	42	901	86	5 70	25
N.P.L	11/1954	9 28	12	9 06		5 76	
T.I.T	2/1955	9.62	51	9 30	92	5 87	18
C.I.I.W.M.	5/1955	9.73	55	9 25	88	5 91	26
N.S.L	4/1956	9 60	55	9 16	95	5 79	22
N.P.L	11/1956	9 60	18	918	87	5 78	21
N.R.C	9/1957	9 56	12	912	84	581	14

Pour les thermomètres S 167 et R 13, Ro a augmenté lentement et, corrélativement, α a un peu diminué; ceci est en accord avec l'expérience et est généralement attribué à un écrouissage des fils par les chocs mécaniques brusques ou des vibrations répétées. Pour le thermomètre Nº 109, il est difficile d'évaluer les variations de R₀ à cause de la valeur anormalement élevée de la première mesure au N. P. L. La forme exacte des courbes de R_0 et de α en fonction du temps n'est pas connue; il peut y avoir de brusques variations de R_0 , et par suite de α , dues aux chocs mécaniques reçus au cours des transports par exemple. Les variations totales montrent toutefois que les variations passagères de a seraient difficilement décelées, et les mesures justifient seulement une courbe lissée reliant α au temps. Compte tenu de ces remarques et des mesures de contrôle faites au N. P. L. en janvier 1953, mars 1954 et novembre 1956, on a adopté comme la plus probable une relation linéaire entre α et le temps. Par application de la méthode des moindres carrés, on a tracé aux figures 1 à 3 la droite qui correspond le mieux aux diverses valeurs. Cette droite a servi à déterminer les écarts des résultats individuels par rapport à la moyenne (tableau III, colonnes 3, 4 et 5); la valeur maximum de la moyenne de ces écarts (colonne 6) est 1,2.10⁻³ deg.

T 39 -

Fig. 3. — Valeurs de R_0 et α du thermomètre N° 109.

T 40 ---

TABLEAU III.

Écarts de a par rapport à la droite moyenne passant au mieux des valeurs (en degré pour 100 degrés).

Laboratoire.	Date.	S 167.	R 13.	Nº 109.	Moyenne.
(1)	(2)	(3)	(4)	(5)	(6)
N.B.S	9/1952	- 0,000 8			— 0,000 8
M.I.T	9/1952	— 0,000 5			- 0,000 5
N.P.L	1/1953	— 0,000 3	+0,0005		+ 0,000 1
P.T.B	10/1953	+ 0,001 0	+0,0005		+0,0008
K.O.L	1/1954	+ 0,001 5	— 0,001·3		+ 0,000 1
N.P.L	3/1954	— 0,000 8	0,000 0	+ 0,001 0	+ 0,000 1
I.M	8/1954	- 0,002 0	- 0,001 0	— 0,000 5	- 0,001 2
T.I.T	2/1955	+0,0005	+ 0,000 8	- 0,001 8	-0,0002
C.I.I.W.M	5/1955	+ 0,001 5	— o,000`3	+ 0,000 5	+ 0,000 6
N.S.L	4/1956	+0,0015	+0,0018	+ 0,000 3	+0,0012
N.P.L	11/1956	0,000 0	— 0,000 3	+ 0,000 8	+ 0,000 2
N.R.C	9/1957	- 0,001 3	- 0,000 8	— 0,000 3	- 0,000 8

Des mesures sur les trois thermomètres sont actuellement en cours au N. B. S.; ce rapport sera complété quand les dernières mesures de contrôle au N. P. L. auront été faites.

(Mai 1958)

ANNEXE T 2

Kamerlingh Onnes Laboratorium (Pays-Bas)

SUR LA DIFFÉRENCE ENTRE RÉSISTANCE RÉELLE ET IDÉALE DU PLATINE

Par H. Van DIJK

(Traduction)

INTRODUCTION. — Aux très basses températures, la moindre impureté ou la plus petite irrégularité de structure interne a une influence considérable sur la résistance électrique d'un métal. Cette influence ne peut être étudiée correctement avec la règle de Matthiessen.

On a montré (*Procès-Verbaux C. I. P. M.*, 23-B, 1952, Annexe T 4, p. T 48) que pour des résistances de platine d'origines différentes mesurées par Van der Leeden et autres au Kamerlingh Onnes Laboratorium [1], la relation suivante convient, avec une précision suffisante, pour les températures inférieures à $20,5^{\circ}$ K

(1) $w = \zeta + w_0 r_1.$

Dans cette relation, $w = R/R_0$ représente la résistance réduite, $\zeta = Z/Z_0$ la résistance réduite idéale et $w_0 = R_{00}/R_0$ la résistance résiduelle réduite (c'est-à-dire la valeur de w pour T = 0). Les variables ζ et η ne dépendent que de la température et sont les mêmes pour toutes les résistances considérées.

On a montré dans l'Annexe T 4 mentionnée ci-dessus que la relation (1) est aussi valable pour les résistances de platine qui satisfont aux relations de Stimson (voir *Procès-Verbaux C.I.P.M.*, 21, 1948, p. T 117).

CALCUL DE τ_1 ET ζ . — Dans cette Annexe T 4 (1952) on a donné des valeurs de τ_1 pour T $\leq 20,5^{\circ}$ K et pour des températures comprises entre 100 et — 183° C. On pouvait aussi déduire α_0 , coefficient de température du platine absolument pur.

En 1952, nous n'avions pas calculé de valeurs de y pour des températures comprises entre 90 et 20,5º K. En 1954, Borowik-Romanov et Strelkov [2] ont obtenu des résultats nouveaux sur des résistances de platine très pur, par des mesures au thermomètre à gaz; ces résultats ont confirmé ceux de Los et Morrison [3], discutés à l'Annexe T 4 (1952). C'est ce qui nous a incités à calculer des valeurs de y dans le domaine compris entre 90 et 20,5° K, en utilisant la relation :

a)
$$w_b - w_a = (w_{2b} - w_{2a})\frac{\eta}{\eta_2}$$
.

Les indices a et b se rapportent à deux résistances de platine différentes et l'indice 2 au point d'ébullition de l'hydrogène. La valeur de η en ce point, η_2 , a été tirée des résultats de Van der Leeden; les valeurs de w_a et w_b proviennent des résultats publiés par Hoge et Brickwedde [4] et par Los et Morrison. La figure 1 représente y en fonction de T entre o° K et o° C. Quand on connaît η, ζ peut être calculé entre 20 et 90° K avec l'équation (1). Pour T $< 20,5^{\circ}$ K, on a pris les valeurs de ζ données par Van der Leeden; pour $T > 90^{\circ}$ K on a utilisé les relations de Callendar et de Callendar-Van Dusen. Les coefficients δ_0 et β_0 pour la résistance idéale ont été calculés en appliquant les règles de Stimson; selon la première règle

$$\alpha_0 \delta_0 = 0.005 857$$
,

d'où

(1a)

 $\delta_0 = 1,4911$ quand $\alpha_0 = 0.003928$.

Selon la deuxième règle,

$$0,585\ 2\delta_0 - \beta_0 = 0,792\ 6,$$

'd'où

$$\beta_0 = 0, 109 69.$$

Les valeurs numériques de η et ζ sont données au tableau I; pour T > 90° K, les valeurs de η sont un peu plus faibles que celles qui sont données à l'Annexe T 4 (1952). Ces nouvelles valeurs donnent un meilleur accord à 90° K.

CALCUL DE ε . — La résistance R d'un fil ne contenant qu'une très faible quantité d'impuretés peut être représentée comme la

somme de deux termes : la résistance idéale Z et une résistance additionnelle r provenant des impuretés et des irrégularités de la structure interne; on admet que la résistance r est proportionnelle à la résistance résiduelle R_{00}

(2)
$$r = \mathbf{R}_{00} \varepsilon;$$

 ε , que l'on suppose être une même fonction de T pour toutes les résistances considérées, est lié à η par la relation

(3)
$$\varepsilon = \eta + \varepsilon_0 \zeta.$$

Le coefficient de température de ε étant défini, entre o et 100° C, par la relation $\varepsilon_{100} = \varepsilon_0$ (1 + 100 α_r), les équations (1) et (3) donnent

$$w_{100} = \zeta_{100} + w_0 (\varepsilon_{100} - \varepsilon_0 \zeta_{100})$$

ou

$$1 + 100 \alpha = 1 + 100 \alpha_0 + i \nu_0 \varepsilon_0 [(1 + 100 \alpha_r) - (1 + 100 \alpha_0)]$$

et

$$\varepsilon_0 = \frac{\alpha_0 - \alpha}{\alpha_0 - \alpha_{I'}} \cdot \frac{\mathbf{I}}{w_0} \cdot$$

Le coefficient de température α_r de la résistance additionnelle est en général petit [5] et peut être négligé en première approximation; pour Cu, Ag et Au, α_r est toujours inférieur à 0,1 α_0 et presque toujours positif. On a calculé ε à l'aide de l'équation (3), pour $\alpha_r = 0$ et $\alpha_r = 0,1 \alpha_0$. Le résultat est représenté à la figure 2, et le tableau I donne les valeurs de τ_i , ζ et ε .

		TABLEAU Ia.		
Т			£	٤′
(°K).	η.	ζ.106.	$(\alpha_r = 0).$	$(\alpha_r \equiv 0, 1 \alpha_0).$
14	1,049	910	1,050	1,050
15	1,060	1 180	1,061	1,062
16	1,071	1 530	1,073	1,073
17	1,084	1 950	1,086	1,087
18	1,096	2 430	1,099	1,099
19	1,106	3 010	1,110	1,110
20	1,117	3 686	1,122	1,122
21	1,123	4 461	1,129	1,129
25	1,139	8 655	1,150	1,151
30	1,140	16 568	1,161	1,163
35	1,127	27 495	1,162	1,165
40	1,107	41 164	1,159	1,164
45	1,082	57 108	1,154	1,161
50	1,055	74 855	1,150	1,159
55	1,027	93 952	1,146	1,158
60	0,999	114 022	1,143	1,157
65	0,971	134 795	1,141	1,158
70	0,944	156 006	1,141	1,161
75	0,917	177 462	1,141	1, 163
80	0,892	199 081	1,143	1,168
85	0,866	220 812	1,145	1,173
90	0,843	242 582	1,149	1,180
91	0,837	246 932	1,149	1,180

TABLEAU Ib.

			<u> </u>	5
(°C).	η.	ζ.106.	$(z_r = 0).$	$(\alpha_r = 0, 1 \alpha_0).$
100 ;	— 0, <u>19</u> 6 0	1,392 800	1,262 7	1,4386
50	— 0,248 o	1,194937	1,260 9	1,4118
25	-0,1240	1,097 102	1,2613	1,3998
0	0	1,000 000	1,262 7	1,3890
- 25	+0,1239	0,899 962	1,260 3	1,3739
— <u>50</u>	0,2473	0,799 126	1,256 4	1,3573
- 75	0,369 2	0,697 395	1,2498	1,3379
	0,4884	0,594 624	1,2392	1,3143
	0,6033	0,490 634	1,2228	1,2848.
150	0,7120	0,385 201	1,1984	1,2470
-175	0,8122	0,278 063	1,1633	1,1984
-183	0.8420	0.213 370	1.1493	1.180.0

VALIDITÉ DE L'ÉQUATION (1). — On a dit que plusieurs résistances de platine, mesurées par Van der Leeden et autres au Kamerlingh Onnes Laboratorium, satisfaisaient à la relation (1) avec une précision convenable; ceci a permis de calculer des valeurs de τ_i et ζ dans le domaine de l'hydrogène liquide. Réciproquement, quand (1) est valable

$$\mathbf{u}_0 = \frac{\mathbf{u}_1 - \boldsymbol{\zeta}}{\boldsymbol{u}_1} \cdot \mathbf{u}_2$$

Cette relation permet de calculer la résistance résiduelle réduite, en mesurant w et en prenant ζ et τ_i dans le tableau I. C'est seulement quand on trouve une valeur de w_0 suffisamment constante que l'équation (1) est valable pour la résistance considérée. Nous avons appliqué cet essai aux résistances L6 du N. B. S., IONCh-6 de Borowik-Romanov et Strelkov, et T-S de Los et Morrison; les résultats sont donnés au tableau II.

TABLEAU II.

Valeurs de avo pour les résistances L 6, IONCh-6 et T-S.

	1V0.106.						
Т (•К).	L 6.	IONCh-6.	T-S.				
14	2 521	507					
15	2 536	518					
16	2 531	- 514					
17	2 527	509					
18	2 537	523	530				
19	2 537	525	531				
20	2 5 2 7	521	524				
Moyenne	2 531	517	528				

Le calcul de τ_1 pour T > 90° K dépend entièrement de l'application des règles de Stimson; naturellement, des règles ne sont pas des lois et des exceptions sont possibles.

Le calcul de τ_i dans la région 20–90° K donne principalement la valeur $\tau_{i_{L6}}$, puisque les résistances T–S et IONCh–6 sont presque pures. Mais puisqu'il semble possible de calculer, pour T < 20,5° K et T < 90° K, un τ_i sans appartenance, il est permis de penser que $\tau_{i_{L6}}$ peut être employé, au moins pour les résistances bien recuites suffisamment pures.

La façon dont : dépend de T peut être comparée aux résultats obtenus par Krautz et Schultz [6] sur le tungstène écroui et les alliages plomb-indium. dépend de la température, pour plusieurs résistances mesurées par Aston et Moessen [7]; si la relation (1*a*) était rigoureusement valable, les ordonnées des différentes courbes devraient être proportionnelles, ce qui n'est pas tout à fait le cas. Il se peut que les diverses résistances contenaient des impuretés différentes, ou n'étaient pas dans un même état physique; il peut arriver quelquefois, par exemple, que les impuretés soient distribuées de façon non homogène dans la section du fil. Si le fil est constitué d'un noyau central pur entouré de couches superficielles moins pures, la résistance réduite est comparativement plus grande aux températures élevées et plus petite aux basses températures. Un recuit insuffisant peut également être la cause d'un comportement irrégulier.

Pour toutes ces raisons, il y a lieu d'employer une relation moins simple que l'équation (1) et de limiter son application à un intervalle donné, dans tous les cas où une grande précision est nécessaire.

EMPLOI D'UNE RELATION PLUS GÉNÉRALE POUR L'INTERPO-LATION [8]. — Prenons, pour toutes les résistances considérées

(5)
$$\mathbf{R} = a\zeta + p\varepsilon + q.$$

En mesurant R à trois températures, T_1 , T_2 , T_3 , on peut éliminer les constantes a, p et q

(6)
$$\frac{(R - R_1)(\zeta_2 - \zeta_1) - (R_2 - R_1)(\zeta - \zeta_1)}{(R_1 - R_1)(\zeta_2 - \zeta_1) - (R_2 - R_1)(\zeta_3 - \zeta_1)} = \frac{(\varepsilon - \varepsilon_1)(\zeta_2 - \zeta_1) - (\varepsilon_2 - \varepsilon_1)(\zeta - \zeta_1)}{(\varepsilon_3 - \varepsilon_1)(\zeta_2 - \zeta_1) - (\varepsilon_2 - \varepsilon_1)(\zeta_3 - \zeta_1)},$$

En posant

$$W = \frac{R_1 - R_1}{R_2 - R_1}, \qquad \xi = \frac{\zeta - \zeta_1}{\zeta_2 - \zeta_1}, \qquad 0 = \frac{\varepsilon - \varepsilon_1}{\varepsilon_2 - \varepsilon_1} - \frac{\zeta - \zeta_1}{\zeta_2 - \zeta_1},$$

l'équation (6) peut s'écrire :

(7)
$$\frac{W-\xi}{W_3-\xi_3} = \frac{\theta}{\theta_3} \quad \text{ou} \quad W = \xi + P\theta.$$

La constante $P = \frac{W_3 - \xi_3}{\theta_3}$ n'est pas la même pour différentes résistances, alors que ζ , ε , ξ et θ sont les mêmes fonctions de T pour toutes les résistances considérées. Quand on dispose de trois

— T 48 —

résistances, repérées par les indices a, b, c et satisfaisant à la relation (7), les variables ξ et 0 s'éliminent; on obtient :

(8)
$$\frac{W_c - W_a}{W_b - W_a} = \frac{W_{3c} - W_{3d}}{W_{3b} - W_{3a}} = \lambda$$
, avec $W_3 = \frac{R_3 - R_1}{\dot{R}_2 - R_1}$.

La constante λ peut être calculée dès qu'on connaît R_1 , R_2 , R_3 pour les résistances a, b, c.

(°K)	Wa.10 ⁶		10 ⁶	Т (°К)	Wa.10 ⁶	Δ10 ⁶	(°К)	Wa.10 ⁶	Δ10 ⁶	(°K)	Wa 10 ⁶	Δ10 ⁶
10	-15 442 462	-1	016	30	53 074 8 136	248	50	296 354 15 558	126	70	635 205 17 850	- 98
11	-14 980 594	-	913	31	61 210 8 636	252	51	311 912 15 771	111	71	653 055 17 882	-102
12	-14 386 758	-	812	32	69 846 9 131	255	52	327 683 15 969	88	72	670 937 17 916	-105
13	-13 628 958	-	699	33	78 977 9 615	256	53	343 652 16 151	68	73	688 853 17 949	-108
14	-12 670 1 198	-	581	- 34	88 592 10 089	259	54	359 803 16 317	47	74	706 802 17 972	-110
15	-11 472 1 467	-	468	35	98 681 10 549	257	55	376 120 16 479	30	75	724 774 18 006	-111
16	-10 005 1 764	-	361	36	109 230 10 994	256	56	392 599 16 626	12	76	742 780 18 026.	-111
17	- 8 241 2 105	-	261	37	120 224 11 423	258	57	409 225 16 765	1	77	760 806 18 051	-111
18	- 6 136 2 450	-	180	38	131 647 11 837	257	58	425 990 16 901	- 11	78	778 857 18 075	-111
19	- 3 686 2 840	-	97	39	143 484 12 233	249	59	442 891 17 027	- 21	79	796 932 18 091	-110
20	- 846	-	19	40	155 717 12 613	247	60	459 918 17 143	- 31	80	815 023 18 117	-108
21	+ 2 409 3 692	+	43	41	168 330 12 976	242	61	477 061 17 256	- 40	81	833 140 18 126	-106
55	6 101 4 151	+	94	42	181 306 13 324	234	62	494 317 17 354	- 48	82	851 266 18 142	-102
23	10 252 4 625	+	130	43	194 630 13 655	226	63	511 671 17 446	- 55	83	869 408 18 154	- 96
24	14 877 5 111	+	166	44	208 285 13 975	216	64	529 117 17 532	- 61	84	887 562 18 160	- 90
25	19 988 5 608	+	192	45	222 260 14 275	505	65	546 649 17 597	- 69	85	905 722 18 169	- 82
26	25 596 6 111	+	212	46	236 535 14 563	189	66	564 246 17 664	- 75	86	923 891 18 177	- 70
27	31 707 6 615	+	223	47	251 098 14 833	176	67	581 910 17 718	- 82	87	942 068 18 175	- 57
28	38 322 7 123	+	236	48	265 931 15 091	162	68	599 628 17 768	- 88	88	960 243 18 161	- 43
29	45 445	+	244	49	281 022 15 332	145	69	617 396 17 809	- 93	89	978 404 18 150	- 23
30	53 074	+	248	50	296 354	126	70	635 205	- 98	90	996 554	- 4

TABLEAU III

4

Lorsque W_a , W_b sont connus en fonction de T, on peut calculer également W_c en fonction de T puisque

(9)
$$W_c = W_a + \lambda (W_b - W_a).$$

Cette relation permet d'interpoler entre T_1 et T_2 . Le tableau III donne les valeurs de W_a et $(W_b - W_a)$ pour les températures comprises entre 10 et 90° K; pour T_1 et T_2 on a choisi les températures des points d'ébullition de l'oxygène et de l'hydrogène.

Explication du tableau III.

 W_a est une moyenne lissée de $\frac{R - Rn_z}{Ro_z - Rn_z}$, obtenue par une méthode graphique en utilisant les données de la Chambre Centrale des Mesures et Instruments de Mesure de l'U.R.S.S. (*Procès-Verbaux C.I.P.M.*, 24, 1954, p. T 142) et celles de Los et Morrison (*Can. J. Phys.*, 29, 1951, p. 148).

 $\Delta = W_{L6} - W_a$, en prenant pour W_{L6} les valeurs de W calculées en utilisant les résultats de Hoge et Brickwedde (*J. Research N.B.S.*, 22, 1939, p. 364).

Pour un thermomètre à résistance de platine suffisamment pur, on peut calculer la valeur de $W_x = \frac{R_x - Ru_z}{Ra_z - Ru_z}$ en fonction de la température par la relation :

$$W_x = W_a + \lambda_x \Delta$$
, dans laquelle $\lambda_x = \frac{W_{3,v} - W_{3,v}}{\Delta_3}$.

Pour le thermomètre en question les valeurs de R_{d_2} , R_{d_3} et R_3 doivent être connues :

R₁₁, est la résistance du thermomètre à 20,273° K;

 $R_{\partial_{a}}$ est la résistance au point d'ébullition de l'oxygène (- 182,97° C); R_{a} est la résistance à une température convenablement choisie dans la région pour laquelle la valeur de W_{a} est connue.

Puisque

$$\mathbf{W}_{\mathbf{x}} = \frac{(\mathbf{R}_{\mathbf{x}}/\mathbf{R}_{\mathbf{0}}) - (\mathbf{R}_{\mathbf{H}_{\mathbf{y}}}/\mathbf{R}_{\mathbf{0}})}{(\mathbf{R}_{\mathbf{0}_{\mathbf{y}}}/\mathbf{R}_{\mathbf{0}}) - (\mathbf{R}_{\mathbf{H}_{\mathbf{y}}}/\mathbf{R}_{\mathbf{0}})} = \frac{w_{\mathbf{x}} - w_{\mathbf{1}\mathbf{x}}}{w_{\mathbf{2}\mathbf{x}} - w_{\mathbf{1}\mathbf{x}}} = \mathbf{W}_{\mathbf{x}} + \lambda_{\mathbf{x}} \mathbf{\Delta},$$

on peut écrire aussi

$$\mathbf{R}_{x}/\mathbf{R}_{0} = \boldsymbol{w}_{x} = (\boldsymbol{w}_{2x} - \boldsymbol{w}_{1x}) \mathbf{W}_{a} + \lambda_{x} (\boldsymbol{w}_{2x} - \boldsymbol{w}_{1x}) \boldsymbol{\Delta} + \boldsymbol{w}_{1x}.$$

Quand on a mesuré pour un thermomètre x les valeurs de w_{1x} , w_{2x} et w_{3x} , on peut calculer w_{v} en fonction de la température T pour toutes les températures dont les valeurs de W_{u} et Δ sont connues.

Entre 10° et 18° K : W. = W10NCh-6.

Entre 18° et 54° K : $W_a = \frac{1}{2} (W_{10NCh-5} + W_{LM}).$

Entre 54° et 90° K : W_a = une moyenne lissée de $W_{10NCh-6}$ et W_{LM} .

(Mai 1958)

BIBLIOGRAPHIE.

- [1] Van der LEEDEN (P.), Thèse, Leiden, 1940, p. 155 et 156.
- BOROWIK-ROMANOV (A. S.) et STRELKOV (P. G.), C. R. Acad. Sc. U.R.S.S., 83, 1952, p. 59; Procès-Verbaux C.I.P.M., 23-B, 1952, Annexe T 2, p. T 32, et 24, 1954, Annexe T 18, p. T 141.
- [3] Los (J. M.) et MORRISON (J. A.), Can. J. Phys., 29, 1951, p. 142.
- [4] HOGE (H. J.) et BRICKWEDDE (F. G.), J. Research Nat. Bur. Stand., 22, 1939, p. 364 (R. P. 1188).
- [5] LINDE (J. O.), Thèse, Stockholm, 1939.
- [6] KRAUTZ (E.) et SCHULZ (H.), Z. f. Naturforschung, 9a, 1954, p. 125; Abh. der Braunschweigischen Wiss. Ges., 8, 1956, p. 55.
- [7] MOESSEN (G. W.), Thèse, Pennsylvania State University, 1955.
- [8] Voir Procès-Verbaux C.I.P.M., 23-B, 1952, Annexe T 4, p. T 48, et Commun. Kamerlingh Onnes Lab., Leiden, Suppl. nº 112b.

ANNEXE T 3

National Physical Laboratory (Royaume-Uni)

LA DÉFINITION D'UNE ÉCHELLE DE TEMPÉRATURE DANS LE DOMAINE 20 A 90° K, EN UTILISANT LE THERMOMÈTRE A RÉSISTANCE DE PLATINE

Par C. R. BARBER

COMME INSTRUMENT D'INTERPOLATION

(Traduction)

La relation résistance-température de plusieurs thermomètres à résistance de platine ayant des rapports R_{100}/R_0 très différents, a été étudiée dans le domaine 20 à 90° K en vue d'établir des critères d'interpolation satisfaisants. Tous les thermomètres ont été conçus et construits au N. P. L., sauf le N° 718157 qui appartient au N. B. S., et le thermomètre PS construit à la Pennsylvania State University; ils ont tous été comparés au N° 718157.

Les résultats des étalonnages sont représentés aux figures 1 et 2, sous forme des différences ΔZ par rapport à la table du N. B. S. de la « fonction Z » $\left(Z = \frac{R_T - R_{H_s}}{R_{0_s} - R_{H_s}}\right)$ (¹). Le thermomètre N° 718157, d'après son étalonnage au N. B. S., a une fonction Z qui coïncide exactement avec les valeurs de la table. Cette table a été proposée, à l'origine, comme moyen d'interpolation en se rapportant à deux points repères, les points d'ébullition de l'hydrogène et de l'oxygène. Les écarts indiqués aux figures 1 et 2 représentent les erreurs qu'entraîne un tel moyen d'interpolation. Ces erreurs, exprimées en degré, sont données dans les colonnes Δt_1 du tableau I; elles sont d'une telle importance qu'un thermomètre ne pourrait définir une température interpolée à mieux que 0,01 deg.

(1) Procès-Verbaux C.I.P.M., 21, 1948, p. T 87.

TABLEAU I.

Erreurs d'interpolation, en degré, dans le domaine de 20 à 90°K.

 Δt_1 , 2 points d'étalonnage; Δt_2 , 3 points d'étalonnage; Δt_3 , 4 points d'étalonnage.

Nº du thermomètre

et valeur de							
$\frac{R_{100}}{R_0}$.		30,	40.	50,	60,	70.	80° K.
6.2	$(\Delta t_1, \ldots,$	- 0,015	- 0,016	-0,014	-0,012	- 0,009	— 0,006
(1 300 6//)	Δt_2	+0,003	+0,003	+ 0,001	0,000	0,000	0,000
(1, 592 044)	$(\Delta t_3,\ldots,$	+ 0,001	+ 0,001	-0,001	-0,001	- 0,001	0,000
C a	$(\Delta t_1, \ldots,$	+ 0,012	+ 0,014	+ 0,012	+ 0,010	+ 0,007	+0,004
(1 200 5/6)	$\Delta t_2 \dots$	-0,001	-0,002	-0,001	0,000	+ 0,001	+ 0,001
(1, 592 510)	Δt_3	+ 0,001	0,000	0,000	+0,001	+ 0,001	0,000
DS	$(\Delta t_1,\ldots,$	-0,010	-0,014	-0,014	— 0,013	- 0,010	— 0,006
(1 200 201)	Δt_2	-0,003	-0,001	0,000	0,000	0,000	0,000
(1,392 381)	Δt_3	-0,002	0,000	0,000	0,000	0,000	0,000
	$(\Delta t_1,\ldots,$	+ 0,026	+0,029	+0,026	+ 0,019	+ 0,012	+ 0,006
(1 202 2/2)	$\Delta t_2 \dots$	- 0,004	0,005	-0,002	+0,003	+0,005	+ 0,004
(1.592 545)	Δt_{3}	+ 0,004	0,000	0,000	+ 0,001	+ 0,001	0,000
e ($\Delta t_1 \dots$	+ 0,046	+ 0,053	+ 0,050	+ 0,041	+0,027	+0,013
	$\Delta t_2 \dots$	-0,003	- 0,005	-0,002	+0,003	+0,007	+ 0,007
(1,592 145)	Δt_3	+0,007	+0,002	-0,001	— 0,001	0,000	0,000
	$(\Delta t_1,\ldots,$	+0,053	+0,059	+ 0,051	+0,042	+0,029	+ 0,015
52	$\Delta t_2 \dots$	- 0,008	- 0,010	-0,002	+0,003	+0,006	+ 0,005
(1,392 128)	Δt_3	+ 0,005	0,000	+ 0,001	+0,001	0,000	0,000
D.C.	$(\Delta t_1,\ldots,$	+0,068	+0,087	+0,091	+0,082	+0,062	+ 0,035
PS	Δt_2	+0.016	+ 0,005	+0,001	+0,001	+0,003	+0,002
(1,391 400)	Δt_3	+ 0,014	+ 0,003	- 0,003	- 0,003	- 0,001	0,000
	 NY 000000 	0 0			100		

Le tableau II donne, pour chaque thermomètre, les rapports R_{100}/R_0 et R_{60}/R_0 (où R_{00} est la résistance résiduelle mesurée au point d'ébullition de l'hélium), ainsi que l'écart exprimé en degré par rapport à la table de la « fonction Z » à 40° K (Δt_1^{10}). Dans la plupart des cas les résultats sont en accord avec la théorie, en ce sens que plus le rapport R_{100}/R_0 est grand, plus le rapport R_{00}/R_0 est petit; de même, dans la plupart des cas, plus l'écart entre le rapport R_{100}/R_0 et celui de la table (1,392 50) est grand, plus l'écart Δt_1^{10} est grand. Il y a cependant des exceptions notables. Par exemple, le thermomètre RS a une résistance résiduelle beaucoup plus élevée que ne le laisserait supposer son rapport R_{100}/R_0 , et son Δt_1^{10} est de signe contraire. Le thermomètre G2 a

également un Δt_1^* anormal, tandis que le thermomètre PS a un rapport Roo/Ro extrêmement bas compte tenu de la valeur de son rapport R₁₀₀/R₀. Les résistances de tous ces thermomètres étaient très reproductibles, à toutes températures. Par exemple, les rapports Roo/Ro et Rivo/Ro se reproduisaient à 0,5,10et 2, 10⁻⁶ près respectivement; on ne pouvait donc pas rejeter les thermomètres pour cause de construction défectueuse. Nous sommes ainsi conduits à la conclusion que des résultats anormaux, actuellement inexpliqués, peuvent se présenter; en conséquence, il est impossible de prédire avec précision la forme de la courbe résistance-température, en s'appuyant sur des constantes déterminées en dehors du domaine de température considéré, telles que la résistance résiduelle ou le rapport R₁₀₀/R₀. Il paraît ainsi nécessaire de prendre plus de deux points d'étalonnage dans le domaine 20-90° K pour avoir une interpolation suffisamment précise.

TABLEAU II.

Valeurs des rapports	$\frac{R_{100}}{R_0},$	$\frac{R_{00}}{R_0} et de$	l'écart Δt_1^{40}	des	thermomètres.
----------------------	------------------------	----------------------------	---------------------------	-----	---------------

Thermomètre.	R100/Ro.	R_{oo}/R_o .	Δt_1^{io} .
G 3	1,392 664	0,000 464 7	— 0,016 deg
G 2	1,392.546	0,000 482 2	+ 0,014
Nº 718157	1,392 500	0,000 544 7	0,000
G 1	1,392 437	0,000 519 9	-
RS	1,392 381	0,001 019 7	— 0,01 <u>í</u>
A ₁	1,392343	0,000 786 8	+0,029
S ₁	1,392 145	0,000 933 õ	+0,053
$S_2 \dots \dots$	1,392 128	0,0009272	+0,059
PS	1,391.460	0,000 631 0	+0,087
J ₂	1,391 822	0,001 527 0	122

Nous avons étudié l'influence, sur les erreurs d'interpolation, de l'emploi d'une forme quadratique pour le calcul de ΔZ , le troisième point d'étalonnage étant le point triple de l'oxygène (54,363° K); l'équation déduite est

(1)
$$\Delta Z = -\frac{\Delta Z_8}{1221,3} (T^2 - 110,46T + 1828,4),$$

où ΔZ_3 est l'écart observé au point triple de l'oxygène. Quand on compare les valeurs calculées à partir de l'équation (1) aux courbes obtenues, on est conduit aux erreurs Δt exprimées en degré, données au tableau I. L'erreur maximum se situe entre 30° K et 40° K; pour les thermomètres où ΔZ_8 n'excède pas 2.10⁻¹,

Т ээ

Fig. 1. — L'échelle des thermomètres à résistance de platine entre 20° et 90° K. Différences entre les indications des thermomètres et la table de la « fonction Z » du N.B.S. (Procès-Verbaux C.I.P.M., 21, 1948, p. T 87).

 Δt_2 ne dépasse pas 0,003 deg. La réduction plus poussée de l'erreur d'interpolation peut être obtenue, soit en réduisant ΔZ_s , soit en utilisant un autre point d'étalonnage. L'emploi d'une équation de forme cubique en prenant le point d'ébullition de l'hydrogène, le point de transition de l'oxygène (43,8° K), le point d'ébullition de l'azote (77,35° K) et le point d'ébullition de l'oxygène conduit à une exactitude d'interpolation de ± 0,002 deg, comme le montrent les Δt_3 (tableau I), pour le même écart limite ΔZ_s que ci-dessus (2.10⁻¹). En tout cas, cette exactitude est probablement à peu près du même ordre de grandeur que la précision relative des étalonnages. Le progrès obtenu en utilisant une équation de forme cubique ne semble pas justifier le surcroît de travail qu'implique la détermination du point d'étalonnage supplémentaire.

En conclusion, il est possible d'interpoler avec un thermomètre à résistance de platine dans le domaine 20 à 90° K, avec une précision suffisante, en opérant comme suit : le thermomètre est étalonné au point d'ébullition de l'hydrogène, au point triple de l'oxygène et au point d'ébullition de l'oxygène; on calcule ensuite la valeur de la fonction Z au point triple de l'oxygène, et l'on détermine la différence entre la valeur ainsi calculée et la valeur donnée par la table admise pour la « fonction Z ». Si cette différence ne dépasse pas 2.10^{-4} , le thermomètre est satisfaisant et ses propres valeurs Z peuvent être calculées à partir de l'équation (1) en liaison avec la table. La valeur limite de 2.10^{-4} pour ΔZ_S correspond en gros à un rapport R_{100} , R_0 compris entre 1,392 4 et 1,392 7, mais il n'a pas été possible de fixer des spécifications en s'appuyant sur ce rapport par suite des anomalies possibles mentionnées ci-dessus.

(Mai 1958)

ANNEXE T 4

National Physical Laboratory (Royaume-Uni)

REMARQUES SUR LES PROPOSITIONS POUR UNE ÉCHELLE DE TEMPÉRATURE ENTRE 20 ET 90° K

Par C. R. BARBER

(Traduction)

Des propositions ont été faites par le Kamerlingh Onnes Laboratorium (Annexe T 2, p. T 42) et le National Physical Laboratory (Annexe T 3, p. T 52) pour une échelle de température entre 20 et 90° K, qui ferait usage du thermomètre à résistance de platine comme instrument d'interpolation. Ces propositions sont examinées dans cette Note.

Par suite des grandes variations de la relation résistance-température du platine avec la pureté de ce dernier dans le domaine de température considéré, il n'a pas été possible de trouver une formule d'interpolation satisfaisante; les deux propositions choisissent de fonder l'échelle sur une table de valeurs résistancetempérature.

Il est commode de considérer la relation

$$\mathbf{Z} = \frac{\mathbf{R}_{\mathrm{T}} - \mathbf{R}_{\mathrm{H}_{\pm}}}{\mathbf{R}_{\mathrm{0}_{\pm}} - \mathbf{R}_{\mathrm{H}_{\pm}}}$$

plutôt qu'une simple table résistance-température. Les différences entre les diverses tables publiées sont représentées sur le graphique ΔZ en fonction de T (voir figure), où ΔZ est l'écart de chaque table par rapport à celle du N. B. S. (Procès-Verbaux C. I. P. M., 21, 1948, p. T 87). Deux de ces tables seulement, celle du N. B. S. et celle de l'I. M. (Procès-Verbaux C. I. P. M., 24, 1954, p. T 142-T 143) proviennent d'étalonnages primaires. La table de LM (Los et Morrison, Can. J. Phys., 29, 1951, p. 142) dérive de la table du N. B. S., et celle de Van Dijk provient des tables de l'I. M. et de LM. Les écarts de la courbe I. M. par

- Table de l'I.M. [U.R.S.S.] (Procès-Verbaux C.I.P.M., 24, 1954, p. T 142-143).

T 59 -

- · ---- Table de LM [Los et Morrison], dérivée de la table du N.B.S.

----- Table de H. Van Dijk, dérivée des tables de l'I.M. et de LM.

rapport à l'axe représentent : *a.* les différences de pureté du platine utilisé; *b.* les différences d'ans la mesure des températures thermodynamiques. Les différences dépassant à peine 0,01 deg, une table moyenne pourrait être considérée comme une base satisfaisante pour une échelle de température. On ne voit pas pourquoi la table de Los et Morrison a été utilisée de préférence à celle du N. B. S. pour l'établissement d'une table moyenne à l'Annexe T 2.

La méthode employée à l'Annexe T 2 pour calculer l'étalonnage d'un thermomètre particulier est basée sur l'hypothèse que, pour deux thermomètres quelconques, le rapport des ordonnées des courbes donnant les différences entre les indications des thermomètres et la table de la fonction Z, est le même à toutes températures. Ainsi, pour deux thermomètres 1 et 2

$$\left(\frac{\Delta Z_1}{\Delta Z_2}\right)_{l_1} = \left(\frac{\Delta Z_1}{\Delta Z_2}\right)_{l_2} = \left(\frac{\Delta Z_1}{\Delta Z_2}\right)_{l_3}, \qquad \dots,$$

Si le thermomètre 2 donne une courbe ΔZ_2 typique et si les ΔZ_2 sont connus sur tout le domaine de température, on peut en déduire les ΔZ_1 du thermomètre 1 par étalonnage à une seule température t_1 , en plus des points de l'oxygène et de l'hydrogène; alors

$$(\Delta \mathbf{Z}_1)_{l_2} = \left(\frac{\Delta \mathbf{Z}_1}{\Delta \mathbf{Z}_2}\right)_{l_q} (\Delta \mathbf{Z}_2)_{l_q}.$$

Les valeurs données au tableau III de l'Annexe T2 concernent le thermomètre L6 qui, malheureusement, semble présenter quelques particularités exceptionnelles (voir les diverses courbes de différences aux figures 1 et 2 de l'Annexe T 3, ainsi que les courbes de Los et Morrison), avec l'inconvénient supplémentaire d'un changement de signe. Le rapport des ordonnées au voisinage de la température où la différence est nulle sera manifestement très imprécis.

La méthode de proportionnalité des ordonnées peut être appliquée aux courbes de différences des thermomètres (figures 1 et 2, Annexe T 3) qui satisfont aux critères exposés dans l'Annexe T 3. Ceci est possible du fait que ces courbes peuvent être représentées avec une bonne approximation par des équations à forme quadratique symétrique et, comme telles, ont des coordonnées proportionnelles. Le fait d'admettre une forme quadratique symétrique (Annexe T 3) évite toutefois l'emploi d'une table de référence normale des différences.

(13 juin 1958)

ANNEXE T 5

Kamerlingh Onnes Laboratorium (Pays-Bas)

NOUVEAUX CALCULS DES POINTS FIXES IMPORTANTS DANS LE DOMAINE DES BASSES TEMPÉRATURES

Par H. Van DIJK

(Traduction)

INTRODUCTION. — Pour fixer l'échelle de température dans le domaine de l'hélium liquide, nous avons besoin de connaître quelle est la meilleure valeur à attribuer au point d'ébullition de l'hélium. La température de ce point étant liée à celle du point d'ébullition de l'hydrogène qui, elle-même, dépend de la température du point d'ébullition de l'oxygène, nous avons d'abord recherché quelle est la meilleure valeur à attribuer à ce dernier point. Désirant avoir un certain nombre de valeurs des points d'ébullition, il nous fallait remonter autant que possible aux Mémoires originaux, réduire les résultats sur une base commune, et recalculer les corrections pour le passage au gaz parfait de façon cohérente.

La plupart des valeurs des trois points fixes ont été obtenues par des mesures au thermomètre à hélium à volume constant, où l'on compare les pressions de l'hélium à une température connue et à la température à déterminer. Une fois appliquées des corrections telles que celles se rapportant à la dilatation du réservoir du thermomètre ou au volume de l'espace nuisible, la correction pour le passage au gaz parfait peut se calculer, pour la méthode à volume constant, à l'aide de la relation

$$\mathbf{T} = \frac{p}{p_r} \cdot \mathbf{T}_r + (\mathbf{B}_r - \mathbf{B}) \cdot \mathbf{T}_{p_r} \quad [1].$$

Si la température de référence est le point de glace ($T_r = T_0$), on doit prendre $T_0 = 273, 15^{\circ}$ K.

Le terme $(B_r - B)$. Tp_r est la correction due aux écarts de l'hélium à la loi des gaz parfaits; sa valeur est proportionnelle à p_r . Si la température de référence est T₀ et si la pression de référence est $p_r = p_0 = 100$ cm Hg, la correction est celle du thermomètre (à hélium) dit normal. Pour l'hélium, cette correction a été calculée à partir de résultats expérimentaux par W. H. Keesom, par J. Otto et par F. G. Keyes [2]. Les résultats obtenus par les divers auteurs sont légèrement différents. Entre 20 et 100° K, la différence est au plus 0,002 deg dans le domaine d'utilisation du thermomètre normal à hélium. Cependant des expérimentateurs emploient parfois une pression de référence correspondant à une pression d'environ 3 m au point de glace. Les valeurs de Tr adoptées par divers auteurs pour calculer les températures des points d'ébullition diffèrent également, même dans des calculs récents. C'est pourquoi il faut rendre cohérentes ces valeurs des points d'ébullition. Nous avons calculé de telles valeurs pour O₂, H_2 et He, en prenant $T_0 = 273, 15^{\circ}$ K et en adoptant les valeurs de W. H. Keesom pour les corrections à la loi des gaz parfaits. Divers auteurs ayant utilisé une formule moins simple que la nôtre, la réduction de leurs résultats était plus compliquée qu'elle n'apparaît ici. Voici les résultats de nos calculs.

POINT D'ÉBULLITION DE L'OXYGÈNE. — En ne tenant pas compte des résultats antérieurs à 1929, on dispose encore de ceux de Leyde, de Berlin, des États-Unis d'Amérique et du Japon.

En 1940, M^{11e} H. Van der Horst a repris les résultats de Leyde et les a corrigés pour les ramener à l'échelle en usage à Leyde à cette époque, ce qui conduisit pour le point d'ébullition de l'oxygène à la valeur — 182,988° C. Le calcul pour $T_0 = 273,15^{\circ}$ K fournit

$$t_{0_s} = -182,990^{\circ}\text{C}$$
 ou $T_{0_s} = 90,160^{\circ}\text{K}.$

Des détails sont donnés dans la thèse de M¹¹e H. Van der Horst (Leyde, 1940) et dans les *Procès-Verbaux C. I. P. M.*, 23-B, 1952, p. T 45.

H. Moser et J. Otto mentionnent également dans les *Procès-Verbaux C. I. P. M.*, 23-B, 1952, p. T 59, que les meilleurs résultats de la P. T. R. sont ceux de Heuse et Otto

$$t_{0_2} = -182,962^{\circ}\text{C} \quad (1931),$$

$$t_{0_2} = -182,965^{\circ}\text{C} \quad (1932).$$

En recalculant ces résultats pour $T_0 = 273,15^{\circ}$ K et en appliquant les corrections de W. H. Keesom pour tenir compte des écarts à la loi des gaz parfaits, on obtient la valeur moyenne

$$t_{0_{*}} = -182,959^{\circ}\text{C}$$
 ou $T_{0_{*}} = 90,191^{\circ}\text{K}.$

A Leyde comme à Berlin, on utilisait le thermomètre à hélium.

Aston et Moessen, à la Pennsylvania State University [3], ont effectué un travail analogue en 1951 (publié en 1953); en prenant $T_0 = 273,16^{\circ}$ K et pour B les valeurs de Keyes, ils ont obtenu

$$t_{0_s} = -183,006^{\circ}\text{C}$$
 ou $T_{0_s} = 90,154^{\circ}\text{K}.$

En recalculant cette valeur, on obtient

$$t_{0_2} = -183,000^{\circ}\text{C}$$
 ou $T_{0_2} = 90,150^{\circ}\text{K}.$

La moyenne de tous les résultats obtenus au thermomètre à gaz à Leyde, à la P. T. R. et à la P. S. U. est

$$t_{0_s} = -182,983^{\circ}\text{C}$$
 ou $T_{0_s} = 90,167^{\circ}\text{K}.$

Au Japon, le point d'ébullition de l'oxygène a été mesuré au thermomètre à hydrogène, en 1935, par Ahoyama et Kanda, en prenant $T_0 = 273,15^{\circ}$ K

$$t_{0_2} = -182.98^{\circ}\text{C}$$
 ou $T_{0_2} = 90.17^{\circ}\text{K}$.

La moyenne générale de tous les résultats, en donnant un même poids aux différents instituts, est la suivante

$$t_{0_s} = -182,982^{\circ}\text{C}$$
 ou $T_{0_s} = 90,168^{\circ}\text{K}.$

POINT D'ÉBULLITION DE L'HYDROGÈNE NORMAL. — A la session de 1952 du Comité Consultatif de Thermométrie, trois documents donnaient une conclusion sur la meilleure valeur à attribuer au point d'ébullition de l'hydrogène normal.

L'Institut de Métrologie de l'U. R. S. S. [4] proposait de prendre la valeur 20,380° K, en se basant à la fois sur les résultats obtenus par Borovik-Romanov et Strelkov [5] en 1951 et sur les résultats des autres instituts.

Moser et Otto [6] proposaient de prendre la valeur 20,38° K, en ne conservant que deux décimales; ils s'appuyaient sur les résultats de Heuse et Otto à la P. T. R. en 1931, sur les résultats du N. B. S. à Washington, et sur ceux du K. O. L. à Leyde. Pour ce dernier laboratoire, j'avais préparé un examen plus détaillé des résultats au début de 1952 [7]; je parvenais à la même conclusion que W. H. Keesom en 1942, c'est-à-dire à la valeur 20,382° K ou — 252,768° C pour le point d'ébullition de l'hydrogène normal.

En 1952, la température absolue du point de glace n'était pas encore fixée. Bien qu'il n'y eut pas d'objection à donner au point d'ébullition de l'hydrogène normal la valeur 20,38° K, aucune valeur en degrés Celsius ne pouvait être fixée. Le Comité Consultatif ajourna même l'adoption de la valeur 20,38° K, principalement parce qu'il considérait les renseignements comme étant encore incomplets, ou tout au moins insuffisamment connus [8].

Un peu plus tard, on obtenait des renseignements non seulement sur les mesures au thermomètre à gaz effectuées en U.R.S.S., mais aussi sur les résultats de la P.S.U.

Il était donc également souhaitable d'avoir des valeurs comparables pour le point d'ébullition de l'hydrogène normal, en les recalculant à partir des résultats originaux; j'ai fait un tel calcul, en prenant pour T_0 la valeur 273,15° K et pour B les valeurs adoptées par W. H. Keesom, ce qui m'a conduit aux résultats du tableau I, colonne a.

Les résultats de la colonne a diffèrent, dans la plupart des cas, de quelques millièmes de degré par rapport aux valeurs données par leurs auteurs et recommandées par leurs instituts (colonne b).

Les deux moyennes des colonnes a et b du tableau I ne diffèrent que de 0,001 deg. Hoge et Brickwedde, ainsi que Aston et Moessen employaient des réservoirs en cuivre bien protégés; Heuse et Otto, de même que Keesom, Bijl et M^{11e} Van der Horst employaient des réservoirs de verre; Borovik-Romanov et Strelkov utilisaient un réservoir de cuivre en éliminant l'espace nuisible.

POINT D'ÉBULLITION DE 'He. — Pour assigner une valeur au point d'ébullition de 'He, on peut prendre en considération les résultats suivants

TABLEAU II.

	Tille	T_r
	(°K).	("K).
Kamerlingh Onnes et Weber (1913)	4,216	273,15
Schmidt et W. H. Keesom (1937)	4,2154	20,378
Berman et Swenson (1954)	4,215	20,378
Moyenne	1,2155	

A partir des résultats originaux de Kamerlingh Onnes et de Weber, on a calculé une valeur plus précise qu'il n'était possible en 1913; à cette époque, en effet, les corrections dues à la différence de pression thermomoléculaire et aux écarts du gaz à la loi des gaz parfaits n'étaient pas encore connues, ou l'étaient insuffisamment.

Schmidt et Keesom ont effectué trois séries de mesures, obtenant deux fois la valeur 4,215° K et une fois la valeur 4,222° K, en prenant pour le point d'ébullition de l'hydrogène 20,381° K; ils donnaient un poids plus grand à 4,215° K, c'est pourquoi ils recommandaient la valeur 4,216° K, qui devient 4,215 4° K en prenant 20,378° K pour le point d'ébullition de l'hydrogène normal.

TABLEAU	l	•	

			T _{H2} (recalculée).		T _{H₉} (publiće).		
			<i>(a)</i>	T,	(b)	T_r .	
P.T.R.	1931	(Heuse et Otto)	20,381°K	273,15°K	20,38°K	273,16 °K	(Procès-Verbaux C.I.P.M., 23-B, 1952, p. T 60)
K.O.L.	1931	(Keesom, Bijl et Van der Horst).	20,382	273,15	20,382	273,15	(<i>Ibid.</i> , p. T 45)
N.B.S.	1939	(Hoge et Brickwedde)	20,384	90,17	20,39	90,19	(J. Res. N. B. S., 22, 1939, p. 351)
P.S.U.	1951	(Moessen et Aston)	20,370	273,15 90,17	20,365	273,16 90,154	(J. Chem. Phys., 22, 1954, p. 2096)
I.M.	1951	(Borovik-Romanov et Strelkov).	20,375	90,17	20,380	90,19	(Procès-Verbaux C.I.PM.,
		Moyenne	20,378°K — 252,772°C		20,379°K		23-B, 1952, p. T 31-36)

T 65

Les mesures de Keesom et Walstra [9] sur une isotherme de l'hélium très voisine du point d'ébullition, ont confirmé les résultats de Schmidt et Keesom à moins de 0,003 deg.

Les données de Keller [10], obtenues sur une isotherme légèrement inférieure à 4° K, ont conduit à un résultat à peu près identique.

Jusqu'ici, il n'y a pas lieu de modifier la valeur du point d'ébullition de ⁴He, recommandée par Schmidt et Keesom en 1937. Néanmoins, la valeur 4,215 5° K est en accord plus étroit avec celle que nous considérons comme la plus précise aujourd'hui pour le point d'ébullition de l'hydrogène normal. Dans l'échelle du thermomètre à tension de vapeur de ⁴He soumise au Comité Consultatif de Thermométrie (Annexe T 22, p. T 188), la valeur 4,215° K est utilisée.

(Mai 1958)

BIBLIOGRAPHIE.

- [1] Procès-Verbaux C.I.P.M., 23-B, 1952, p. T 43.
- [2] Pour plus de détails et la bibliographie, voir Procès-Verbaux C.I.P.M., 23-B, 1952, Annexe T 3, p. T 37.
- [3] ASTON (J. G.) et MOESSEN (G. W.), J. Chem. Phys., 21, 1953, p. 948;
 MOESSEN (G. W.), ASTON (J. G.) et ASCAH (R. G.), J. Chem. Phys., 22, 1954, p. 2096.
- [4] Procès-Verbaux C.I.P.M., 23-B, 1952, Annexe T 1, p. T 30.
- [5] Ibid., Annexe T 2, p. T 32.
- [6] Ibid., Annexe T 5, p. T 57.
- [7] Ibid., Annexe T 3, p. T 37.
- [8] Ibid., Annexe T 12, p. T 123.
- [9] KEESOM (W. H.) et WALSTRA (W. K.), Commun. nº 260 c.
- [10] KELLER (W. E.), Phys. Rev., 97, 1955, p. 1; Phys. Rev., 98, 1955, p. 1571.

ANNEXE T 6

Physikalisch-Technische Bundesanstalt (Allemagne)

ÉCART ENTRE L'ÉCHELLE INTERNATIONALE DE TEMPÉRATURE ET L'ÉCHELLE THERMODYNAMIQUE AU-DESSUS DU POINT D'ÉBULLITION DU SOUFRE, D'APRÈS LES PLUS RÉCENTES MESURES AU THERMOMÈTRE A GAZ

Par H. MOSER, J. OTTO et W. THOMAS

(Traduction)

Une nouvelle détermination du point de l'or au thermomètre à gaz, effectuée à la Physikalisch-Technische Bundesanstalt, a donné la valeur 1064,76 ± 0,1° C [1]. Cette valeur a été obtenue en faisant varier considérablement les conditions de mesure, de façon à exclure toute erreur systématique importante. C'est ainsi qu'à côté de la nouvelle méthode « à température du réservoir constante », on a appliqué aussi les méthodes à volume constant et à pression constante habituellement employées jusqu'ici. Avec cinq gaz (N₂, A, CO₂, Kr et Xe), on a effectué des mesures pour deux valeurs différentes de la pression, de telle sorte que l'extrapolation au gaz parfait (pression nulle) était possible, même sans connaître les deux coefficients du viriel de ces gaz. A la différence des mesures antérieures, le réservoir à double paroi en quartz du thermomètre à gaz était immergé dans l'or en fusion, conditions dans lesquelles les valeurs des points de solidification et de fusion étaient concordantes. On s'assurait de cette manière que le réservoir du thermomètre à gaz prenait réellement la température de l'or en fusion.

On éliminait ainsi les erreurs systématiques qui pouvaient exister dans les procédés utilisés antérieurement, consistant à relier au point de l'or par un thermocouple le réservoir du therLe caractère provisoire des valeurs mesurées au thermomètre à gaz, à l'exception de celle du point de l'or, provient du fait qu'il n'a pas encore été possible de mesurer directement le coefficient de dilatation du quartz utilisé. Le coefficient de dilatation moyen du quartz employé pour les calculs était celui que donne Randall [3]. En admettant même que ce coefficient soit faux d'en-

viron 5 %, les températures des points du soufre, de l'antimoine et de l'argent ne seraient modifiées respectivement que de 0,03, 0,04 et 0,09 deg. Une nouvelle détermination absolue de la dilatation du quartz qui constitue le réservoir du thermomètre à gaz est actuellement en préparation. L'incertitude des mesures au thermomètre à gaz, qui ne dépasse pas quelques centièmes de degré au point du soufre, reste encore inférieure à \pm 0,1 deg au point de l'or.

A la figure 1, les différences $t_{\text{th}} - t_{\text{int ISIS}}$ données au tableau I sont représentées graphiquement en fonction de la température.

A la figure 2, les courbes I et II représentent, en fonction de la

température, les différences entre les températures mesurées sur les mêmes échantillons de métal au thermomètre à gaz et avec un thermomètre à résistance de platine (*voir* la note qui suit le tableau I). On a admis pour ces courbes une extrapolation jusqu'au point de l'or de la formule quadratique du thermomètre à

I, $t_{11} - t_{P_{1}(444,60)};$

II, $t_{\text{th}} - t_{\text{Pt}(333,70)};$

III, $t_{int\,1948} - t_{Pt\,(1443.50)};$

 $t_{\rm pq}$, température mesurée au thermomètre à résistance de platine.

résistance, les constantes étant déterminées aux points de glace, d'ébullition de l'eau et du soufre. Les courbes I et II ont été établies en admettant pour le point du soufre les valeurs 444,60° C et 444,70° C. On voit que la valeur mesurée à titre de contrôle avec l'eutectique argent-cuivre à 779° C se place bien sur la courbe. La courbe III montre les écarts entre les températures du même thermomètre à résistance de platine et l'Échelle Internationale de Température de 1948. Aux tableaux II et III figurent les résultats des nouvelles mesures au thermomètre à gaz aux points du soufre, de l'argent et de l'or, comparés à ceux de mesures remontant à 1914, mesures qui étaient jusqu'à maintenant déterminantes pour la fixation internationale de la température de ces points fixes. Les valeurs mesurées avant 1915 ont été rattachées au gaz parfait à l'aide des corrections indiquées par F. Henning [9].

TABLEAU II.

Résumé des mesures du point du soufre au thermomètre à gaz.

Observatcurs.	Date.	Gaz.	Nature du ré servoir .	Méthode *.	l _{th} (760 mm Hg) (°C).
Holborn et Henning [4]	1911	He, H ₂	verre	V	444,56
		N_2	quartz	ρ	444,54
Day et Sosman [3]	1912	N_2	Pt-Rh	V	444,54
Chappuis [6]	1914	N_2	quartz	P	444,59
Eumorfopoulos [7]	1914	\mathbf{N}_2	quartz	р	444,64
Blaisdell et Kaye [8]	1941	N_2	quartz	P	444,72
Moser, Otto et Thomas	1958	N_2 , A	quartz	t_g	444,66
v = volume constant; p = pr	ession	constante;	$t_{r} = tempén$	rature du	réservoir

b = volume constant; p = pression constante; $t_g = temperature du reserve$ constante.

TABLEAU III.

Résumé des mesures des points de l'argent et de l'or au thermomètre à gaz.

							$t_{\rm Au} - t_{\rm Ag}$	
Observaleurs.	Date.	- Gaz.	Nature du réservoir.	Mé- thode.	^t Ag (°C).	t _{Au} (°C)	therm. à gaz (deg).	pyrom. optique (deg).
Holborn et Day [10]	1900	N_2	Pt-Ir	P	961,8	1 063,8	102,0	102,3
Day et Sosman [11]	1911	N_2	Pt-Rh	V	960,3	1 062,7	102,4	102,1
Oishi, Awano et Mochizuki [12]	1956	N_2	quartz	v	961,28	1 063,69	102,41	102,3
Thomas	1957 (N_2, Λ^*	quartz	t_g	962,16	1 064,76	102,60	102,5
Échelle Inter-								
nationale	1948	-	-		960,8	1 063,0	102,2	102,2
'Le point de l'or a ét	té égale	ment m	esuré ave	c CO ₂ ,	Kr et X	Le.		

Dans la dernière colonne du tableau III figurent les différences $t_{\Lambda u} - t_{\Lambda z}$ obtenues par C. Tingwaldt et H. Kunz [13] à
la suite de mesures au pyromètre optique pour la longueur d'onde $\lambda = 0.6547 \mu$, différences calculées en prenant pour le point de l'or la valeur indiquée par chaque observateur. L'incertitude sur ces différences est estimée à ± 0.25 deg.

Résultats. — Les nouvelles mesures au thermomètre à gaz montrent que l'écart qui existe au point de l'or entre les échelles de température internationale et thermodynamique commence déjà au point du soufre, dont on a trouvé pour la température thermodynamique la valeur 444,66° C. L'exactitude de cette valeur (provisoire) n'est pas encore suffisamment grande pour motiver à elle seule une demande d'augmentation, déjà réclamée par ailleurs, de 444,60° C à 444,70° C de la température internationale du point du soufre. Cette augmentation ne peut se justifier qu'en tenant compte de la valeur de Blaisdell et Kaye [8] $(t_s = 4/4, 72^{\circ} \text{ C})$ et de nos propres mesures effectuées avec le thermomètre à gaz au point de l'antimoine. D'après les plus récentes mesures, il est certain que ce point fixe se trouve à 0,15 deg au moins au-dessus de la valeur donnée par le thermomètre à résistance de platine dans l'Échelle Internationale de Température (1948). Ainsi que le montre la figure 2 (courbe II), il suffit de donner à la température du point du soufre dans l'Échelle Internationale de Température la valeur 444,70° C pour réaliser l'accord, jusqu'au point de l'antimoine, des échelles de température internationale et thermodynamique, à l'incertitude près des plus récentes mesures au thermomètre à gaz.

Au-dessus du point de l'antimoine, l'écart entre les deux échelles croît en même temps que la température (fig. 1). Nous n'avons pas encore étudié jusqu'à quel point l'Échelle Internationale, basée sur le thermocouple platine-platine rhodié entre le point de l'antimoine et le point de l'or, peut s'accorder avec l'échelle thermodynamique suivant les nouvelles mesures au thermomètre à gaz, et quelle formule est la mieux appropriée. L'échelle s'appuyant sur le thermomètre à résistance de platine, par extrapolation de la formule quadratique jusqu'au point de l'or, conduit, par rapport à l'échelle thermodynamique, aux écarts représentés à la figure 2 (courbe I). Ces écarts sont bien plus grands que ceux qui séparent actuellement l'échelle du thermomètre à résistance de platine de l'Échelle Internationale (fig. 2, courbe III), mais ils conduisent cependant à une courbe de forme analogue.

Finalement, nous voudrions encore dire quelques mots au sujet des écarts systématiques des mesures au thermomètre à gaz effectuées par les divers observateurs aux points de l'argent et de l'or (*voir* tableau III). Ces écarts sont à attribuer essentiellement, mais non exclusivement, à l'erreur systématique sur la détermination de la température moyenne du réservoir du thermomètre à gaz au moyen du thermocouple, procédé qui a été employé jusqu'à présent pour toutes les mesures au thermomètre à gaz au-dessus du point du soufre, à l'exception des nôtres. Que cette cause d'erreur ait joué un rôle essentiel, en particulier dans les mesures antérieures à 1915, c'est ce que Day et Sosman [14] avaient déjà reconnu lorsqu'ils écrivaient à la page 69 de la publication fondamentale sur leurs mesures au thermomètre à gaz « ... that the greatest present uncertainty in the high-temperature gas scale arises from the lack of uniformity in an air bath, which not only leads to uncertainty as to what is the true temperature of the gas in the bulb, but also to errors in the transference by the thermoelement ».

Deux autres faits mettent également en évidence cette cause d'erreur. Si l'on compare les écarts entre les valeurs des divers observateurs au point du soufre (tableau II) — point fixe pour lequel la cause d'erreur en question n'existe pas puisque le réservoir du thermomètre à gaz baigne dans la vapeur — aux écarts des valeurs aux points de l'argent et de l'or (tableau III), on voit que ces derniers écarts sont environ dix fois plus grands que les premiers; l'accroissement de l'incertitude des mesures au thermomètre à gaz avec la température ne laisserait prévoir, à lui seul, que des écarts deux à trois fois plus grands. Ce qui marque le caractère systématique des écarts aux points de l'argent et de l'or, c'est aussi le fait que la différence $t_{Au} - t_{A3}$ est en accord, pour tous les observateurs, avec la différence déterminée au pyromètre optique à la précision des mesures près, tandis que les valeurs absolues divergent notablement.

Les valeurs communiquées par les auteurs pour les températures thermodynamiques des points de l'argent et de l'or $(t_{\rm Ag} = 962, 16^{\circ}$ C et $t_{\rm Au} = 1.064, 76^{\circ}$ C) sont exemptes de l'incertitude sur la détermination de la température du réservoir du thermomètre à gaz, puisque celui-ci plonge directement dans le métal en fusion et que les mesures donnent des valeurs concordantes aux points de fusion et de solidification. En outre, de nombreuses variations des conditions de mesure ont montré qu'elles n'affectaient pas les résultats. Il importe de considérer ces deux facteurs dans une comparaison critique avec les résultats des autres observateurs.

(2 avril 1958)

BIBLIOGRAPHIE.

- [1] MOSER (H.), OTTO (J.) et THOMAS (W.), Z. Phys., 147, 1957, p. 76.
- [2] Les résultats définitifs seront publiés dans Z. Phys.
- [3] RANDALL (H. M.), Phys. Rev., 30, 1910, p. 216.

- [4] HOLBORN (L.) et HENNING (F.), Ann. Phys., 35, 1911, p. 761.
- [5] DAY (A. L.) et SOSMAN (R. B.), Ann. Phys., 38, 1912, p. 849.
- [6] CHAPPUIS (P.), Trav. Mém. Bur. Intern. Poids et Mesures, 16, 1914.
- [7] EUMORFOPOULOS (N.), Proc. Roy. Soc., 90, 1914, p. 189.
- [8] BLAISDELL (B. E.) et KAYE (J.), Temperature, its measurement and control in science and industry, New York, 1941, p. 127.
- [9] HENNING (F.), Temperaturmessung, 2 Aufl., Leipzig, 1955, p. 257 et 262.
- [10] HOLBORN (L.) et DAY (A. L.), Ann. Phys., 2, 1900, p. 505.
- [11] DAY (A. L.) et SOSMAN (R. B.), Am. J. Science, 29, 1910, p. 93.
- [12] OISHI (J.), AWANO (M.) et MOCHIZUKI (T.), J. Phys. Soc. Japan, 11, 1956, p. 311.
- [13] TINGWALDT (C.) et KUNZ (H.), Optik, 15, 1958, p. 333.
- [14] DAY (A. L.) et SOSMAN (R. B.), High Temperature Gas Thermometry, Washington, 1911, p. 69-70.

ANNEXE T 7

Tokyo Institute of Technology (Japon)

NOTE SUR LA RÉALISATION DU POINT DE L'OR

Par J. OISHI et M. AWANO

(Traduction)

En 1956, nous avons publié un article « New determination of the temperature of gold and silver points on the thermodynamic temperature scale », dans lequel nous avons donné la valeur $T_{Au} = 1336,84^{\circ}$ K ($t_{Au} = 1063,69^{\circ}$ C) au point de solidification de l'or [1]. En 1957, Moser, Otto et Thomas [2], de la Physikalisch-Technische Bundesanstalt, ont obtenu $T_{Au} = 1337,91^{\circ}$ K ($t_{Au} = 1064,76^{\circ}$ C), soit une différence de 1 degré environ entre les deux résultats, alors que l'erreur affectant chaque valeur est estimée à 0,1 degré.

La méthode de mesure que nous avons employée était celle du thermomètre à gaz à volume constant; celle qui a été utilisée à la P. T. B. était la méthode nouvelle, dite « à température du réservoir constante », qui semble bien convenir aux températures élevées.

Dans les mesures au thermomètre à gaz par la méthode classique, dans laquelle le réservoir du thermomètre est porté de o° C (ou toute autre température de référence) à la température élevée à mesurer, il se produit des phénomènes de diffusion et de dégagement gazeux au niveau des parois du réservoir en silice. Ayant observé une légère augmentation de la masse du gaz contenu dans le réservoir du thermomètre, même après un séjour de plusieurs heures à température élevée, nous avons estimé que le gaz se souillait par diffusion de l'atmosphère extérieure à travers les parois du réservoir. Mais nous nous sommes aperçus, au cours de mesures plus récentes, que le phénomène se produisait de façon à peu près analogue en utilisant un réservoir en silice à double paroi, entre lesquelles on pouvait maintenir, avec le même gaz, une pression constamment égale à celle qui régnait dans le réservoir. Nous sommes maintenant portés à reconnaitre que les d'une part, nos deux déterminations avec des réservoirs de types différents donnent les mêmes résultats, et que, d'autre part, les valeurs de Moser *et al.* apparaissent dignes de confiance étant donné qu'elles ont pour elles l'originalité de la méthode expérimentale et la grande variété des conditions de mesure.

Une détermination utilisant la méthode à température du réservoir constante est actuellement en cours.

(10 avril 1958)

BIBLIOGRAPHIE.

[1] OISHI (J.), AWANO (M.) et MOCHIZUKI (T.), J. Phys. Soc. Japan, 11, 1956, p. 311.

[2] MOSER (H.), OTTO (J.) et THOMAS (W.), Z. f. Phys., 147, 1957, p. 76.

ANNEXE T 8

Physikalisch-Technische Bundesanstalt (Allemagne)

LE THERMOCOUPLE PLATINE-PLATINE RHODIÉ DANS L'ÉCHELLE INTERNATIONALE DE TEMPÉRATURE

Par H. MOSER et P. RAHLFS

(Traduction)

Comme on le sait, l'Échelle Internationale de Température entre les points de l'antimoine et de l'or est réalisée à l'aide d'un thermocouple de platine-platine rhodié à 10 %, la force électromotrice étant reliée à la température par une équation de forme quadratique. Depuis quelque temps déjà, à la suite de recherches effectuées au National Bureau of Standards (¹), des doutes sont apparus sur la validité d'une formule quadratique; il est maintenant possible de contrôler une telle formule de façon plus précise en prenant les récentes valeurs obtenues au thermomètre à gaz (Annexe T 6, p. T 67) pour les points de l'antimoine, de l'argent et de l'or et pour l'eutectique argent-cuivre.

Dans ce but, on a comparé dans un bain d'étain bien agité, entre 530 et 960° C, trois thermocouples Pt — Pt-Rh (²) répondant aux prescriptions de l'Échelle Internationale de Température de 1948, avec un thermomètre à résistance de platine dont

(2) Les forces électromotrices de ces trois thermocouples ne diffèrent que de quelques microvolts. Comme les résultats des mesures individuelles sur chaque thermocouple n'ont pas montré de différences importantes par rapport aux résultats moyens, toutes les données rassemblées dans ce travail ont été rapportées à la moyenne des trois thermocouples. On avait :

$$\begin{split} E_{Au} &= 10\ 325,5\ \mu\text{V}\,; \qquad E_{Au} - E_{Ag} = 1\ 186,4\ \mu\text{V}\,; \\ E_{Au} - E_{Sb} &= 4\ 782,5\ \mu\text{V}\,; \end{split}$$

et pour le thermomètre à résistance de platine $R_{100}/R_0 > 1,391$.

⁽¹⁾ Procès-Verbaux C.I.P.M., 19, 1939, Annexe T 3, p. T 80.

les écarts par rapport aux températures thermodynamiques étaient connus (courbe A de la figure 1, identique à la courbe I

A, $t_{1h} - t_{Pl(111,60)}$; B, $t_e - t_{Pl(111,60)}$; C, $t_{1h} - t_e$.

 $t_{\rm th}$, température thermodynamique mesurée au thermomètre à gaz (voir Annexe T 6).

- $l_{1,111,60}$, température mesurée au thermomètre à résistance de platine, par extrapolation de la formule quadratique $(l_s = 444,60^{\circ} \text{ C})$.
- l_{e} , température mesurée au thermocouple platine-platine rhodié, suivant les prescriptions de l'Échelle Internationale de Température de 1948.

de la figure 2 de l'Annexe T 6). Si l'on admet, comme cela est très probable, que l'on peut interpoler graphiquement sur cette courbe

- T 79 -

entre les valeurs mesurées aux points fixes, il est également possible d'obtenir, pour les valeurs intermédiaires des thermocouples, les écarts par rapport aux températures thermodynamiques. Aux températures des points fixes, les valeurs de la force électromotrice mesurées directement aux points de solidification et celles mesurées indirectement dans le bain d'étain concordent

Pour la détermination des constantes des différentes formules, on a utilisé ici les nouvelles valeurs des températures déterminées au thermomètre à gaz pour les points de l'antimoine, de l'argent et de l'or (*voir* Annexe T 6). Les formules suivantes ont été employées :

D,
$$e = a + bt + ct^{2}$$
,
E, $e = at + bt^{2} + ct^{3} - 200$,
F, $e = at + bt^{2} + ct^{3} - 100$,
G, $e = at + bt^{2} + ct^{3}$.

entre elles à mieux que \pm 0,5 μ V, ce qui correspond à \pm 0,05 deg. Les résultats des mesures sont représentés graphiquement aux figures 1 et 2.

Résultats. — La courbe B (fig. 1), obtenue par des mesures directes, représente, du point de l'antimoine au point de l'or, les

écarts entre les températures mesurées avec un thermomètre à résistance de platine et l'Échelle Internationale de Température de 1948. On voit qu'une simple interpolation entre les points de l'antimoine et de l'argent, comme celle que l'on a pu faire sur la courbe III (*fig.* 2, Annexe T 6) sans connaître encore les valeurs intermédiaires, n'est plus admissible. Il en est de même pour l'interpolation sur la courbe de la figure 1 de l'Annexe T 6, courbe qui, d'après les nouvelles mesures dans le domaine compris entre les points de l'antimoine et de l'or, doit être remplacée par la courbe C de la figure 1.

La forme irrégulière des courbes B et C ne pouvant être attribuée aux erreurs de mesure, seules les deux causes suivantes peuvent expliquer les anomalies observées : 1° la formule quadratique du thermocouple peut ne pas être rigoureusement valable; 2° les températures des points de solidification de l'antimoine, de l'argent et de l'or dans l'Échelle Internationale de Température de 1948, qui ont été employées pour la détermination des constantes de cette formule, peuvent être erronées. Sur la base des récentes mesures au thermomètre à gaz (Annexe T 6) on doit tenir compte de la dernière cause, de sorte qu'une décision sur la validité de la formule quadratique pour le thermocouple platineplatine rhodié n'est pas possible d'après les seules mesures représentées à la figure 1.

En adoptant pour la détermination des constantes les nouvelles valeurs obtenues au thermomètre à gaz (Annexe T 6), dont l'incertitude est estimée à mo,1 deg, on trouve également entre les points de l'antimoine et de l'argent, en utilisant encore la formule quadratique pour le thermocouple, des écarts atteignant 0,34 deg (courbe D, fig. 2). Ces écarts ne peuvent plus s'expliquer uniquement par l'incertitude sur les points fixes et par les erreurs de mesure; ils prouvent que la formule quadratique n'est pas rigoureusement valable. Diverses formules cubiques d'interpolation (courbes E, F, G de la figure 2) ne fournissent pas non plus de résultats satisfaisants. En fait, entre les points de l'antimoine et de l'argent les écarts sont plus faibles mais, par contre, les courbes présentent, au-dessous du point de l'antimoine, une forte pente qui est indésirable au voisinage du passage du thermomètre à résistance de platine au thermocouple platine-platine rhodié.

De telles difficultés ne se produisent pas en employant le thermomètre à résistance de platine jusqu'au point de l'or. Les écarts du thermomètre à résistance par rapport à l'échelle thermodynamique, représentés à la courbe A (fig. 1), ont une forme relativement simple. Pour autant que l'on puisse en juger à l'heure actuelle, on peut obtenir, à l'aide d'une simple formule cubique, un accord avec l'échelle thermodynamique meilleur qu'ayec le

G

thermocouple. Il faudrait donc, à l'avenir, s'efforcer de remplacer le thermocouple platine-platine rhodié par le thermomètre à résistance de platine pour la réalisation de l'Échelle Internationale de Température (³).

(17 juin 1958)

(3) Procès-Verbaux C.I.P.M., 24, 1954, p. T 122.

ANNEXE T9

Central Inspection Institute of Weights and Measures (Japon)

SUR LA STABILITÉ DE THERMOMÈTRES A RÉSISTANCE DE PLATINE PORTÉS A 1100° (.

Par R. YONEDA, S. NAKAYA et H. UCHIYAMA

(Traduction)

Nous étudions actuellement la possibilité d'utiliser des thermomètres à résistance de platine jusqu'au point de l'or. Dans une première étude, nous avons contrôlé la stabilité de la résistance à 0° C, après un séjour à la température de 1100° C, de deux thermomètres de types différents construits spécialement.

Les caractéristiques principales des thermomètres à résistance de platine utilisés dans cette étude sont les suivantes :

Thermomètre.	Diamètre du fil.	Résistance à 0°C.	Tube de protection
Nº 1	0.25 mm	2.0Ω	quartz fondu
Nº 2	0,5	0.15	quartz fondu

Après un recuit préalable, ces deux thermomètres ont été maintenus trois ou quatre heures à la température de 1100° C, puis leurs résistances à 0° C ont été mesurées, et ainsi de suite jusqu'à une durée totale de 40 heures à 1100° C.

Malheureusement le thermomètre N° 2 s'est cassé au cours de cette opération; mais, pour le N° 1, nous avons pu obtenir onze valeurs de sa résistance $R_{0,n}$ (n = 1, 2, ..., 11) à o° C; nous avons calculé le rapport $\Delta R/R_0$, où ΔR est la différence entre la plus grande et la plus petite valeur des $R_{0,n}$ et R_0 la moyenne des $R_{0,n}$; on a trouvé pour $\Delta R/R_0$ une valeur de l'ordre de 1,5.10⁻⁵.

Cette étude préliminaire se poursuit; mais, d'après les résultats obtenus jusqu'à présent, il semble possible que le thermomètre à résistance de platine, d'une construction convenable, puisse être utilisable pour la mesure des températures entre les points de l'antimoine et de l'or.

(23 mai 1958)

ANNEXE T 10

National Research Council (Canada)

NOUVELLE PREUVE DE LA STABILITÉ DU POINT DU ZINC ET RÉSULTATS DE L'ANALYSE THERMIQUE DE HUIT ÉCHANTILLONS DE ZINC DE GRANDE PURETÉ

Par E. H. McLAREN

(Traduction)

Depuis 1954, on a obtenu de nouveaux renseignements sur la stabilité de la température du palier de solidification du zinc très pur; on a effectué une importante comparaison de la température du palier de solidification et de l'intervalle de température de fusion de huit échantillons de zinc très pur, chacun des quatre pays suivants ayant fourni deux échantillons : États-Unis d'Amérique, U. R. S. S., Royaume-Uni et Canada. Des comptes rendus détaillés de ces recherches ont été publiés par ailleurs [1, 2, 3].

Ce Rapport donne un bref résumé des résultats obtenus dans notre Laboratoire à la suite des travaux effectués conformément à la Proposition 3 du Comité Consultatif de Thermométrie de 1954 [4].

STABILITÉ DE LA TEMPÉRATURE DU PALIER DE SOLIDIFICATION DU ZINC S. P. — En 1954, nous avons montré qu'il est possible, avec des techniques appropriées, d'obtenir des paliers de température très stables sur les courbes de refroidissement de certains échantillons de zinc très pur [5]. Les paliers ont une durée qui est fonction de la vitesse de refroidissement et leur température est reproductible à \pm 0,000 2 degré près environ. Quand on utilise du zinc de pureté suffisante, il n'est pas possible de trouver une différence entre les températures du palier de solidification de divers échantillons. Il semble clair maintenant que la température du palier devrait être considérée comme le point de solidification.

Le meilleur indice de la stabilité à long terme de la température de solidification du zinc très pur réside dans le fait que l'intervalle de température de fusion pour du zinc New Jersey S. P. n'excède pas 0,001 degré pour des échantillons neufs et des échantillons qui ont été maintenus en fusion près d'un an. En contrôlant l'intervalle de fusion de l'échantillon, il est donc possible de surveiller continuellement les effets thermiques des impuretés et de se prémunir ainsi contre un abaissement de la pureté et contre le changement subséquent du point de solidification. Quand cette

Fig. 1. — Reproductibilité à long terme de R_{Zn}/R_{P.T.} déterminé avec le thermomètre S 156 et du zinc S. P.

précaution est prise, les mesures à long terme sur la reproductibilité du point de solidification du zinc très pur constituent un critère de la reproductibilité et de la stabilité de tout l'appareillage de mesure.

La figure 1 montre les résultats obtenus avec un seul thermomètre à résistance de platine sur le rapport $R_{Zn}/R_{P.T.}$ de zinc New Jersey S. P., pour 78 solidifications échelonnées sur une période de trois ans. Il semble probable que l'augmentation observée sur le rapport $R_{Zn}/R_{P.T.}$ était due à un changement des coefficients thermiques du fil de platine lors d'un recuit prolongé à 430° C environ. De septembre 1953 à juillet 1954, ce thermomètre a été utilisé des centaines d'heures au voisinage du point de solidification du zinc; depuis il a peu servi au-dessus de 330° C (voir [2]).

Des renseignements supplémentaires sur la stabilité à long terme de l'appareillage de mesure sont donnés à la figure 2, qui montre la variation du rapport $R_{Zn}/R_{P,T}$ de six thermomètres sur un intervalle de vingt mois. Bien que quatre solidifications seulement aient été faites avec chaque thermomètre, cette figure indique que les changements du point du zinc au cours de cette période étaient certainement inférieurs à 0,001 degré et probablement même à 0,000 3 degré. L'écart-type de ces mesures correspond à \pm 0,000 4 degré. Il semble que les coefficients thermiques des thermomètres S 214 et S 165 aient varié; le thermomètre S 214 a pu être trempé par refroidissement à la température de l'azote liquide.

Avant toute mesure du point du zinc, les thermomètres à résistance étaient recuits à 450° C environ pour faire disparaître autant que possible la résistance éventuellement créée par un écrouissage accidentel du platine. Cette technique garantit des

Fig. 2. — Variations, entre juin 1954 (×) et février 1956 (•), du rapport R_{Zn} R_{P.T.} déterminé pour six thermomètres à partir de deux solidifications provoquées de zinc S. P.

coefficients thermiques relativement stables pour de courtes périodes d'emploi. Quand les résistances de platine sont soumises à un régime comportant des trempes et des recuits pendant de longues périodes, les coefficients thermiques ne sont pas constants; il est très peu probable qu'une valeur unique des coefficients thermiques suffise pour un thermomètre utilisé de cette sorte.

ANALYSE THERMIQUE DE HUIT ÉCHANTILLONS DE ZINC TRÈS PUR. — En 1954, les laboratoires d'U. R. S. S. [7] et du Canada [6] attribuaient respectivement les valeurs $419,59 \pm 0,03^{\circ}$ C (Int. 1948) et $419,50 \pm 0,01^{\circ}$ C (Int. 1948) au point de solidification du zinc très pur. Il semblait probable que le désaccord provenait des difficultés rencontrées dans la réalisation du point d'ébullition du soufre dans l'Échelle Internationale de Température; cependant, un échange d'échantillons de zinc très pur fut organisé avec le laboratoire d'U. R. S. S. afin qu'une comparaison des températures de solidification détermine de façon concluante si oui ou non la différence provenait des impuretés contenues dans les échantillons de zinc russe et américain. On a inclu à la comparaison effectuée dans notre laboratoire des échantillons de zinc très pur d'origines britannique et canadienne. Le tableau I donne l'origine des échantillons et la composition chimique communiquée par les fournisseurs.

TABLEAU I.

Analyse chimique des échantillons de zinc.

	Ť.l	Proportions d'impuretés en poids (en millionième)						
Origine.	Echan- tillon.	Fe.	Cd.	Cu.	Pb.	Su.	As.	Total.
Institut de Métrologie D. L. Mendéléey.) R 1		т 1А	mie	eux que	R 2		< 0,5
Leningrad, U.R.S.S.	$\int R^2$	< 0,2	< 0,1	0,01	< 0,2	<0,02		< 0,5
New Jersey Zinc Co., Palmerton, Pa.,	$\left \frac{S4}{S4} \right $	- ,	< 0,5	Ξ.	< 2	-	,	$< \frac{2}{c}$
U. S. A) 5.7	4	0,0	0,0	I	0,5	0,01	0
The Consolidated	1 2							
Mining and Smelting	C1	2	о, і	0,5	< 2			< 4
Co., Trail, B. C.,	(C2	IO	10	10	20	-		50
Canada)							
Imperial Smelting)							
Corporation Ltd.,	B1	20	-		< 1			< 1
London, Royaume-	B2	30	20	< 10	<10			<70
Uni)							

L'analyse thermique a été effectuée en deux parties : on a d'abord obtenu les courbes de solidification et de fusion de tous les échantillons dans des conditions thermiques variées en utilisant une technique de mesure abrégée; on a comparé ensuite les températures du palier de solidification avec la plus grande précision possible (voir [3]).

COURBES DE SOLIDIFICATION ET DE FUSION. — Plusieurs séries de changements d'états ont été effectuées de façon à atténuer ou à favoriser la séparation des impuretés chimiques (noyautage) par le contrôle des vitesses de refroidissement. Quelques courbes typiques de solidification et de fusion obtenues dans cette analyse sont données aux figures 3 et 4; la différence de qualité des échantillons y apparaît clairement. Un examen détaillé de ces courbes de fusion et des autres courbes permettait de faire des mesures comparatives des intervalles de température de fusion de ces échantillons; le tableau II résume quelques-unes des mesures de cet intervalle.

_	T	88	-

TABLEAU II.

Intervalle de température de fusion après des solidifications très rapides (I) et des solidifications provoquées (II).

	D'après les courbes (en degré)				
Échantillon.	I.	II.			
R 1	0,001	0,001			
R2	0,001	0,001			
S 4	0,001	0,001			
5.7	0,005	0,007			
C1	0,01	0,03; 0,005*			
C2	0.02-0.03	0,10			
B 1	0,01	0,03; 0.005*			
B2	0,01-0,2	0,04			

'Intervalle de fusion des noyaux très purs de ces échantillons, après solidification provoquée.

Fig. 3. — Solidifications normales rapides de tous les échantillons. Le relevé des points commence durant la récalescence.

Fig. 4. — Courbes de fusion après des solidifications provoquées.

T 89 -

TEMPÉRATURE DU PALIER DE SOLIDIFICATION. — La deuxième partie des recherches comprenait une comparaison soignée entre a. la température du palier obtenue au cours de solidifications lentes provoquées de l'échantillon S4 et b. la température du palier obtenue au cours de solidifications analogues des sept autres alliages. On utilisait deux fours de telle sorte que S4 et l'échantillon à comparer pouvaient être solidifiés en même temps, ce qui permettait d'effectuer les mesures nécessaires en moins d'une heure sur les deux échantillons.

TABLEAU III.

Comparaison des températures du palier de solidification.

		Nombre		Reprodu (éva en 0,000	aluée)1 deg).	Température de palier		
Date moyenne.	Échan- tillons.	solidifi- cations.	Movenne	Écart-type.	Écart- lype	Dis- persion.	à S 4 (degré).	
::1 (S4: R1	20	2,568 062 27	± 60.10 ⁻⁸	± 1,7	6,7		
10 jun j	RI	10	61 94	± 48	$\pm 1,4$	4, 5	- 0,000 18	
1957 (S 4	10	62 59	<u>-+- 55</u>	<u>-⊢</u> 1,6	5.7	0,0	
az init (S4; R2	20	2,568 063 59	± 65	<u>rin</u> 1,9	5, 5		
20 Jun	R2	10	63 74	\pm 60	\pm 1,7	4,4	+ 0,000 09	
195, (S 1	10	63 13	\pm 70	$\pm 2,0$	5, 5		
21 juil.) 1957 §	S4; R1, R2	íυ	2,568 062 93	± 90	$\pm 2,6$	9,0		
				Écart moyen.	Écart moyen.	Dis- persion.		
10 août (S4	5	2,568 061 20	± 32.10-8	$\pm 0,9$	3,7		
1957	C1	5	59 98	± 13	\pm 1,2	4,6	— 0,000 35	
1/ aoùt (S 4	5	2,568 061 55	± 45	\pm 1,6	6, o		
1957 (B 1	5	59 66	\pm 19	± 0,7	2, 4	— 0,000 5í	
18 août (S 4	ē	2,568 0 <mark>61</mark> 50	\pm 16	$\pm 1,6$	4,3		
1957	5.7	5	55.82	\pm 19	±0,7	2,1	- 0,001 6	
22 aoùt (S 4	2	2,568.061.58	58	±1,7	3,3		
1957	C2	2	32 62	± 122	$\pm 3,4$	7:0	-0,0083	
24 aoùt (S 4*	2	2,568 061 42	土鱼	± 1,3	2,5		
1957	B2	2	35 78	土百	I , 3	2,5	- 0,0102	

^{*} Le rapport moyen $R_{Zu}/R_{P.T.}$ de S4 pour les 39 solidifications lentes provoquées était 2,568 o62 24 avec un écart-type correspondant à = 0,000 29 deg et une dispersion de 0,001 1 deg; ces nombres montrent la stabilité de tout le système de mesure comprenant le thermomètre, le point triple et le pont. Le déroulement des mesures s'effectuait comme suit :

le matin : Pr, Pz, P. T., Zinc (S4), Zinc (X), Pr, Pz, P. T.; l'après-midi : Zinc (X), Zinc (S4), Pr, Pz, P. T.; (Pr = rapport du pont; Pz = zéro du pont; P. T. = point triple de l'eau).

Pendant les mesures le point milieu de la bobine d'un seul thermomètre Meyers était immergé de 15 cm environ dans les échantillons de zinc. Une seule ampoule à point triple a été utilisée durant toute l'étude : on avait préparé un manchon de glace qui fut conservé pendant les mesures sur R1 et R2, et un autre manchon fut utilisé pour les comparaisons sur les cinq autres échantillons.

La figure 5 donne les résultats de la comparaison des températures de palier de R1 et R2 avec celles de S4 au cours de quarante solidifications lentes provoquées. Le tableau III résume les comparaisons des températures de palier de tous les échantillons.

En se basant à la fois sur la température du palier de solidification et sur l'intervalle de température de fusion, les échantillons de zinc russes sont certainement aussi purs que le zinc New Jersey S. P.; la différence de température au point de solidification du zinc rappelée ci-dessus doit donc être recherchée dans d'autres domaines de la thermométrie à résistance de précision. L'échantillon S4 a été utilisé pour la première fois en janvier 1956, et occasionnellement ensuite pour des étalonnages de thermomètres; il était extrait du four après chaque étalonnage. Les échantillons russes ont été utilisés en juillet 1957. L'accord entre les températures de solidification de ces échantillons est une preuve supplémentaire de la grande stabilité du point de solidification du zinc très pur comme repère thermométrique précis.

Depuis 1954, des températures hautement reproductibles (à \pm 0,000 2 degré environ) ont été également obtenues à partir des courbes de solidification d'échantillons très purs de cadmium (312° C), d'étain (232° C) et d'indium (157° C). Aussi, l'ensemble de ces quatre métaux Zn, Cd, Sn, In et le point triple de l'eau, offrent le moyen de transporter des points fixes précis d'un laboratoire à l'autre, ce qui éviterait le transport de thermomètres à résistance de platine pour des contrôles de l'échelle. Par rapport aux méthodes usuelles de comparaison des échelles de température réalisées dans plusieurs laboratoires, les métaux très purs et leurs points de solidification présentent deux avantages marqués : ils n'exigent pas la mesure et le contrôle précis de la pression à laquelle est soumis le métal pendant sa solidification, et

- T 92

l'on peut facilement mesurer leur intervalle de température de fusion pour déterminer l'importance thermique des impuretés.

(Février 1958)

BIBLIOGRAPHIE.

- [1] McLAREN (E. H.), Can. J. Phys., 35, 1957, p. 78.
- [2] MCLAREN (E. H.), Can. J. Phys., 35, 1957, p. 1086.
- [3] McLAREN (E. H.), Can. J. Phys., 36, 1958, p. 585.
- [4] Procès-Verbaux C.I.P.M., 24, 1954, p. T 49.
- [5] MCLAREN (E. H.), Procès-Verbaux C.I.P.M., 24, 1954, p. T 152.
- [6] MCLAREN (E. H.), Procès-Verbaux C.I.P.M., 24, 1954, p. T 162.

7] Procès-Verbaux C.I.P.M., 24, 1954, p. T 122.

ANNEXE T 11

National Physical Laboratory (Royaume-Uni)

LE POINT DE SOLIDIFICATION DU ZINC EN TANT QUE POINT FIXE PRIMAIRE DE L'ÉCHELLE INTERNATIONALE DE TEMPÉRATURE

(Traduction)

Suivant la proposition faite par le Comité Consultatif de Thermométrie en 1954, le National Physical Laboratory a étudié le point de solidification du zinc et sa reproductibilité vis-à-vis de celle du point d'ébullition du soufre; cette étude a été poursuivie en vue de fournir un témoignage pour ou contre la substitution du point de solidification du zinc au point d'ébullition du soufre, comme point fixe primaire de l'Échelle Internationale de Température. La conclusion est la suivante : l'emploi du point de solidification du zinc conduirait à une précision plus grande dans la réalisation de l'Échelle. Les expériences qui servent de fondement à cette conclusion sont décrites ci-après.

Quatre lingots de zinc ont été utilisés au cours de cette étude; deux d'entre eux ont été préparés à partir de zinc fourni par la « New Jersey Zinc Company », la pureté de l'un étant celle de la qualité commerciale (C. P. 99,999 3 %) et la pureté de l'autre étant celle de la qualité supérieure (S. P. 99,999 7 %); le troisième lingot a été obtenu à partir de zinc très pur fourni par l'« Imperial Smelting Corporation », Avonmouth, England (I.S.C., 99,999 7 %) et le quatrième à partir de zinc fourni par la Physikalisch-Technische Bundesanstalt (G. 99,997 %). Les analyses communiquées par les fournisseurs sont données au tableau I; elles ont servi à fixer les valeurs du degré de pureté des lingots indiquées ci-dessus entre parenthèses. Le tableau I contient également les résultats des analyses spectrographiques effectuées par Johnson, Matthey and Co sur les lingots tels qu'ils ont été utilisés.

TABLEAU I.

Analyse des échantillons de zinc.

Lingot.	N. J. (C. P.).	I. S. C.	N. J. (S. P.).		G.
Analyse des fournisseurs	Pb 0,000 1 Cd 0,000 05 Fe 0,000 05 Cu 0,000 05 As 0,000 004 Sn 0,000 05	$\begin{array}{l} Pb \leq 0,000 \ 1 \\ Cd \leq 0,000 \ 1 \\ Cu \leq 0,000 \ 1 \end{array}$	Pb 0,000 2 Cd 0,000 05 Cu <i>xf</i> Mg <i>xf</i> Si <i>xf-vf</i>	Pb Cd Cu Fe Sn	0,000 9 0,000 8 0,000 1 0,000 3 0,000 2
Analyse des	$\begin{array}{l} Cd < 0,000 \ 1 \\ Ca < 0,000 \ 1 \\ Cu & 0,000 \ 3 \\ Fe & 0,000 \ 4 \\ \end{array}$	$\begin{array}{c} Cd < 0,000 \ 1 \\ Ca < 0,000 \ 1 \\ Cu & 0,000 \ 2 \\ Fe & 0,000 \ 1 \end{array}$	Cd n. d. Ca < 0,000 1 Cu 0.000 2 Fe 0,000 1		
Laboratoires de recherche « Johnson Matthey »	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

xf = raie à peine visible; vf = raie légèrement plus intense; n. d. = non décelable.

Technique du point de solidification du zinc. — Les lingots de zinc employés étaient des cylindres de 35 mm de diamètre, 190 mm de hauteur, pesant 1200 g. Chaque lingot était placé dans un creuset de graphite pur, à paroi épaisse de 4 mm, muni d'un couvercle de graphite supportant un puits thermométrique axial également en graphite; ce puits, de 7 mm de diamètre intérieur et de 1,5 mm d'épaisseur de paroi, permettait une immersion du thermomètre de 150 mm à partir du centre de la bobine. Le creuset était placé dans un tube de verre, isolé thermiquement en haut et en bas avec du « silica aerogel », et suspendu dans un bain de sel en fusion agité, de telle sorte que le haut du creuset était à 190 mm environ au-dessous de la surface du bain de sel.

Les points de fusion et de solidification étaient étudiés pour chaque lingot avec deux thermomètres à résistance. Le processus pour la réalisation du point de solidification était le suivant : on stabilisait d'abord la température du bain de sel et du lingot à environ deux degrés au-dessus du point de solidification, puis on abaissait la température du bain de sel de deux degrés; quand le thermomètre à résistance indiquait une température inférieure de 0,01 degré environ au point de solidification, on ôtait le thermomètre que l'on remplaçait par une tige froide de silice pendant une trentaine de secondes pour amorcer la solidification; on

Fig. 1. — Courbes de solidification du zinc.

replaçait ensuite le thermomètre dans son puits et la température d'équilibre était alors atteinte en 10 à 15 min, évitant ainsi le lent relèvement de température de la masse surfondue que l'on obtient autrement. De cette façon, et grâce aux bonnes conditions d'uniformité de température qui en résultent, on obtenait des courbes de solidification telles que celles de la figure 1 où la température reste constante à mieux que 0,000 1 degré pendant deux heures environ.

Détermination du point de solidification du zinc dans l'Échelle Internationale de Température et comparaison au point d'ébullition du soufre. — Les trois lingots C. P., S. P. et I. S. C. ont été étudiés avec les deux thermomètres à résistance Q 14 et Q 15. Désirant

		Thermomè	tre Q 15.			Thermo	omètre Q 14.	
Lingot.	Date 1956. 23 août	R _{P E.} /R _{P T.}	R _S /R _{P.T}	_{R_{Zn}/R_{P. T.} 2,568 оЗ5 3}	Date 1956.	R _{P. E.} /R _{P. T.}	R _S /R _{P.T.}	R _{Zp} /R _{p,T}
	24 »	1,392 503 8	2,655 304 0	69	30 août	1,392 585 6	2,655 645 1	2,568 375 2
	27 »	2 0	293 0	47	31 »	5 o	43 6	6 o
С. Р.	28 »	19	302 5	2 5	19 sept.	39	17 2	6 і
(New Jersey	29 »	26	310 3	42	20 »	69	56 I	3 5
Zinc Co.)	25 sept	2 2	300 4		24 »	76	55 7	72
	Moyenne	1,392 502 5	2,655 302 0	2,568 034 7		1,392 585 8	2,655 649 5	2,568 375 6
	Écart moyen.	0,000 15 deg	0,001 2 deg	0,000 3 deg		0,0003 deg	0,001 5 deg	0,000 3 deg
	27 sept	1,392 500 4	2,6552889	2,568 036 4	26 sept.	1,392 588 6	2,6556679	2,568 384 9
	28 »	496 7	295 5	39	4 oct.	94	596	36
I. S. C.	1 oct	499 1	299 9	69	5 »	76	44 3	56
(Imperial	2 »	500 7	302 7	6 1	8 »	75	72 3	84
Smelting	3 »	500 2	301 0	64	9 `»	94	59 o	26
Corp.)	Moyenne Écart moyen .	1,392 499 4 0,000 3 deg	2,655 297 6 0,001 2 deg	2,568 035 9 0,000 2 deg		1,392 588 5 0,000 2 deg	2,655 660 6 0,002 2 deg	2,568 385 o 0,000 5 deg
	22 oct	1,392 503 9	2,655 304 4	2,568 042 4	12 oct.	1,392 582 6	2,655 656 2	2,568 386 1
	23 »	42	309 9	411	15 »	877	67 0	53
S. P.	24 »	2 0	295 6	412	16 »	91 2	62 2	56
(New Jersey	25 »	44	303 4	42 I	17 »	873	55.4	36
Zinc Co.)	26 »	47	310 6	393	19 »	89 5	65 o	42
	Moyenne	1,392 503 8	2,655 304 8	2,568 041 2		1,392 587 7	2,655 661 2	2,568 385 0
	Écart moyen.	0,000 2 deg	0,001 3 deg	0,000 2 deg		0,000 6 deg	0,001 2 deg	0,000 2 deg
Moyenne des	écarts moyens.	0,000 2 deg	0,001 2 deg	0,000 2 deg		0,000 4 deg	0,0016 deg	0,0003 deg

T 97

TABLEAU II. - Mesure des rapports de résistance.

R_{P,E.}, R_{P,T.}, R_S, R_{Zn} : résistances au point d'ébullition de l'eau, au point triple de l'eau, au point d'ébullition du soufre, au point de solidification du zinc.

-1

établir la valeur du point de solidification du zinc dans l'Échelle Internationale de Température et désirant faire une comparaison directe de la reproductibilité des points de solidification du zinc et d'ébullition du soufre, on effectuait les mesures dans l'ordre suivant : point triple de l'eau, point de solidification du zinc, point triple de l'eau, point d'ébullition de l'eau, point d'ébullition du soufre, point triple de l'eau; on réalisait ces séries de mesures en une journée pour un thermomètre. Les résultats sont donnés au tableau II. Les écarts moyens obtenus sont de 0,000 3 deg pour le point d'ébullition de l'eau, 0,001 4 deg pour le point d'ébullition du soufre et 0,000 3 deg pour le point de solidification du zinc, ce qui montre de façon très nette que le point de solidification du zinc est mieux reproductible que le point d'ébullition du soufre. Les valeurs du point de solidification du zinc déduites de ces mesures sont données au tableau III. La dispersion des valeurs moyennes des trois lingots est de 0,000 7 deg, mais les différences ne sont pas significatives par suite de la moins bonne reproductibilité des valeurs du point d'ébullition du soufre dont dépendent celles du point de solidification du zinc.

Le quatrième lingot G n'a été reçu qu'après la fin des mesures sur les autres lingots, aussi ne fut-il étudié que par comparaison avec le lingot I. S. C. Les deux lingots étaient placés dans des bains de sel distincts et les déterminations au thermomètre à résistance des points de solidification étaient faites alternativement sur chaque lingot. On a trouvé pour le point de solidification du lingot G une valeur inférieure de 0,008 deg à celle de l'échantillon le plus pur.

TABLEAU III.

	Thermometre	a resistance		
Lingot.	0 15.	Q 14.	Valeurs	moyennes.
N. J. (C. P.)	419,503 5°C	419,506 8°C	í19, 505 2)
1. S. C	419,505 3	419,5065	419,505 9	119.505 5"C
N. J. (S. P.)	119,5016	119,506 1	í19,505 5)
G		119.199		

Valeurs du point de solidification du zinc.

Critère de pureté du zinc. — Il est essentiel de pouvoir définir la pureté du zinc pour être à même d'établir un étalon satisfaisant basé sur son point de solidification. Nous estimons qu'il est possible de reproduire le point d'ébullition du soufre à == 0,002 deg environ; il faut donc que le point de solidification du zinc puisse être défini dans des limites plus étroites pour présenter un avantage sur le point d'ébullition du soufre. Un abaissement du point de solidification de 0,001 deg correspond à la présence d'une si petite quantité d'impuretés que l'analyse spectrographique ne saurait suffire pour définir la pureté avec la précision requise; en outre, la relation entre le pourcentage

Fig. 2. — Courbes de fusion du zinc.

d'impuretés et l'abaissement du point de solidification n'est pas suffisamment bien connue. Un critère lié au changement d'état est désirable. L'intervalle de température du point de fusion décroît avec l'augmentation de la pureté du métal, ce qui devrait pouvoir fournir un critère convenable.

Un examen des points de fusion de la figure 2 montre que l'intervalle de température des différentes courbes d'un même lingot est quelque peu variable. Par exemple, l'intervalle de fusion des trois courbes du lingot I. S. C. varie de 0,000 6 à 0,001 5 deg; pour les courbes du lingot N. J. (C. P.), la variation est de 0,000 3 à 0,001 deg. Toutes les courbes dépendent de la quantité totale d'impuretés, de 0,000 3 à 0,000 7 % d'après l'analyse spectrographique, mais pour de si faibles proportions l'intervalle de fusion est sans doute très fortement affecté par l'importance du gradient de température dans le lingot. Sur la courbe de fusion du lingot G (fig. 3), on voit que l'intervalle est d'environ o,o2 deg et la quantité d'impuretés de o,oo2 3 %; l'abaissement du point de solidification de ce lingot, par comparaison avec le lingot I. S. C., est de o,oo7 5 deg. Le tableau IV donne, pour chaque lingot, la quantité nominale d'impuretés, l'intervalle de fusion, et l'abaissement du point de solidification par rapport à celui du lingot I. S. C. On doit remarquer que les valeurs de ce tableau montrent quelques

Fig. 3. - Courbes de fusion et de solidification du zinc, lingot G.

anomalies, et l'on ne doit pas commettre l'imprudence d'aller trop loin dans les conclusions à en tirer. Cependant, on peut probablement admettre que si l'intervalle de fusion reste inférieur à 0,002 deg, l'abaissement du point de solidification n'excède pas 0,001 deg.

TABLEAU IV.

Lingot.	Impurelés (%).	Intervalle de fusion (deg).	Abaissement du point de solidification (deg).
I. S. C	0,000 3	0.0006 à 0,0015	0,000 0
N. J. (S. P.)	0.000 3	0,001	0,000 4
N. J. (C. P.)	0,000 7	0,0003 à 0,001	0,000 7
G	0.0023	0,02	0,0075

Conclusions. — Le travail précédent montre qu'il est possible de réaliser le point de solidification du zinc à \pm 0,000 5 deg près, à condition d'utiliser la technique permettant de reproduire la température d'équilibre d'un lingot dont la pureté aura été reconnue suffisante. La reproductibilité du point de solidification du zinc étant meilleure que celle qui peut être obtenue actuellement pour le point d'ébullition du soufre, il semble souhaitable de substituer le point du zinc au point du soufre, en tant que point fixe primaire de l'Échelle Internationale de Température. On donne au point de solidification du zinc la valeur

419,505 5 ± 0,002° C.

(Mars 1958)

ANNEXE T 12

Institut de Métrologie D. I. Mendéléev (U. R. S. S.)

RECHERCHES SUR LA REPRODUCTIBILITÉ DE LA TEMPÉRATURE DE SOLIDIFICATION DU ZINC DE GRANDE PURETÉ (¹)

Par Ph. Z. ALIEVA

(Traduction)

Les exigences de la science et de l'industrie concernant la précision des mesures de température dans l'intervalle $o-630^{\circ}$ C ont sensiblement augmenté durant ces dernières années. Cependant, la reproductibilité de l'Échelle Internationale de Température elle-même ne permet pas d'assurer la précision désirée à cause de la présence, parmi les repères primaires, du point d'ébullition du soufre. La précision de la reproduction de ce point n'est pas suffisamment élevée (\pm 0,001 à 0,002 degré), et ne s'obtient que grâce à des conditions expérimentales compliquées dont la plùs accablante est de faire bouillir du soufre pendant presque 24 heures.

De telles conditions étant difficiles à réaliser dans la pratique journalière, on procède souvent à des mesures au point du soufre immédiatement après le début de l'ébullition. L'erreur sur la reproduction de ce point peut alors atteindre \pm 0,005 à 0,010 degré.

L'augmentation de la précision de la reproduction de l'échelle de température près de 400° C est possible, comme nous l'avons indiqué dans nos propositions antérieures [1], si l'on emploie la température de solidification du zinc au lieu de la température d'ébullition du soufre. L'utilité de ce remplacement doit être évidemment appuyée par des expériences effectuées dans les laboratoires nationaux. Actuellement des expériences correspon-

(1) Trud. Inst. Metrol. D. I. Mendeleev, nº 36 (96), 1958, p. 9.

dantes ont été faites au National Research Council, Canada, et à l'Institut de Métrologie Mendéléev de l'U. R. S. S.

L'Institut de Métrologie disposait d'échantillons de zinc provenant de différents gisements: du Canada, de Pologne et d'U.R.S.S. La pureté des échantillons et leur composition isotopique sont données dans le tableau I.

TABLEAU J.

Échantillons de zinc.

		Canada.		Pologne.		(Gisement du Kasakhstan-est).			
		C. P.	S. P.	Nº 4.	Nº ō.	N+ 1.	Nº 2.	Nº 3.	
Ċ.	(Pb	0,000 1	0,000 2	0,001	0.000.01	0,001	0,000 I	0,000 02	
en en	Fe	0,000 4	-	0,000 I	0,000 01	0.000 5	0,000 2	0,000 02	
enu etá	Cd	0,000 05	0,000 05	0,000 01	0,000 05	0,000 5	0,000 05	10 000.0	
ont	Cu	0,000 05	-	0,000 02	0,000 01	0,000 05	0,000.03	0,000 001	
.) imi	Sn	0,000 05	traces	- 34	-	-	72	0,000 002	
%).	64	50,2		18,7		19,1			
n () s	66	27,3		27,9		27,8			
ope	67	3,9		4,0		3,8			
Col solo	68	18,1		18,8		18,3			
en i	70	0,5		0,6		0,6			

APPAREILLAGE. — On a effectué la fusion de l'échantillon de zinc de 1200 g dans un creuset de graphite ayant un diamètre intérieur de 40 mm et une hauteur de 180 mm. Les creusets ont été fabriqués avec un graphite dont l'addition minérale est 0,003 %.

L'analyse spectrale a montré que la pureté du zinc au cours des expériences reste invariable.

Pour la chauffe du zinc on a employé deux fours de construction différente : l'un des fours était muni d'un gros bloc de cuivre pour uniformiser la température; l'autre, dans le même but, possédait un enroulement supplémentaire sur le tiers supérieur du four (*fig.* 1).

L'étude de la répartition de température des fours, effectuée à l'aide d'un thermocouple, a montré que cette répartition est uniforme dans les limites de \pm 0,2 deg sur une longueur plus grande que la hauteur du creuset (*fig.* 2 et 3). Dans la pratique, le four sans bloc de cuivre s'est montré plus efficace à cause de sa petite inertie thermique.

On effectuait les mesures avec les thermomètres à résistance du type P. G. Strelkov. La résistance du thermomètre a été mesurée à l'aide d'un potentiomètre qui, avec un galvanomètre de haute sensibilité, permet de mesurer la chute de potentiel avec une précision de 10^{-7} .

La chute de potentiel aux bornes du thermomètre à résistance immergé dans le zinc a été comparée à la chute de potentiel aux bornes d'une résistance étalon de construction spéciale. Cette résistance étalon, en forme de thermomètre à résistance, se trouve dans un thermostat au point triple de l'eau, grâce auquel on obtient une grande stabilité des mesures. On a choisi la valeur de la résistance étalon pour qu'elle soit égale, avec une précision de 0,01 %, à la résistance du thermomètre de platine à la température de solidification du zinc, ce qui diminue considérablement l'influence des erreurs du potentiomètre. Comme matériaux pour la bobine on a utilisé l'alliage or-chrome et la manganine; ces deux alliages ont donné des résultats satisfaisants.

Le thermostat a les dimensions suivantes :

Diamètr e du	tube	intérieur	60 1	mm
))))	extérieur	200	<i>3</i> 0
Longueur du	récip	pient	600	ж.

Le thermostat se trouve toujours dans un bain de glace, ce qui assure ainsi la conservation du manchon de glace (pendant un mois environ).

EXPÉRIENCES. — Pour la détermination de la température de solidification, le creuset avec le zinc placé dans un long tube de quartz a été disposé dans le four à l'emplacement où la température est la plus uniforme. Le creuset a été fermé par un couvercle sur lequel on a placé, l'une sur l'autre, quelques plaques en graphite. Le couvercle et les plaques sont pourvus d'un trou axial pour le puits thermométrique en quartz destiné à recevoir le thermomètre dans le métal fondu. L'emploi d'un puits en quartz est dû à la nécessité de préserver le thermomètre en cas d'apparition d'une fèlure de l'enveloppe au moment de l'immersion dans le métal fondu.

Les dimensions du puits sont telles que le jeu entre le puits et le thermomètre ne soit pas supérieur à 1 mm. Le puits a été immergé coaxialement dans le métal jusqu'au fond du creuset; il a été ensuite relevé de 10 à 20 mm et finalement fixé. Après avoir placé le thermomètre dans le puits et l'avoir connecté au dispositif de mesure, on a effectué le réglage du régime du four d'après les indications du thermomètre. Le zinc fondu a été refroidi jusqu'à une température supérieure de quelques degrés à celle de la solidification. Le métal restait ensuite pendant 15 à 20 min à une température pratiquement constante (la variation n'excédait pas 0,005 deg/min), puis il était refroidi lentement (0,2 à 0,3 deg/min) jusqu'à la température de solidification.

Afin d'éliminer les erreurs de mesure dues à l'instabilité de la résistance du thermomètre de platine, on a effectué des mesures au point triple de l'eau après chaque mesure de la résistance à la température de solidification du zinc, et l'on a jugé de la stabilité de t_{Zu} d'après le changement du rapport R_{Zu} $R_{P,T}$ pour le thermomètre donné.

Dans la pratique, lors de la réalisation de la température de solidification du zinc ou de tout autre repère, il y a toujours des variations des conditions expérimentales. Afin d'évaluer l'influence de ces variations sur la stabilité de la température $t_{Z_{11}}$, nous avons effectué des mesures dans des conditions considérablement différentes de celles adoptées pour le travail normal. Par exemple, la durée avant le palier de température était de 1 h dans une expérience et de 15 min dans une autre; la vitesse de refroidissement du métal avant le début du palier de température a varié dans les limites de 0,005 à 1,5 deg/min; la distance entre l'extrémité inférieure du thermomètre et le fond du creuset était de 10 à 40 mm. Les mesures ont été effectuées dans deux fours de constructions différentes, avec des creusets contenant 800, 1200, 2 000 g, etc., de métal.

Toutes ces expériences ont montré que les variations des conditions expérimentales n'influent pas sensiblement sur la reproductibilité de la température de solidification du zinc; dans quelques cas, on observait une diminution de la durée du palier de solidification. Mais si l'on considère que la durée du palier, dans des conditions normales, est voisine de 40 à 50 min, une certaine diminution de cette durée ne peut pas avoir alors une signification considérable.

L'étude de l'influence des variations de la pression atmosphérique sur la température de solidification du zinc a montré qu'elle est pratiquement inexistante.

La valeur de la température de solidification de l'échantillon

de zinc Nº 3 a été déterminée à l'aide de quatre thermomètres à résistance de platine, étalonnés aux points de fusion de la glace

à résistance de platine, étalonnés aux points de fusion de la glace (en employant le point triple de l'eau), d'ébullition de l'eau et du soufre. La valeur obtenue est 419,504° C (tableau II).

TABLEAU II.

Température de solidification de l'échantillon de zinc Nº 3.

	Thermomètre à résistance Nº						
Mesure No.	3.	51-9.	51-11.	51-13.			
l	119.501	119,506	419,499	419,506			
2	506	506	509	511			
3		507	508	510			
4		508	500	506			
S		508	199	507			
6		502	198	508			
7		504	499	505			
8		502	500				
9			199				
	Movenne :	$t_{7} = 410.5$	0400				

Les écarts entre les diverses valeurs numériques de la température de solidification du zinc données dans le tableau II, sont dus à une erreur considérable de l'étalonnage des thermomètres au point d'ébullition du soufre. C'est le moment de dire ici que la valeur 419,59° C obtenue pour t_{Z_0} à l'Institut de Métrologie en 1951 à la suite d'expériences dans le domaine de 400 à 1063° C, était certainement excessive. Cela s'explique non seulement par un abaissement de la température d'ébullition du soufre dans ces expériences, mais aussi par la présence possible d'une certaine quantité de fer et de cuivre dans l'échantillon de zinc employé dont les données sur la pureté n'ont malheureusement pas été conservées. Dans les recherches publiées par le National Research Council, Ottawa, sur la température de solidification des échantillons de zinc dont la pureté est identique à celle des échantillons employés dans le présent travail, la valeur obtenue, $t_{Z_{1}} = 419,505^{\circ}$ C, coïncide pratiquement avec notre résultat.

Pour ces expériences, notre laboratoire possédait sept échantillons de zinc de différentes puretés. On peut supposer que la pureté de tous les échantillons est suffisamment satisfaisante pour la réalisation du point fixe. Une telle supposition a été vérifiée par l'expérience. Pour chaque échantillon de zinc les valeurs $R_{Zn}/R_{P,T}$ ont été mesurées par le même thermomètre. Les valeurs moyennes de ces rapports pour chaque échantillon, obtenues par cinq ou six séries, sont données dans le tableau III. Les valeurs des températures de solidification de tous les échantillons, calculées d'après la détermination des écarts entre les valeurs moyennes des rapports $R_{Zn}/R_{P.T.}$ et la valeur du rapport mesuré par le même thermomètre sur l'échantillon N° 3, sont aussi données dans le tableau III.

TABLEAU III.

Échantillon	RZn/Rp.T.	^t Zn
Nº 1	2,566 664	419,503 7 °C
Nº 2	667	5046
Nº 3	665	504
Nº 4	663	503 4
Nº 5	666	5043
CP	668	504 8
SP	666	5043

La température de solidification des échantillons N° 1, N° 4 et S. P. coïncide pratiquement avec celle de l'échantillon N° 3. Quant à la valeur un peu plus élevée de la température des échantillons N° 2 et C. P., il est bien probable qu'elle soit due à des impuretés de fer. Il est vrai que l'échantillon N° 1 contient encore plus de fer, mais son influence peut être compensée par la présence d'une quantité considérable de plomb. Un calcul approximatif théorique, d'après la formule de Raoult-Van't Hoff, a montré que si un échantillon de zinc a des impuretés de divers métaux selon les pourcentages indiqués dans le tableau IV, chacun de ces métaux modifie alors la température de solidification du zinc de $o,000 \ 2 \ degré.$ Cependant, l'influence totale de tous les métaux énumérés dans le tableau IV peut être différente; cela dépend de leur proportion.

TABLEAU IV.

Fer	0,000 03 %
Cuivre	0,00004
Cadmium	0,000.06
Étain	0,000 07
Plomb	0,00011

On a observé la reproductibilité de la température de solidification du zinc durant treize mois. L'étude de chaque échantillon a été répétée tous les deux ou trois mois. Les résultats des mesures de l'échantillon N° 3 sont rapportés dans le tableau V.

Bien que la résistance du thermomètre ait augmenté au cours
des mesures, le rapport $R_{Zn}/R_{P.T.}$ est resté constant avec un écart moyen quadratique de $\pm 2.10^{-6}$, ce qui correspond pour la température de solidification du zinc à un écart moyen quadratique de \pm 0,000 5 deg. Quant à la reproductibilité de la température d'ébullition du soufre, on peut en juger d'après les résultats du tableau VI (²).

TABLEAU V.

Résistance du thermomètre de platine Nº 51-13 à la température de solidification du zinc (Échantillon Nº 3).

Mesure	I	Zn	R _{P.T.}	
Nº.	.(Ω).	(Ω).	RZn/RP.T.
1	25,	881 19	10,083 58	2,566 667
2		21	59	666
3		24	61	664
4		26	62	664
5		24	62	662
6		25	60	668
7		24	61	664
8		32	64	664
9		73	80	664
10		74	82	660
11		76	80	667
12		92	87	665
13		91	87	664
14		92	87	665
15		92	87	665
16		95	88	666
17		92	88	663
			Moyenne	2,566 665

TABLEAU VI.

Résistance des thermomètres de platine Nº5 51-7 et 51-13 à la température d'ébullition du soufre.

		Nº 51-7		Nº 51-13				
Mesure Nº.	R_{S} (Ω)	R _{P.T.} (Ω)	Rs/Rp.T.	$(\Omega)^{R_{S}}$	R _{P.T.} (Ω)	R _S /R _{P.T.}		
1	24,790 14	9,33782	2,654 810	26,760 56	10,083 96	2,653 775		
2	0 05	78	822	59 70	88	711		
3	I 20	88	907	60 47	79	811		
4	I 00	92	874	60 59	78	825		
ö	+	-	<u></u>	60 22	76	794		

(*) Les mesures ont été faites pendant le stade initial de l'ébulition du soufre.

L'expérience a montré que l'état d'équilibre entre le soufre liquide et sa vapeur est stable dans les limites de \pm 0,005 degré; entre les phases liquide et solide du zinc la stabilité est dans les limites de \pm 0,000 5 degré.

Les recherches effectuées dans les laboratoires métrologiques du Canada et de l'U. R. S. S. permettent de conclure que l'Échelle Internationale de Température peut être reproduite avec une précision plus grande, si l'on emploie la température de solidification du zinc comme point fixe primaire au lieu de la température d'ébullition du soufre.

En conclusion, on peut recommander aux laboratoires thermométriques d'utiliser dès à présent dans la pratique d'étalonnage la température de solidification du zinc, en attribuant provisoirement à cette température la valeur 419,504 ou 419,505° C.

Il nous semble que le moment soit venu d'augmenter l'intervalle des températures entre lequel on procède à des intercomparaisons internationales des échelles de température. Nous croyons indispensable de procéder, dans les prochaines années, à une seconde intercomparaison des thermomètres à résistance à la température de solidification du zinc.

Pour un meilleur accord ultérieur entre l'échelle pratique de température et l'échelle thermodynamique, il est nécessaire de déterminer la position du point du zinc dans l'échelle thermodynamique. Nous proposons de procéder à des mesures de la température de solidification du zinc par un thermomètre à gaz dans les différents laboratoires nationaux, en faisant coïncider la présentation des résultats de ces mesures avec la Onzième Conférence Générale des Poids et Mesures. L'Institut de Métrologie envisage d'effectuer une telle détermination en 1959.

Les recherches mentionnées dans ce Rapport ont été exécutées avec la collaboration de U. F. Phalberg (travaux expérimentaux et calculs), K. J. Bregmann (préparation du zinc pur), N. P. Groudinkina (contrôle de la pureté du zinc), G. E. Karstens, de l'Institut des problèmes physiques, Académie des Sciences de l'U.R.S.S. (détermination de la composition isotopique du zinc).

(Avril 1958)

BIBLIOGRAPHIE.

- [1] Procès-Verbaux C.I.P.M., 23-B, 1952, p. T 22.
- [2] MCLAREN (E. H.), J. Appl. Phys., 25, nº 6, 1954, p. 808.
- [3] PRESTON-THOMAS (H.), Temperature. Its measurement and controi... vol. 2, Reinhold Publ. Corp., New York, 1955, p. 169.

-

[4] McLAREN (E. H.), Can. J. Phys., 35, nº 1, 1957, p. 67-90.

ANNEXE T 13

National Research Council (Canada) National Bureau of Standards (États-Unis d'Amérique)

TEMPÉRATURE DU POINT DU ZINC ET COMPARAISON DE DEUX DÉTERMINATIONS DU POINT DU SOUFRE DANS UN APPAREIL FERMÉ

Par R. J. BERRY, E. H. McLAREN et J. L. RIDDLE

En 1954, on a déterminé au National Research Council la température du point du zinc en utilisant sept thermomètres étalonnés au N. B. S. aux points d'ébullition du soufre, de l'eau, et au point de glace; on a remarqué sur ces thermomètres une dispersion apparente de 0,01 deg pour le point du zinc, due probablement aux variations des constantes des thermomètres après l'étalonnage. Afin de repérer plus exactement la position du point du zinc sur l'Échelle Internationale de Température, on a mesuré ce point récemment à l'aide de six thermomètres étalonnés au N. R. C.; de plus, on a utilisé deux de ces thermomètres pour faire une comparaison entre les valeurs du point du soufre obtenues au N. R. C. et au N. B. S.

Les résultats des mesures effectuées au point du zinc sont les suivants :

							Т	AI	BLI	EA	υ	I		
Thermo	mėlı	·e.												Température du point du zinc sous 1 atmosphère plus 15 cm d'immersion.
S	156		243		in:							8		. 419,5056 °C
S	155												-	. 506 4
S	165													. <u>50</u> 5 5
S	178							÷						. 505.8
No	337					***								. 506 i
No	338	• • • •		• (*	• •	• •	• •	÷					4	. 506 2
						N É		y ar	en t	n In		y	eı	419,505 9 °C ± 0,000 3 deg

Étant donné que la pression hydrostatique de 15 cm de zinc correspond à une correction de + 0,000 4 deg, on obtient une valeur moyenne de 419,505 5° C pour le point de solidification du zinc sous une pression de 1 atmosphère.

On a observé les points triples de l'eau avant et après les mesures effectuées avec les six thermomètres de type Meyers aux points d'ébullition de l'eau, du soufre et au point du zinc. Le soufre avait bouilli pendant dix jours et avait atteint une température d'équilibre variant dans les limites de 0,001 deg par rapport à un échantillon de soufre antérieurement étudié. Le zinc utilisé était un échantillon (S 4) de 2 kg, en provenance de New Jersey (zinc du type S. P.), dont le point de solidification s'approchait à 0,000 2 deg près de celui du zinc pur en provenance de plusieurs autres sources. On trouvera dans les références [1] et [2] d'autres détails relatifs aux techniques expérimentales employées.

Les deux thermomètres N^{os} 337 et 338 ont été utilisés pour comparer les températures obtenues au N. R. C. et au N. B. S. pour le point du soufre. Ces deux laboratoires utilisent un ensemble fermé chaudière-manomètre. Le manomètre a une précision de 1 μ Hg; la chaudière est en aluminium et elle comporte deux rangées d'écrans de rayonnement autour des tubes rentrants pour le logement des thermomètres. A chaque laboratoire on a mesuré les résistances à l'aide d'un pont Mueller G 3 de Leeds et Northrup. On a d'abord contrôlé les thermomètres au N. R. C., puis au N. B. S., et de nouveau au N. R. C., le transport ayant été effectué à la main dans ce dernier cas. Les résultats figurent au tableau II. On notera que les deux bains de soufre ont bouilli pendant au moins dix jours avant d'être utilisés et que les résistances ont été extrapolées à un courant nul.

TABLEAU II.

Trailement

	Thermom	ètre Nº 337.	Thermomè	Recuit initial :	
	$R_{\mathfrak{o}}(\Omega)$.	R 111,6/R0.	$R_0(\Omega).$	R 115,6/R	29 f a 444°C. 6 h à 470°C.
N.R.C. (3-4-1958)	$\frac{)}{5}$ 25,456 895	2,656 021 6	25,462 721	2,655 792 3	2 h à 444ºC
N.B.S. (16-5-1958)) 7 006	028 3	8 <u>4</u> 5	797 I	5 h à 444ºC
N.R.C. (22-5-1958)) } 6940	022 5	755	789 o	2 h à 444°C
N.B.SN.R.C		63.10 ⁻⁷ ≃19.10 ⁻³ deg		65.10 ^{−7} ≃19.10 ⁻⁴ deg	

On peut constater que la variation de R_0 entre les deux mesures effectuées au N. R. C. était très petite, et que les deux thermomètres ont donné une différence de l'ordre de 0,001 9 deg entre les températures du point du soufre déterminées au N. R. C. et au N. B. S., la valeur du N. B. S. étant la plus élevée.

Si nous tenons compte de cet écart au point du soufre pour calculer la valeur du point du zinc au N. B. S., nous obtenons les points du zinc indiqués au tableau III qui semblent tous, apparemment, correspondre à une pression de 1 atmosphère plus 15 cm de pression de zinc.

TABLEAU III.

Laboratoire.	^t Zn [•]
*N.B.S. (États-Unis) 1952 environ [3]	119,505 °C
N.P.L. (Royaume-Uni) 1958 [4]	5 0 5 5
I.M. (U.R.S.S.) 1958 [3]	504 2
*N.B.S. 1958	504 4
N.R.C. (Canada) 1958	505 <mark>9</mark>
Vovenne	410 505 0 °C

^{*} Mesures du point du zinc effectuées au N.R.C. par McLaren et Murdoch.

Sous une pression de 1 atmosphère cette valeur moyenne devient 419,504 6° C.

(13 juin 1958)

8

BIBLIOGRAPHIE.

- [1] MCLAREN (E. H.), Can. J. Phys., 35, 1957, p. 1086.
- [2] BERRY (R. J.), Can. J. Phys., 36, 1958, p. 740.
- [3] MCLAREN (E. H.), Procès-Verbaux C.I.P.M., 24, 1954, p. T 162.
- [4] Ce volume, Annexe T 11, p. T 94.
- [5] ALIEVA (Ph. Z.), ce volume, Annexe T 12, p. T 102.

ANNEXE T 14

Bureau International des Étalons Physico-Chimiques (Belgique)

MÉMORANDUM

CONCERNANT LES REPÈRES DE TEMPÉRATURE

Par J. TIMMERMANS

Comme je l'ai indiqué lors de notre réunion de 1954 (Procès-Verbaux C. I. P. M., 24, 1954, p. T 173), les métalloïdes suivants conviennent mal comme repères de température : S, Se, Te, P, As, Sb. Ainsi qu'il résulte des recherches physico-chimiques, ces substances ont une constitution intime fort complexe qui se traduit notamment par l'apparition de formes polymorphes variées à l'état cristallin, stables ou métastables, avec par conséquent possibilité d'erreurs sur la température de fusion, et par le mélange intime de toutes ces formes isomériques dans le liquide, sans que l'équilibre entre elles soit facile à atteindre.

Pour le soufre, le mieux étudié de tous ces éléments, les recherches de Kruyt (Z. Phys. Ch., 64, 1908, p. 513 et 65, 1909, p. 486) ont bien mis en évidence ces difficultés : ainsi, la transformation isomérique catalysée positivement par des traces d'ammoniaque est bloquée par des traces d'anhydride sulfureux, qui se forment si facilement au contact de l'air. Il en résulte que la température d'ébullition de cette substance est également difficile à définir avec précision : dans son rapport (Annexe T 23, p. T 197), notre collègue H. F. Stimson signale lui-même qu'il faut que l'ébullition continue plusieurs jours pour atteindre une température constante; et il subsiste encore des corrections nécessitées par les pertes de rayonnement calorifique à cette température élevée.

Étant donné les remarquables résultats signalés dans le Rapport du National Research Council (Canada) concernant la température de congélation du zinc très pur (Annexe T 10, p. T 84), il me semble qu'il serait temps de remplacer comme repère principal la température d'ébullition du soufre, qui dépend en outre de la pression, par la température de congélation du zinc, qui en est pratiquement indépendante et se prête beaucoup plus facilement aux déterminations expérimentales.

Pour des raisons analogues, je propose de rayer de la liste des repères secondaires le point de fusion de l'antimoine, d'ailleurs relativement proche de celui de l'aluminium.

En résumé, il y a un siècle, lorsque les recherches de précision sur l'échelle thermométrique ont commencé à se développer, l'état des connaissances scientifiques rendait tout naturel le choix de tels éléments comme repères; mais il me semble aujourd'hui, en tant que physico-chimiste, qu'il serait impardonnable de s'obstiner dans cette direction.

(Mai 1958)

ANNEXE T 15

National Research Council (Canada)

RELATION TEMPÉRATURE - TEMPS DANS LA RÉALISATION DU POINT DU SOUFRE ET DU POINT TRIPLE DE L'EAU

Par R. J. BERRY

On a constaté que le soufre très pur doit bouillir pendant environ dix jours avant d'atteindre l'équilibre de température, et qu'au cours de cette période sa température tombe à environ o,oo8 deg au-dessous de sa valeur la plus élevée. Il semble que ce résultat soit indépendant de l'origine du soufre et de la composition du gaz qui est en contact avec lui. Cependant, la forme de la courbe température-temps dépend légèrement du comportement thermique du soufre, tandis que l'addition au soufre de petites quantités d'impuretés modifie la courbe profondément et provoque l'équilibre en quelques heures.

On a également constaté que les ampoules à point triple de l'eau dont on s'est servi ici, atteignent l'équilibre de température au bout d'une période pouvant aller jusqu'à deux jours après la formation initiale de l'interface glace-eau. Au cours de cette période la température peut changer de 0,000 3 deg environ; par la suite, la température reste constante dans les limites de l'erreur expérimentale.

POINT DU SOUFRE. — En 1955, Stimson [1] a fait savoir que pendant la première journée d'ébullition la température d'un bain de soufre décroît d'environ 0,01 deg, et qu'à la fin de la journée elle atteint son équilibre. Il n'a pas pu expliquer ce phénomène, mais il a pensé qu'il n'était pas dû aux impuretés contenues dans le soufre. On a observé ici un effet quelque peu semblable.

L'appareil utilisé est fondamentalement semblable à celui que Stimson a construit. Il comporte un ensemble fermé chaudièremanomètre; le manomètre a une précision de 1µHg et la chaudière est construite en aluminium avec deux écrans de protection contre les rayonnements autour des puits thermométriques. On a mesuré les températures avec deux thermomètres à résistance de platine recuits, du type Meyers (S 165 et S 178); on s'est servi du S 165 pour obtenir la partie principale de la courbe, et du S 178 seulement avec parcimonie pour vérifier la température finale d'équilibre. Les deux thermomètres ont été maintenus à la température du soufre le moins longtemps possible, afin d'éviter un changement de leurs coefficients thermiques. Toutes les mesures de résistance ont été extrapolées à un courant nul et on a effectué un contrôle au point triple de l'eau avant et après chaque mesure. On donne ailleurs [2] la description du pont de Mueller et du détecteur employés.

Le soufre utilisé pour l'établissement des courbes de la figure 1 a été fourni par la « Texas Gulf Sulphur Company » et sa pureté était de 99,99 %. On l'a purifié davantage au moyen du procédé Bacon et Fanelli [3] (ce qui a permis de le débarrasser d'une bonne quantité d'impuretés organiques) et on l'a finalement dégazé sous vide dans la chaudière.

Les courbes de la figure 1 ont été obtenues en portant le soufre de la température de la pièce à celle du point d'ébullition en 1,7 heure environ, sous une pression de 1 atmosphère du gaz indiqué. Pour l'hélium (essai 1) et l'air on avait tout d'abord refroidi le soufre à partir du point d'ébullition sous 1 atmosphère de gaz; pour l'azote et l'hélium (essai 2) le refroidissement avait eu lieu seulement sous la pression de la vapeur du soufre. On remarquera que cela a eu pour effet d'éliminer l'accroissement initial de la température mais que, par ailleurs, il en est résulté un comportement très semblable dans les quatre cas. Cependant, dans le cas de l'air et de l'azote, la température d'équilibre (toutes les corrections appropriées de pression hydrostatique étant faites) semble être d'environ 0,002 deg plus élevée que pour les essais avec l'hélium.

Une autre expérience effectuée avec la même charge de soufre a consisté à porter le soufre à la température d'équilibre, à le laisser ensuite refroidir jusqu'à 315° C sous une pression de latmosphère pendant 24 heures, puis à le porter de nouveau au point d'ébullition. Trente minutes après le début de l'ébullition la température était de 0,004 deg supérieure à la température d'équilibre, ce qui correspond à une durée de 35 heures sur la courbe température-temps; par la suite, l'évolution était la même que dans les essais précédents.

Auparavant, on avait purifié davantage un soufre d'une provenance différente (Fielding Chemical Company) et dont la pureté était de 99,99 %. On s'en est servi pour établir quatre autres courbes température-temps avec l'hélium; ces courbes ont été presque identiques à celles de l'hélium (essai 1) de la figure 1.

Une des premières charges de soufre a été accidentellement contaminée par sa vapeur entrée en contact avec un tube en alliage de cuivre, de nickel et de zinc. Ce soufre contaminé a semblé atteindre son équilibre de température au bout de dix heures dans chacun des deux essais suivants, et sa température d'ébulli-

Fig. 1. — Rapport entre la résistance au point du soufre et la résistance au point de glace en fonction de la durée d'ébullition du soufre. (Les quatre courbes ont été établies avec le thermomètre S 165.) En abscisses : durée de l'ébullition, en heures.

En ordonnées : R_{111.6}/R₀.

Ordre chronologique des essais :

O Hélium (essai 1);
△ Air;
× Azote;
Hélium (essai 2).

tion n'a pas changé de plus de 0,002 deg au cours des soixantedix heures qui ont suivi l'établissement de l'équilibre de température.

On a indiqué [4] que l'établissement d'un équilibre entre les différents états allotropiques du soufre s'établit rapidement dans la phase vapeur, mais qu'il est lent dans la phase liquide. Dans cette dernière, la présence d'ammoniaque ou de composés basiques accélère ce processus, tandis que l'anhydride sulfureux et les composés acides le ralentissent. Il paraît probable que le processus d'établissement de l'équilibre allotropique et les influences des gaz et des impuretés dissous sur ce processus, sont la cause du comportement mentionné plus haut. En dépit du fait que la température mesurée est presque certainement celle de l'interface liquide condensé-vapeur plutôt que celle de l'interface liquide en évaporation-vapeur, ce liquide provenant de la condensation n'est probablement pas resté assez longtemps sous forme de vapeur pour que sa composition allotropique soit indépendante de celle du liquide d'où il s'était évaporé.

Les travaux dont il est question ici permettent de penser que si l'on fait bouillir le soufre sous une pression d'hélium pendant environ 10 jours, le point du soufre peut alors être reproduit à 0,001 deg ou mieux.

POINT TRIPLE DE L'EAU. — Au cours des dernières années on a soupçonné qu'un certain temps s'écoule entre la formation initiale d'un manchon de glace dans une ampoule à point triple de l'eau et l'établissement d'un équilibre de température. En 1954, Barber [5] a noté sur deux ampoules une augmentation de 0,000 I deg au cours de la première journée, mais il a pensé que cela était peut-être dù à l'insuffisance des instruments. McLaren [6] avait également remarqué que certaines ampoules semblent avoir une température légèrement plus basse que la température normale le premier jour qui suit leur préparation; c'est pourquoi il attendait généralement un jour avant de se servir des ampoules.

Les ampoules utilisées pour la présente étude étaient en verre pyrex. Certaines ont été fabriquées à notre laboratoire, les autres provenaient de maisons commerciales; leur âge variait de quelques mois à quatre ans. Les manchons de glace étaient formés autour du puits thermométrique par un refroidissement rapide provoqué à l'intérieur du puits à l'aide d'anhydride carbonique solide. Avant chaque mesure thermométrique, on faisait fondre une très légère pellicule de glace autour du puits. Toutes les mesures de résistance obtenues au moyen d'un thermomètre Meyers à résistance de platine ont été extrapolées à un courant nul. On trouvera ailleurs la description de la méthode de mesure [2].

La figure 2 montre la reproductibilité du point triple pour un certain nombre de manchons de glace dans deux ampoules sur une période d'un mois. On a mesuré les résistances aux points triples ($R_{P,T}$) avec un seul thermomètre (S 163), 10 µΩ correspondant à 0,000 1 deg. Un manchon de glace sur l'ampoule Nº 116 a donné un écart moyen d'environ 1 µΩ pendant une période de 27 jours. Au cours de la même période, à chacune des cinq nouvelles formations d'un manchon de glace sur l'ampoule Nº 117, $R_{P,T}$ a augmenté d'environ 10 à 30 µΩ entre la deuxième et la cinquantième heures après la formation du manchon. On a étudié particulièrement ce changement initial de température, quinze fois avec l'ampoule Nº 117 et seize fois avec sept autres ampoules. On peut voir sur la figure 3 quelques-unes des courbes obtenues. Tous les résultats pourraient se situer entre

Fig. 3. — Variations initiales de la température en fonction du temps dans trois ampoules à point triple de l'eau. En abscisses : âge du manchon de glace, en heures. les courbes extrêmes indiquées sur cette figure. La très grande augmentation de température (0,000 6 deg) pour l'une des courbes obtenues avec l'ampoule Nº 117 n'a jamais pu être reproduite; il n'est donc pas impossible qu'une erreur instrumentale ait contribué à l'établissement de cette courbe. L'allure et l'importance de ce changement initial de température dépendent dans une certaine mesure de l'ampoule utilisée. On a constaté, dans certaines ampoules, des changements dans la valeur d'équilibre de $R_{P,T}$, allant jusqu'à 8 $\mu\Omega$ lorsque, dans une ampoule donnée, on dégèle le manchon de glace et qu'on le remplace par un autre. Il fallait, en général, de 20 à 50 heures pour que les ampoules atteignent l'équilibre.

Afin de définir la cause de ce changement initial de la température on a effectué un certain nombre d'expériences avec l'ampoule Nº 117. On a formé des manchons de glace à des vitesses différentes (variant selon un facteur 7), d'épaisseurs différentes (variant selon un facteur 3) et de longueurs différentes (variant selon un facteur 2). On a fait fondre le manchon de glace autour du puits thermométrique sur une épaisseur atteignant jusqu'à 3 mm, et jusqu'à une profondeur d'environ 15 cm, à partir du niveau de l'eau. On a mélangé l'eau dans les ampoules en les renversant et en les faisant tourner, à la fois avant et après la congélation; le manchon de glace a été déplacé le long du tube thermométrique de telle sorte qu'on a pu aspirer et refouler l'eau dans la cavité située entre l'intérieur du manchon et le fond du puits. Ces manipulations n'ont donné lieu à aucune modification importante ou reproductible dans la forme de la courbe température-temps, ou dans l'équilibre thermique final. Il est toutefois difficile de déterminer l'importance des petits changements qui se produisent dans la courbe, par suite de la petitesse de l'effet total et de la différence de comportement des diverses ampoules.

Le mécanisme auquel est attribué ce comportement peut comprendre la diffusion des impuretés, les déformations (c'est-àdire les défauts des cristaux) dans la glace ou les changements de la concentration de D_2O dans les diverses parties de la glace. Étant donné que la température peut augmenter ou diminuer avec le temps, il apparaît qu'au moins deux processus soient nécessaires.

Il semble que pour les travaux de très haute précision la formation du manchon de glace doit être faite au moins 50 heures avant l'utilisation de l'ampoule.

(Juin 1958)

BIBLIOGRAPHIE.

 STIMSON (H. F.), Temperature; its measurement and control in science and industry, vol. 2, Reinhold, 1955, p. 141. [2] BERRY (R. J.), Can. J. Phys., 36, 1958, p. 740.

[3] BACON (R. F.) et FANELLI (R.), Industr. Engng. Chem., 34, 1942, p. 1043.

- [4] Sulphur Data Book, McGraw-Hill, 1954, p. 6.
- [5] BARBER (C. R.), HANDLEY (R.) et HERINGTON (E. F. G.), Bril. J. Appl. Phys., 5, 1954, p. 41.

1

[6] MCLAREN (E. H.), Can. J. Phys., 35, 1957, p. 78.

ANNEXE T16

Deutsches Amt für Mass und Gewicht (Allemagne)

SUR LA TEMPÉRATURE DE LUMINANCE MONOCHROMATIQUE DU RADIATEUR IMMERGÉ AU POINT DE L'OR

Par H. WAGENBRETH

(Traduction)

Comme on le sait, l'échelle de température au-dessus du point de fusion de l'or (1063° C) repose sur le rayonnement d'un corps noir, le rayonnement du corps noir à la température du point de fusion de l'or étant pris comme référence [1]. En pratique, le rattachement du pyromètre optique au point de l'or s'effectue souvent avec une enceinte rayonnante (radiateur) sphérique en porcelaine Marquardt munie d'un col conique [2], cette enceinte étant immergée dans l'or en fusion (fig. 1).

1. NOIRCEUR DU RADIATEUR IMMERGÉ. — Un tel radiateur n'est cependant pas complètement noir. L'absorption d'une sphère creuse munie d'une petite ouverture sans col est, d'après Ribaud,

(1) $I - \rho \frac{\Omega}{\pi} - \rho^2 \frac{\Omega}{\pi} - \dots = I - \frac{\rho}{1 - \rho} \frac{\Omega}{\pi},$

où ρ est le facteur de réflexion de la paroi de la sphère, et Ω l'angle solide sous lequel l'ouverture est vue de la paroi opposée.

Des formules plus précises pour le calcul de la luminance de l'enceinte rayonnante ont été données sous une forme plus générale par De Vos [3]. Leur application à la sphère creuse avec col exigerait cependant de longs calculs qui ne valent pas la peine d'être faits; ils ne conduiraient qu'à une amélioration insignifiante des résultats obtenus par les approximations suivantes.

Le facteur d'absorption d'un radiateur immergé constitué par une sphère creuse munie d'un col est sans aucun doute plus grand que celui d'une sphère creuse sans col. La partie de la lumière incidente qui s'échappe après une seule réflexion à l'intérieur de la sphère n'est certes pas affectée par le col; mais les

Fig. 1. — Radiateur pour la réalisation du point de l'or d'après la méthode du creuset.

rayons lumineux qui ne sortent qu'après des réflexions multiples rencontrent pour la plupart le col et y sont en partie absorbés. Pour cette raison, on obtient une meilleure valeur approchée du facteur d'absorption de la sphère creuse avec col si l'on néglige, dans l'équation (1), les réflexions multiples représentées par les termes en ρ de puissance supérieure à 1; c'est du reste ce qu'avait déjà fait Ribaud pour la sphère creuse sans col. On a ainsi, pour le facteur d'absorption du radiateur immergé, la valeur approchée

$$(1 a) 1 - \varphi \frac{\Omega}{\pi}.$$

Le calcul se poursuit alors selon Ribaud, et montre que la température de luminance monochromatique d'un tel radiateur immergé est plus basse que la température vraie de la paroi intérieure de la sphère de

(2)
$$\Delta_1 \mathbf{T} = \frac{\lambda \mathbf{T}^2}{\mathbf{C}_2} \, \varphi \, \frac{\Omega}{\pi} = \frac{\lambda \mathbf{T}^2}{4 \, \mathbf{C}_2} \, \varphi \, \frac{d^2}{\mathbf{D}_\ell^2},$$

où λ est la longueur d'onde du rayonnement monochromatique utilisé, $C_2 = 1,438$ cm. degré, d est le diamètre de l'ouverture et D_i le diamètre intérieur de la sphère.

En admettant que la partie de la lumière réfléchie qui est à l'origine de l'expression (1*a*) soit fausse de 30 %, les erreurs sur les valeurs Δ_1 T (tableau I) n'atteignent au maximum que \pm 0,1 degré et ne dépassent donc pas l'incertitude des mesures. On a renoncé pour cette raison à un calcul plus précis suivant les formules de De Vos.

2. ÉNERGIE RAYONNÉE PAR L'OUVERTURE DU CÔNE. — L'équation (2) donne l'écart entre la température de luminance monochromatique du radiateur et la température vraie de la paroi intérieure de la sphère. Cependant, en raison de l'énergie rayonnée, il existe dans la paroi de la sphère une chute de température qui intervient également dans l'écart entre la température mesurée au pyromètre et la température du métal en cours de solidification.

Le flux d'énergie qui s'échappe à travers l'ouverture supérieure du cône a pour valeur

où $\tau = 5,77.10^{-4}$ W.cm⁻².deg⁻⁴ est la constante de Stefan-Boltzmann; la signification des autres grandeurs est indiquée à la figure 1.

L'énergie traversant la paroi de la sphère est

(4)
$$K \frac{\pi D_i D_a}{l} \Delta_2 T$$

où K est le coefficient de conductibilité calorifique, D_i et D_a sont les diamètres intérieur et extérieur, l est l'épaisseur de la paroi.

Le bilan énergétique calculé à l'aide de (3) et (4) donne pour

la chute de température dans la paroi de la sphère

(5)
$$\Delta_2 \mathbf{T} = \frac{\sigma}{1 \mathbf{K}} \mathbf{T}^3 \frac{\ell d^2 \operatorname{tg}^2 \mathbf{z}}{\operatorname{D}_\ell \operatorname{D}_u \left(\mathbf{I} - \frac{\hbar}{\Pi}\right)^2},$$

cette chute de température étant provoquée par l'énergie perdue à travers l'ouverture du cône.

Les corrections de température qu'on obtient avec cette formule n'atteignent que quelques centièmes de degré (voir tableau I). Une correction analogue est déjà indiquée par Ribaud [2], mais elle donne une valeur environ quatre fois plus grande parce qu'elle tient compte d'une manière approchée d'une partie du rayonnement qui frappe la paroi du cône. Gouffé [4] fait intervenir en plus les différences de température sur la surface intérieure de la sphère; pour le radiateur considéré ici, on n'obtient ainsi qu'une correction de quelques centièmes de degré à cause de l'existence du col. Les valeurs expérimentales obtenues récemment par Tingwaldt et Kunz [5] pour les corrections de température applicables aux mesures pyrométriques avec un radiateur immergé sont cependant notablement plus importantes. L'explication qu'on peut donner à cela est que l'énergie rayonnée par la sphère sur la paroi du tronc de cône, et dont on n'a pas tenu compte suffisamment jusqu'à présent, est importante. Cette énergie est calculée dans le paragraphe suivant.

3. ÉNERGIE RAYONNÉE PAR LA SPHÈRE SUR LA PAROI DU TRONC DE CÔNE. — L'énergie transportée par rayonnement d'un élément P_1 , d'aire df_1 , à un élément P_2 , d'aire df_2 , situé à la distance R de P_1 , est

(6) $\frac{\varepsilon_1\varepsilon_2}{\pi}\sigma(\mathbf{T}_1^1-\mathbf{T}_2^1)\frac{\cos\psi_1\cos\psi_2}{\mathbf{R}^2}df_1\,df_2,$

où ψ_1 et ψ_2 sont les angles formés par la droite joignant les deux 'éléments et la normale à chaque élément, et z est le pouvoir émissif.

Dans notre cas, on doit intégrer l'expression (6) d'abord sur l'ouverture de la sphère, et ensuite sur la surface du tronc de cône; on obtient ainsi

(7)
$$Q = \frac{\varepsilon_1 \varepsilon_2}{\pi} \sigma \int_{F_1} \int_{F_2} (T_1^* - T_2^*) \frac{\cos \psi_1 \cos \psi_2}{R^2} df_1 df_2.$$

Ce faisant, on considère que la surface F_2 du cône rayonne aussi sur la surface F_1 de l'ouverture de la sphère. On ne tient pas compte du fait qu'une partie du rayonnement qui sort de la sphère se réfléchit sur la paroi du cône, et qu'une partie de ce rayonnement réfléchi retombe sur l'orifice de la sphère; ce rayonnement réfléchi est toutefois très faible en raison de la petitesse de l'orifice de la sphère, et il peut être négligé ici. La température T_1 sur la surface F_1 de l'ouverture de la sphère est uniforme. Lorsqu'on limite la surface F_2 à une étroite zone de la surface du cône comprise entre les niveaux $z = H_2$ et $z = H_3$, sa température T_2 peut être considérée comme uniforme. Il est alors possible de sortir la quantité $(T_1^* - T_2^*)$ de l'intégrale (7); cette intégrale devient une grandeur géométrique pure que nous désignerons par I et que nous devons d'abord calculer. Soit (voir fig. 1 pour la signification des notations employées; les calculs intermédiaires sont omis)

(8)
$$R^{2} = r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}\cos(\varphi_{1} - \varphi_{2}) + \left(\frac{r_{2}}{\lg \alpha} - h\right)^{2},$$

(9)
$$\cos \psi_1 = \frac{\frac{12}{\lg \alpha} - h}{R}$$

(10)
$$\cos \psi_2 = \frac{\cos \alpha}{\Re r_2} [hr_2 \operatorname{tg} \alpha - r_1 r_2 \cos(\varphi_1 - \varphi_2)],$$

(11)
$$\Gamma_{23} = \int_{0}^{\frac{1}{2}} dr_{1} \int_{0}^{2\pi} r_{1} d\varphi_{1} \int_{\Pi_{2} \lg \alpha}^{\Pi_{3} \lg \alpha} dr_{2} \int_{0}^{2\pi} r_{2} d\varphi_{2} \\ \times \frac{\left(\frac{r_{2}}{\lg \alpha} - h\right) \frac{\cos \alpha}{r_{2}} \left[hr_{2} \lg \alpha - r_{1} r_{2} \cos(\varphi_{1} - \varphi_{2})\right]}{\left[r_{1}^{2} + r_{2}^{2} - 2r_{1} r_{2} \cos(\varphi_{1} - \varphi_{2}) + \left(\frac{r_{2}}{\lg \alpha} - h\right)^{2}\right]^{\frac{1}{2}}}$$

Pour simplifier les calculs ultérieurs, nous tenons compte de l'inégalité

(12)
$$r_1^2 - 2r_1r_2\cos(\varphi_1 - \varphi_2) \ll r_2^2 + \left(\frac{r_2}{\lg \alpha} - h\right)^2$$
,

qui n'est en défaut que pour les points situés sur le cône au voisinage immédiat de l'ouverture de la sphère; le résultat final n'est pas affecté par cette simplification.

On intègre d'abord par rapport à r_1 . Dans ce calcul, le diamètre d de l'ouverture de la sphère peut être plus petit que $d_{\max} = 2h \operatorname{tg}\alpha$, pour le cas où l'on réduirait l'ouverture à l'aide de diaphragmes circulairés. On intègre ensuite par rapport à $\overline{\gamma}_1$ et $\overline{\gamma}_2$, chaque fois de o à 2π , ce qui conduit à

(13)
$$\int_{23} = \frac{\pi^2}{2} d^2 h \sin \alpha \int_{\Pi_2 \log \alpha}^{\Pi_2 \log \alpha} dr_2 \frac{\frac{r_2^2}{\log \alpha} - hr_2}{\left[\frac{r_2^2}{\sin^2 \alpha} - 2\frac{hr_2}{\log \alpha} + h^2\right]^{\frac{1}{2}}}$$

Le plus simple est de calculer cette intégrale à l'aide d'une table [6], et l'on obtient, en tenant compte de $\alpha \ll 1$,

(14)
$$I_{23} = \frac{\pi^2}{2} d^2 h \sin \alpha \left[\frac{h - \Pi_3 \sin^2 \alpha}{(\Pi_3 - h)^2 + \Pi_3^2 t g^2 \alpha} - \frac{h - \Pi_2 \sin^2 \alpha}{(\Pi_2 - h)^2 + \Pi_2^2 t g^2 \alpha} \right].$$

L'énergie rayonnée par l'ouverture de la sphère sur la zone annulaire du cône a donc la valeur

(15)
$$Q_{23} = \frac{\pi}{2} \varepsilon_1 \varepsilon_2 \sigma \, d^2 h \, \sin \alpha \Big[\, \mathbf{T}_1^1 - \mathbf{T}_2^1 \big(\, \widetilde{\mathbf{H}} \big) \Big] \\ \times \left[\frac{h - \mathbf{H}_3 \sin^2 \alpha}{(\mathbf{H}_3 - h)^2 + \mathbf{H}_3^2 \, \mathrm{tg}^2 \alpha} - \frac{h - \mathbf{H}_2 \sin^2 \alpha}{(\mathbf{H}_2 - h)^2 + \mathbf{H}_2^2 \, \mathrm{tg}^2 \alpha} \right],$$

où \tilde{H} est une valeur comprise entre H_2 et H_3 . Par le passage à la limite $H_3 \rightarrow H_2$ et l'intégration correspondante par rapport à H, et en supprimant l'indice 2, on obtient pour l'énergie rayonnée par l'ouverture de la sphère sur le tronc de cône

(16)
$$Q = \pi \varepsilon_1 \varepsilon_2 \sigma d^2 h^2 \sin \alpha \int_h^H [T_1^4 - T_2^4(H)] \\ \times \frac{H(1 + tg^2 \alpha) - h\left(1 - \frac{tg^2 \alpha}{2}\right)}{[(H - h)^2 + H^2 tg^2 \alpha]^2} dH.$$

Cette énergie doit aussi être fournie par le métal par passage à travers la paroi de la sphère

(17)
$$Q = K \frac{\pi D_l D_a}{l} \Delta_3 T.$$

L'égalité des quantités (16) et (17) qui représentent l'énergie rayonnée sur la paroi du col conique du radiateur immergé, donne pour la chute de température dans la paroi de la sphère

(18)
$$\Delta_{3} T = \frac{\varepsilon_{2} \sigma}{K} \frac{d^{2} l h^{2} \sin \alpha}{D_{l} D_{a}} \int_{h}^{H} (T^{1}_{1} - T^{1}_{2}) \frac{H(I + Ig^{2} \alpha) - h\left(I - \frac{Ig^{2} \alpha}{2}\right)}{[(H - h)^{2} + H^{2} Ig^{2} \alpha]^{2}} dH,$$

en posant $\varepsilon_1 = 1$.

4. CALCUL NUMÉRIQUE ET VÉRIFICATION EXPÉRIMENTALE. — Il faut calculer maintenant l'influence de la grandeur de l'ouverture de la sphère sur la température mesurée au pyromètre au point de l'or. Les calculs et nos résultats de mesures se rapportent aux radiateurs fournis par la Staatlichen Porzellanmanufaktur, Berlin, pour lesquels

$$\begin{array}{lll} D_l = 1,8 \ \ cm, & \alpha = \ 2^{\circ} 3o', \\ D_a = 2,2 \ \ cm, & h = \ 5,2 \ cm, \\ l = 0,2 \ \ cm, & H = 17,4 \ \ cm. \\ d = 0,45 \ \ cm, \end{array}$$

Le facteur de réflexion de la porcelaine Marquardt a pour valeur, d'après Ribaud [2], $\rho = 0.5$. Pour le pouvoir émissif total à 1063° C, nous avons pris la valeur $\varepsilon = 0.7$, d'après les mesures de Sieber [7].

La température de la paroi du cône a été mesurée avec un thermocouple Pt/Pt-Rh; elle est donnée à la figure 2.

Le résultat du calcul numérique est donné au tableau suivant

TABLEAU I.

Écart entre la température de luminance monochromatique du radiateur immergé et la température de l'or en fusion.

d	$\Delta_{i} T$	$\Delta_{z} T$	Δ_{a} T	ΔT_{total}
(cm).	(degré).	(degré).	(degré).	(degré).
0,1	0,01	0,00	0,07	0,08
0,15	0,04	0,00	0,16	0,20
0,2	0,07	0,00	0,29	0,36
0,3	0,15	0,01	0,64	0,80
0,4	0,27	0,01	1,14	1,42
0,45	0,34	0,02	1,44	1,80
о,6	0,60	0,03	3,54	4,17

On voit ainsi que $\Delta_3 T$ représente la plus grande partie de la correction totale. Les valeurs calculées sont en bon accord avec les valeurs mesurées par Tingwaldt et Kunz [5] et par nousmêmes (*fig.* 3). Pour ces mesures, on a fait varier le diamètre de l'ouverture de la sphère de 0,1 à 0,45 cm, au moyen de diaphragmes circulaires en porcelaine de Marquardt et en stéatite placés sur l'ouverture de la sphère.

Dans ces mesures, on s'assurait que l'image de l'ouverture des diaphragmes, suffisamment agrandie, était seule visible dans le pyromètre, afin qu'aucune erreur de pointé ne soit causée par la luminance différente de la zone entourant le champ de mesure.

Pour le diamètre d'ouverture 0,6 cm, la formule (18) n'est pas directement utilisable, car elle n'est valable que pour $d \leq 2h$ tg α , h étant fixe. Pour calculer Δ_3 T avec une valeur

Fig. 3. — Variation de la température de luminance monochromatique en fonction du diamètre de l'ouverture du radiateur au point de l'or.

plus grande de d, nous devons, dans (18), remplacer h par sa valeur exprimée en fonction de d

(19)
$$h = \frac{d}{2 \lg \alpha}.$$

De plus, nous comptons maintenant H à partir de l'ouverture de la sphère; nous introduisons alors

(20)
$$\mathbf{H} - \frac{d}{2\lg\alpha} = \mathbf{H}^* \quad (d\mathbf{H} = d\mathbf{H}^*)$$

comme nouvelle variable, puis nous supprimons l'astérisque. De (18) nous tirons ainsi

(18*a*)
$$\Delta_{3}T = \frac{\varepsilon_{2}\sigma}{4K} \frac{d^{4}}{D_{l}D_{a}} \frac{l}{\mathrm{tg}\alpha} \int_{0}^{11} (T_{1}^{4} - T_{2}^{4}) \frac{\mathrm{H}(1 + \mathrm{tg}^{2}\alpha) + \frac{3}{4}d\mathrm{tg}\alpha}{\left[\mathrm{H}^{2} + \left(\mathrm{H}\mathrm{tg}\alpha + \frac{d}{2}\right)^{2}\right]^{2}} d\mathrm{H}.$$

L'expression (18*a*) est maintenant valable pour un radiateur de dimension quelconque, mais sans diaphragme. Elle donne également des valeurs en bon accord avec les valeurs expérimentales.

Dans nos mesures sur l'influence de l'ouverture de la sphère, reproduites à la figure 3, la surface du bain d'or se trouvait à 7 ou 8 mm au-dessus de la sphère.

En outre, pour la plus grande ouverture du radiateur (d = 0.45 cm), on a mesuré la relation entre la température de

Fig. 4. — Variation de la température de luminance monochromatique en fonction de la profondeur d'immersion du radiateur au point de l'or.

luminance monochromatique et la profondeur d'immersion (fig. 4); on a établi que l'extrapolation pour une très grande profondeur d'immersion conduit à un résultat identique à celui de l'extrapolation pour une très petite ouverture de la sphère, comme cela doit être.

5. CONCLUSION. — Il est ainsi établi théoriquement et expérimentalement que des corrections doivent être appliquées pour le rattachement du pyromètre optique au point de congélation de l'or au moyen d'un radiateur immergé; dans le cas des mesures au Physikalisch-Technische Zentralinstitut ces corrections atteignaient au total 1,8 deg; elles ne peuvent pas être négligées étant donné que la précision actuelle de telles déterminations est de \pm 0,2 deg.

Je remercie C. Tingwaldt et H. Kunz pour leurs encouragements et leurs conseils au cours de ce travail, ainsi que mes collègues, en particulier F. Böttcher, pour l'exécution consciencieuse des nombreuses mesures.

(20 juin 1958)

BIBLIOGRAPHIE.

[1] HENNING (F.), Temperaturmessung, Leipzig, 1951.

[2] RIBAUD (G.), Traité de Pyrométrie Optique, Paris, 1931.

[3] DE Vos (J. C.), Physica, 20, 1954, p. 669.

[4] GOUFFÉ (A.), Rev. Oplique, 24, 1945, p. 1.

[5] TINGWALDT (C.) et KUNZ (H.), Wiss. Abh. P.T.B., 9-1, 1957, p. 32.

[6] MEYER ZUR CAPELLEN (W.), Integraltafein, Berlin, 1950.

[7] SIEBER (W.), Z. Techn. Phys., 22, 1941, p. 130.

ANNEXE T 17

National Research Council (Canada) National Bureau of Standards (États-Unis d'Amérique) Physikalisch-Technische Bundesanstalt (Allemagne) Deutsches Amt für Mass und Gewicht (Allemagne)

RAPPORT SUR L'ÉTALONNAGE DE DEUX LAMPES ÉTALONS SECONDAIRES A RUBAN DE TUNGSTÈNE PAR QUATRE LABORATOIRES NATIONAUX

Par D. R. LOVEJOY (N. R. C.), H. J. KOSTKOWSKI (N. B. S.), H. KUNZ (P. T. B.), H. WAGENBRETH (D. A. M. G.)

(Traduction)

Résumé. — Deux lampes à ruban de tungstène ont été soigneusement étalonnées, l'une dans le domaine $800-1400^\circ$ C et l'autre dans le domaine $1300-2200^\circ$ C, dans chacun des quatre laboratoires nationaux suivants : D. A. M. G., N. B. S. (deux étalonnages), N. R. C. (deux étalonnages) et P. T. B. De plus, un étalonnage courant a été effectué dans un cinquième laboratoire, le National Physical Laboratory, Teddington, Royaume-Uni. Pour chaque lampe, les étalonnages en température de luminance en fonction du courant ont été ramenés à une série commune de longueurs d'onde. Une analyse des résultats montre que l'accord est satisfaisant entre les laboratoires dans le domaine $1063-2200^\circ$ C de l'Échelle Internationale de Température. A chaque température, l'écart-type de la moyenne des sept étalonnages est inférieur ou égal à 1,2 deg dans le domaine $800-1400^\circ$ C et à 2,9 deg dans le domaine $1300-2200^\circ$ C. On ne peut probablement pas espérer mieux avec les méthodes actuelles.

1. Description générale des lampes et de la méthode d'étalonnage.

Deux lampes étalons secondaires à ruban de tungstène de fabrication anglaise, l'une à vide (N° 421) pour le domaine 800 à 1400° C, l'autre à atmosphère gazeuse (N° 242) pour le domaine

1300 à 2 200° C, ont été étalonnées dans chacun des quatre laboratoires nationaux suivants : D. A. M. G., N. B. S. (deux étalonnages), N. R. C. (deux étalonnages) et P. T. B. De plus, un étalonnage courant a été effectué dans un cinquième laboratoire, le N. P. L.

Chaqué lampe était étalonnée en position verticale du ruban, le réglage étant effectué à l'aide de fils à plomb; le pyromètre visait le centre du ruban indiqué par une encoche, le repère marqué sur l'ampoule de verre étant en coïncidence avec l'encoche dans le champ du pyromètre; le ruban était entre l'axe de la lampe et le pyromètre. Le plot central de la lampe était relié au pôle positif.

Pour chaque lampe, la température correspondant à chacune des sept intensités de courant était mesurée dans chaque laboratoire, les mêmes intensités de courant étant partout utilisées. Dans chaque cas, la température relevée a été corrigée pour correspondre à une même longueur d'onde effective moyenne (tableau I); les températures ont été arrondies au degré. Sauf pour l'étalonnage courant du N. P. L. sur la lampe N° 421, les valeurs indiquées à chaque intensité de courant sont les valeurs réellement observées, sans lissage.

2. Méthode d'étalonnage au N. R. C.

Les lampes ont été étalonnées avec le pyromètre optique étalon primaire du N. R. C., du type à disparition de filament. Cet appareil comprenait le système optique d'un pyromètre commercial, avec une ouverture d'entrée de 0,16 rad et une ouverture de sortie de 0,06 rad répondant au critère de Fairchild et Hoover [1]. Le champ angulaire était limité par un diaphragme de 0,03 rad environ.

L'appareil possède deux lampes pyrométriques à filament plat, rigidement fixées sur une glissière, ce qui permet de les utiliser à tour de rôle. L'une des lampes, de fabrication anglaise, est analogue à celles qui sont utilisées dans l'appareil étalon du N. P. L.; l'autre est de fabrication américaine. Leurs caractéristiques de fonctionnement sont sensiblement les mêmes.

Les longueurs d'onde effectives moyennes du filtre rouge ont été calculées de la façon classique en utilisant le facteur de transmission monochromatique mesuré et la courbe des efficacités lumineuses C. I. E. 1931.

Les lampes du pyromètre ont été étalonnées séparément avec un four horizontal à point de solidification de l'or semblable à celui du N. P. L. [2], et un jeu de onze disques à secteurs tournants étalonnés. Pour la mesure des températures au-dessus de 1400° C, on a utilisé l'un des deux verres absorbants, étalonnés séparément à l'aide des secteurs tournants. A partir des facteurs de transmission monochromatique effectifs ainsi obtenus et à partir des longueurs d'onde effectives moyennes du verre rouge, il était possible de calculer les longueurs d'onde effectives moyennes de l'ensemble verre absorbant-verre rouge. Pour ce travail, on utilisait une lampe à ruban de tungstène comme source intermédiaire.

On réglait le courant de chaque lampe étalon secondaire par la mesure de la différence de potentiel aux bornes d'une résistance étalon de $0,01 \Omega$ en série avec la lampe. La température de luminance correspondante était mesurée en prenant la moyenne de dix lectures au pyromètre optique primaire pour chacun des deux observateurs et pour chacune des deux lampes. Pour obtenir l'égalité de luminance avec la source, une moitié des lectures a été faite en réduisant la luminance de la lampe du pyromètre optique, l'autre moitié en l'augmentant. Au total, quarante égalisations ont été effectuées pour chaque intensité de courant; ces égalisations font apparaître, sur leur moyenne, un écart-type allant de $0,3 \text{ deg au voisinage du point de l'or à 2,0 deg environ aux températures les plus hautes et les plus basses. La température ambiante au cours de l'étalonnage était de 20° C.$

3. Méthode d'étalonnage au N. B. S.

Les lampes ont été étalonnées avec le pyromètre optique étalon du N. B. S. conçu par Fairchild et Hoover [1]; ce pyromètre, du type à disparition de filament, utilise une lampe pyrométrique à filament de tungstène d'environ 40 μ de diamètre; il a été étalonné au point de l'or à l'aide d'un corps noir vertical avec un prisme réflecteur à 45°. Pour les températures supérieures et inférieures au point de l'or, un disque à secteurs tournants étalonnés et des lampes à ruban de tungstène étaient employés avec des longueurs d'onde effectives moyennes calculées à partir de la courbe des efficacités lumineuses C. I. E. 1931 et des facteurs de transmission mesurés du verre rouge et des verres absorbants.

Les lampes à ruban de tungstène N° 421 et N° 242 ont été étalonnées dans les conditions indiquées au paragraphe 1. La température ambiante était de 25° C. L'intensité du courant d'alimentation des lampes était réglée par la mesure potentiométrique de la différence de potentiel aux bornes d'une résistance étalon de 0,001 Ω . Chacun des deux observateurs effectuait à tour de rôle au moins deux séries de mesure de la température de luminance. Une série comprenait quatre égalisations de la luminance, deux par accroissement du courant de la lampe pyrométrique et deux par réduction. L'écart-type sur la moyenne de ces 16 égalisations ou davantage est de 0,7 deg à 800° C, o,3 deg à 1100° C et 0,8 deg à 2216° C. La température de luminance moyenne, pour chaque valeur du courant d'alimentation, a été ramenée à la longueur d'onde effective moyenne donnée au tableau I et arrondie au degré.

TABLEAU I.

Longueurs d'onde effectives moyennes.

т _L .	7.e
800°C	o,6566 µ
900	0,6544
1 000	0,6545
I 100	0,653.8
I 200	0,653.2
1 300	0,6526
1 400	0,653.8
1 500	0,653.3
1 600	0,653 0
1 700	0,6526
1 800	0,652 7
1 900	0,652.8
2 000	0,652.8
2 100	o,653 o
2 200	0,652.8

4. MÉTHODE D'ÉTALONNAGE A LA P. T. B.

La température de luminance des deux lampes à ruban de tungstène, alimentées aux intensités de courant spécifiées, a été mesurée avec le pyromètre étalon de la P. T. B. Cet appareil, construit dans notre laboratoire, ressemble du point de vue mécanique au pyromètre du N. B. S.; il se distingue du pyromètre de type commercial en ce sens qu'un deuxième objectif, placé derrière la lampe du pyromètre, donne une image du filament de la lampe et de l'objet visé dans le plan d'un diaphragme qui délimite le champ de vision; l'oculaire est mis au point sur cette image. Le cône des rayons qui tombent sur le filament du pyromètre a une ouverture angulaire $\alpha = 0,08$ rad; le cône des rayons qui pénètrent dans le système oculaire a une ouverture angulaire $\beta = 0,05$ rad, ce qui correspond à peu près au critère de Fairchild et Hoover [1].

La lampe pyrométrique utilisée (fabriquée par Osram, Berlin) avait une fenêtre plan-parallèle et un filament de 0,05 mm de diamètre; elle pouvait être déplacée sur une glissière perpendiculairement à l'axe optique. Le filtre était un verre rouge du type RG 2 (fabriqué par Schott, Mayence); à partir du facteur de transmission spectrale du filtre, on calculait les longueurs d'onde effectives par la méthode classique, à l'aide des efficacités lumineuses de la C. I. E.

Le pyromètre étalon était rattaché au point de l'or tous les six mois, par des mesures de pratique courante; dans le cas présent, il l'a été avant et après les mesures sur les lampes à ruban de tungstène. Le rattachement a été fait de deux facons : d'après la méthode de Hoffmann et Meissner [3], et par comparaison à un corps noir horizontal plongé dans de l'or en fusion suivant Tingwaldt et Kunz [4]. Avec un secteur tournant et en employant une lampe à ruban comme source secondaire, on réalisait l'échelle du pyromètre directement du point de l'or jusqu'à 1300° C. La mesure des lampes à ruban aux températures supérieures à 1300° C s'effectuait par réduction au domaine inférieur à 1300° C à l'aide du secteur tournant ou de l'ensemble secteur tournant-verre absorbant (verre gris de Schott). La transmission effective du verre absorbant était calculée à partir des transmissions spectrales, et le résultat du calcul était vérifié au secteur tournant. Contrairement à l'habitude, les longueurs d'onde effectives ont été déduites des observations faites sur le verre absorbant par la méthode décrite par Hoffmann et Tingwaldt [5].

Les intensités de courant de la lampe pyrométrique étaient obtenues par la mesure, à l'aide d'un potentiomètre Diesselhorst, de la chute de tension aux bornes d'une résistance étalon de $0,1^{\Omega}$ en série avec la lampe.

Deux observateurs ont participé aux mesures, chacun d'eux effectuant au moins dix égalisations photométriques pour chaque valeur de l'intensité de courant. L'écart-type par rapport à la valeur moyenne de la température est \pm 0,3 deg au point de l'or, \pm 0,7 deg à 800° C et \pm 1,3 deg à 2 200° C.

Durant les observations, la température ambiante a été maintenue à 22° C.

5. Méthode d'étalonnage au D. A. M. G.

Les lampes ont été mesurées avec le pyromètre étalon V 3003 du D. A. M. G.; c'est un pyromètre à disparition de filament, construit il y a environ 35 ans à la P. T. R. suivant les plans de Henning et qui, depuis lors, s'est montré très sûr. Dans ce pyromètre, l'ouverture angulaire de l'objectif est de 0,06 rad; celle de l'oculaire, diaphragmé par une pupille de 1,25 mm de diamètre, est de 0,03 rad. Une égalisation parfaite est rendue possible par disparition complète du filament. La lampe pyrométrique, fabriquée par Osram, est fixe. Pour l'obtention d'un rayonnement quasi monochromatique, on utilisait un filtre rouge de 4 mm d'épaisseur en verre RG 2 de Schott, Iéna.

Ce pyromètre a été étalonné en 1945-1946 par F. Hoffmann. Le rattachement au point de l'or a été fait avec un corps noir constitué d'une enceinte sphérique munie d'un tube conique en porcelaine Marquardt et immergée dans l'or en fusion, comme Hoffmann l'a déjà décrit [3]. Pour le domaine de température de 760 à 1200° C, on a employé un jeu de quatre disques à secteurs soigneusement étalonnés. Pour les températures plus élevées, on a utilisé un verre gris de 1200 à 1400° C, deux verres gris de 1400 à 1800° C, et trois verres gris de 1800 à 2 200° C; ces verres ont été étudiés au secteur tournant. Depuis 1946, le rattachement au point de l'or a été répété tous les deux ou trois ans, ce qui a permis de s'assurer de la très bonne tenue de la lampe pyrométrique. Les valeurs des températures qui sont données dans ce Rapport s'appuient sur notre détermination au point de l'or de février 1958. Les erreurs, susceptibles d'affecter les nouvelles mesures effectuées suivant la méthode indiquée [4], ont été étudiées expérimentalement et par le calcul, ce qui a conduit à un même résultat.

La longueur d'onde effective limite du filtre rouge a été calculée par la méthode de Foote [6], à partir de sa transmission obtenue par mesures photométriques et à partir de la courbe de sensibilité de l'œil normal. On en a déduit alors la longueur d'onde effective à utiliser pour la mesure des lampes à ruban de tungstène, compte tenu de la température de couleur du ruban de tungstène relevée dans les tables.

Les intensités de courant traversant la lampe à ruban et la lampe du pyromètre ont été mesurées au potentiomètre. Chacune des valeurs données est la moyenne d'un groupe de 20 à 40 valeurs individuelles de deux observateurs. La dispersion des valeurs est de \pm 0,5 deg dans le milieu du domaine de température; elle atteint \pm 1,0 deg à 2 200° C, et \pm 1,2 deg à 800° C.

La température ambiante était de 20° C.

6. INDICATIONS SUR L'ÉTALONNAGE COURANT DU N. P. L.

Le rapport H 3357 du 17 septembre 1947 concerne la lampe N° 242 et le rapport H 4049 (*a*) du 17 avril 1951 la lampe N° 421. L'étalonnage de la lampe N° 242 a été modifié pour tenir compte du passage de l'Échelle Internationale de Température de 1927 à celle de 1948; les étalonnages des deux lampes ont été ramenés aux longueurs d'onde effectives moyennes du tableau I, à l'aide de données fournies par le N. P. L. au N. R. C. [7]. La température ambiante lors de l'étalonnage de la lampe N° 242 était maintenue à 24° C, et pour la lampe N° 421 à 18° C.

7. Discussion des résultats.

Les résultats, y compris ceux du N. P. L., sont donnés au tableau II; pour chaque température, les sept valeurs sont accompagnées de leur moyenne et de l'écart-type correspondant. Les causes d'erreur qui affectent les étalonnages sont de deux sortes. Premièrement, celles qui proviennent de l'emploi de lampes à ruban de tungstène comme étalons secondaires; elles ont été étudiées par Barber [8] pour des lampes du type employé dans cette comparaison, et sont résumées dans la première partie du tableau III. Deuxièmement, les causes d'erreur dans la réalisation de l'Échelle Internationale de Température, inhérentes à la pyrométrie optique; elles sont résumées dans la deuxième partie du tableau III, en se référant aux incertitudes d'étalonnage et à l'emploi du pyromètre optique du N. R. C.

TABLEAU II.

Étalonnage en température de luminance de deux lampes étalons secondaires, dans cinq Laboratoires nationaux.

			NI	BS	N	RC			Écart-
Ampères.	NPL*.	DAMG 1958,	1957.	1958.	1957.	1958.	РТВ 1957.	Moyenne (°C).	type (deg).
3,15	800	796	799	798	797	798	798	798	1,2
3,62	900	898	899	899	897	898	898	898	г,о
4,21	I 000	I 000	I 000 I	I 000	998	999	1 000	1 000	0,8
4,92	I 101	1 103	I 102	1 103	1 102	1 103	1103	1 102	0,8
5,70	1 201	1 201	1 202	I 202	1 201	1 203	1 203	1 202	1,0
6,55	1 301	1 304	1 301	1 302	1 301	1 302	i 303	1 302	1,0
7,44	1 401	1 402	1 400	1 401	1 402	1 399	1401	1 401	1,0
				Lampe	Nº 242.				
8,62	1 271	1 268	1 269	1 267	1 269	1 267	1 267	1 268	т,4
9,77	1 423	1 419	I 120	1 420	1419	1416	1 420	1 420	2,0
10,90	1 553	1 549	1 548	1 550	1 549	1 550	1 550	1 550	т,4
12,99	1 764	1 761	1 760	1 760	1 762	1 764	1 763	1 762	1,6
15,07	1 953	1 951	1 951	1 950	1952	1 953	1 953	1952	1,1
16,16	2 050	2 043	2 0 4 4	2 043	2043	2048	2048	2046	2,9
18,28	2 218	2 215	2 217	2 216	2218	2 2 2 0	2219	2218	1,6

Lampe Nº 421.

* Étalonnage courant effectué en 1947 pour la lampe Nº 242 et en 1951 pour la lampe Nº 421.

BIBLIOGRAPHIE.

- [1] FAIRCHILD (C. O.) et HOOVER (W. H.), J. Opt. Soc. Amer, 7, 1923, p. 543.
- [2] BARBER (C. R.), J. Sc. Instr., 27, 1950, p. 47.
- [3] HOFFMANN (F.) et MEISSNER (W.), Ann. Phys., 60, 1919, p. 201.
- [4] TINGWALDT (C.) et KUNZ (H.), Wiss. Abh. P. T. B., 9-1, 1957, p. 32; Optik, 15, 1958 (sous presse).
- [5] HOFFMANN (F.) et TINGWALDT (C.), Z. f. Instrkde, 59, 1939, p. 20-30.
- [6] FOOTE (P. D.), Bull. Bureau of Standards, 12, 1916, p. 483.
- [7] Communication privée du N. P. L. au N. R. C., 3 juillet 1950.
- [8] BARBER (C. R.), J. Sc. Instr., 23, 1946, p. 238.

ANNEXE T18

Institut de Métrologie D. I. Mendéléev (U. R. S. S.)

NOUVELLE MÉTHODE POUR L'ÉTALONNAGE DES PYROMÈTRES OPTIQUES. NOUVEAU PYROMÈTRE OPTIQUE DE PRÉCISION (¹)

Par V. E. PHINKELSCHTEIN et V. V. KANDIBA

(Traduction)

On sait que l'étalonnage d'un pyromètre optique dans le domaine des hautes températures est effectué à l'aide d'un système de gradation qui permet de réaliser l'égalisation de la luminance d'un corps noir à la température T avec celle d'un corps noir à une température plus basse T_0 (²).

L'équation sur laquelle est basée l'extrapolation a la forme suivante

(1)
$$\int_{0}^{\infty} \lambda^{-5} \left(e^{\overline{\lambda} \overline{1}} - 1 \right)^{-1} \tau'_{\lambda} V_{\lambda} \tau_{\lambda} d\lambda = \int_{0}^{\infty} \lambda^{-5} \left(e^{\overline{\lambda} \overline{1}} - 1 \right)^{-1} V_{\lambda} \tau_{\lambda} d\lambda,$$

où τ'_{λ} , facteur de transmission du verre absorbant pour la lumière de longueur d'onde λ ;

 τ_{λ} , facteur de transmission du verre rouge du pyromètre; V_{λ} , efficacité lumineuse relative de l'œil.

Comme systèmes de gradation on utilise ordinairement des verres absorbants, ce qui entraîne une diminution sensible de la précision dans la reproduction de l'échelle de température, car l'erreur de la mesure du facteur de transmission pour le verre absorbant est très grande.

(1) Trud. Inst. Metrol. D. I. Mendeleev, nº 36 (96), 1958, p. 16.

(2) Nous appellerons cette grandeur « température de luminance apparente ». Pratiquement, T_0 est toujours choisie inférieure à 2 000° K.

Il est cependant possible de montrer que la relation entre T et T_0 peut être déterminée par l'expérience sans la résolution de l'équation (1) ni la mesure de la grandeur τ'_{λ} [1, 2].

Il est à noter qu'on peut simplifier le membre de droite de l'équation (1) en remplaçant l'expression $\left(e^{\frac{C_2}{h \cdot T_0}} - 1\right)^{-1}$ par $e^{-\frac{C_3}{h \cdot T_0}}$. Comme T₀ est inférieure à 2 000 °K, l'erreur est négligeable.

Introduisons la grandeur auxiliaire T_w définie par l'équation

(2)
$$\int_0^\infty \lambda^{-5} \left(e^{\frac{C_2}{\lambda T}} - I \right)^{-1} \tau'_\lambda V_\lambda \tau_\lambda d\lambda = \int_0^\infty \lambda^{-5} e^{-\frac{C_2}{\lambda T_{\alpha'}}} \tau'_\lambda V_\lambda \tau_\lambda d\lambda.$$

Au lieu de l'équation (1) on peut alors écrire

(3)
$$\int_0^\infty \lambda^{-5} e^{-\frac{C_9}{\lambda T_0}} \tau'_{\lambda} V_{\lambda} \tau_{\lambda} d\lambda = \int_0^\infty \lambda^{-5} e^{-\frac{C_9}{\lambda T_0}} V_{\lambda} \tau_{\lambda} d\lambda.$$

Le système des équations (2) et (3) est équivalent à l'équation (1) et permet de trouver la relation entre T et T_0 par la méthode des approximations successives sous la forme de la somme suivante

(4)
$$T = T_{m} + \Delta T,$$

où $T_{\mu\nu}$ est le résultat de la résolution de l'équation (3), et $\Delta T = T - T_{\mu\nu}$ la correction calculée à l'aide de l'équation (2).

On sait que la résolution de l'équation (3) peut s'écrire sous la forme

(5)
$$\frac{I}{T_0} - \frac{I}{T_{0\nu}} = A.$$

Appelons la grandeur A, déterminée par les équations (3) et (5), la « grandeur d'affaiblissement pyrométrique du verre absorbant » et considérons A comme fonction de la température de luminance apparente T_0 (³). Nous allons employer plus loin cette définition formelle, indépendamment de la grandeur de la différence entre les formules de Wien et de Planck.

L'affaiblissement pyrométrique du verre absorbant pour la mesure à une haute température quelconque T_2 , à laquelle correspond la température de luminance apparente $T_{0,2}$, est déterminé par le système des deux équations

(6)
$$\int_0^\infty \lambda^{-5} e^{-\frac{C_3}{\lambda T_{0.3}}} \tau_{\lambda}^{\prime} V_{\lambda} \tau_{\lambda} d\lambda = \int_0^\infty \lambda^{-5} e^{-\frac{C_3}{\lambda T_{0.3}}} V_{\lambda} \tau_{\lambda} d\lambda,$$

(7)
$$A(T_{0,2}) = \frac{I}{T_{0,2}} - \frac{I}{T_{w,2}}.$$

(³) T_{μ} est fonction de la variable indépendante T_{μ} .

Nous avons pour but de déterminer la valeur de A $(T_{0,2})$, c'est-à-dire de trouver la relation entre $T_{0,2}$ et $T_{0,2}$.

Pour justifier la méthode expérimentale de la détermination de $A(T_{0,2})$, supposons que l'oculaire du pyromètre soit muni d'un verre coloré supplémentaire dont le facteur de transmission pour la longueur d'onde λ est égal à

(8)
$$\tau_{\lambda}^{0} = \varepsilon e^{\frac{\chi C_{s}}{\lambda}},$$

 ε et α étant certaines constantes positives.

En désignant par $A'(T_{0,1})$ l'affaiblissement pyrométrique du verre absorbant du pyromètre avec son verre supplémentaire pour une certaine température de luminance apparente $T_{0,1}$, nous avons

(9)
$$A'(T_{0:1}) = \frac{1}{T_{0:1}} - \frac{1}{T_{0:1}'},$$

où $T'_{ie,1}$ est une nouvelle grandeur auxiliaire déterminée par l'équation

(10)
$$\int_{0}^{\infty} \lambda^{-5} e^{-\frac{C_{2}}{\lambda T_{w+1}^{\prime}}} \tau_{\lambda}^{\prime} V_{\lambda} \tau_{\lambda} e^{\frac{\alpha C_{2}}{\lambda}} d\lambda = \int_{0}^{\infty} \lambda^{-5} e^{-\frac{C_{2}}{\lambda T_{0,1}}} V_{\lambda} \tau_{\lambda} e^{\frac{\alpha C_{2}}{\lambda}} d\lambda,$$

Si

(11)
$$\frac{I}{T_{0\cdot 2}} = \frac{I}{T_{0,1}} - \alpha,$$

les membres de droite des équations (10) et (6) sont alors identiques et l'on peut égaliser les membres de gauche de ces équations. Il en résulte que

(12)
$$-\frac{I}{T_{i\nu,2}} = -\frac{I}{T'_{i\nu,1}} + \alpha = -\frac{I}{T'_{i\nu,1}} + \left(\frac{I}{T_{0,1}} - \frac{I}{T_{0,2}}\right).$$

En substituant $\frac{1}{T'_{(\nu,1)}}$ de (12) dans (9) on obtient

(13)
$$A'(T_{0,1}) = \frac{I}{T_{0,1}} - \frac{I}{T'_{w,1}} = \frac{I}{T_{0,2}} - \frac{I}{T_{w,2}} = A(T_{0,2}).$$

Donc, l'affaiblissement pyrométrique cherché $A(T_{0,2})$, correspondant à la température de luminance apparente $T_{0,2}$, est égal à l'affaiblissement pyrométrique qu'on obtient pour la température de luminance apparente $T_{0,1}$ si l'oculaire du pyromètre est muni d'un verre coloré supplémentaire et satisfait aux conditions (8) et (11), c'est-à-dire

(14)
$$\tau_{\lambda}^{0} = \varepsilon \ e^{-\frac{C_{2}}{\lambda} \left(\frac{1}{T_{0.2}} - \frac{1}{T_{0.1}}\right)}.$$

Cette méthode donne la possibilité de remplacer la mesure de $A(T_{0,2})$ par celle de $A'(T_{0,1})$. La détermination de $A'(T_{0,1})$ ne présente aucune difficulté grâce au fait qu'à la température de luminance apparente $T_{0,1}$ correspondent des valeurs T et $T_{1,1}$, plus basses que pour la température de luminance apparente $T_{0,2}$, d'après la condition $T_{0,1} < T_{0,2}$.

Si, par exemple, à la valeur $T_{0.2} = 1700^{\circ}$ K correspond la température $T = 6\ 300^{\circ}$ K, alors à la valeur $T_{0.1} = 1200^{\circ}$ K correspond (en utilisant le même verre absorbant) la valeur $T \approx 2\ 500^{\circ}$ K.

On peut négliger la différence $\Delta T = T - T_{1\nu}$ aux températures inférieures à 3 000° K. C'est pourquoi dans la détermination de A'(T_{0.1}) il est suffisant de mesurer simultanément T₁ et T_{0.1}, en visant le corps noir (ou une lampe à ruban) dont la température ne dépasse pas 2 200 à 2 500° C.

Il ne faut pas perdre de vue que la relation entre l'intensité du courant *i* dans une lampe pyrométrique et la température de luminance apparente T_0 , c'est-à-dire la température du corps noir sur le fond duquel (en enlevant le verre absorbant) le filament disparaît, varie si l'on remplace le verre rouge du pyromètre. C'est pourquoi il faut déterminer d'avance cette relation pour chaque verre coloré auxiliaire (à la température $T_{0,1}$).

Comme l'indique l'équation (14), la transmission du verre coloré supplémentaire monté sur l'oculaire est déterminée, à une constante arbitraire près, par les températures de luminance apparentes $T_{0.1}$ et $T_{0.2}$. Une seule combinaison de verres colorés permet donc d'effectuer l'étude des verres absorbants de tous les pyromètres.

La densité optique D_{λ} du verre coloré supplémentaire pour la lumière de longueur d'onde λ , doit satisfaire à l'équation

$$\mathbf{D}_{\lambda} = a - \frac{b}{\lambda}$$

(15) où

$$a = -\log \varepsilon$$
 et $b = -C_2 \left(\frac{I}{T_{0,2}} - \frac{I}{T_{0,1}} \right) \log e$.

Les verres colorés obtenus par un collage de quelques verres bleu-vert satisfont bien à la condition (15). Les détails concernant la préparation de ces verres colorés ont été décrits dans d'autres articles [2, 3]. La fig. 1 montre la relation entre D_{λ} et $\frac{1}{\lambda}$ obtenue au cours de l'étude d'un des verres colorés.

En modifiant les épaisseurs des verres on peut fabriquer une combinaison qui permet d'obtenir, toujours pour la même valeur de $T_{0,1}$, des valeurs de A correspondant aux différentes $T_{0,2}$.

10
La déduction de l'équation (13) est tout à fait rigoureuse si l'on emploie un verre coloré satisfaisant à l'équation (8). Cependant, en pratique, un verre coloré ne satisfait à cette condition qu'avec une certaine approximation; c'est pourquoi des erreurs peuvent avoir lieu dans la mesure de $A(T_{0,2})$. Ces erreurs peuvent être évaluées de la manière suivante.

Dessinons le graphique représentant la densité optique D_{λ} du verre coloré supplémentaire de l'oculaire en fonction de $\frac{1}{\lambda}$ (courbe *l* sur la fig. 2). Par chaque point de la courbe *l* (par exemple par le point B) traçons deux lignes droites *m* et *n* de manière que tous les points de la courbe *l* soient compris entre ces droites et que l'angle γ , formé par l'intersection des droites *m* et *n*, ait une valeur minimum.

Choisissons entre toutes les droites n une droite n' qui forme un angle minimum avec l'axe des abscisses, et entre toutes les droites m une droite m' qui forme un angle maximum avec l'axe des abscisses. Après avoir fait les calculs correspondants, on peut montrer [3] que la valeur de l'affaiblissement pyrométrique obtenu en utilisant le verre supplémentaire de l'oculaire caractérisé par la courbe l, se trouve entre les valeurs que nous obtiendrons en utilisant les verres caractérisés par les droites n' et m'. En d'autres termes, l'affaiblissement pyrométrique obtenu se trouve entre les valeurs voisines $A(T_{0,m'})$ et $A(T_{0,n'})$, les grandeurs $T_{0,m'}$ et $T_{0,n'}$ étant déterminées d'après $T_{0,1}$ et les angles d'inclinaison des droites m'et n'.

C'est pourquoi on peut constater que le module de l'erreur de $A(T_{0.2})$ est en tout cas plus petit que le module de la différence $A(T_{0.m'}) - A(T_{0.n'})$. Ceci permet d'évaluer l'ordre de grandeur de la variation de A avec la température (d'après le résultat d'expériences avec plusieurs verres d'oculaire) ainsi que la valeur de la différence $(T_{0.m'} - T_{0.n'})$ et d'évaluer immédiatement l'importance des erreurs de mesure de $A(T_{0.2})$.

La méthode indiquée pour l'évaluation de l'erreur est surtout commode dans le cas où le résultat des mesures avec les différents verres colorés conduit à A = const. (4). Dans ce cas, on peut affirmer que l'erreur de la détermination de la valeur de l'affaiblissement pyrométrique est nulle.

Même dans le cas où A n'est pas constant, l'erreur de la méthode est très petite, comme le montre la courbe, très voisine d'une droite, d'un verre coloré que nous avons utilisé (fig. 1).

⁽⁴⁾ De tels verres absorbants ont été utilisés dans le pyromètre 301-51M décrit plus loin.

Le dernier problème qu'il faut résoudre pour l'étalonnage du pyromètre optique consiste à calculer la correction due à l'imprécision de la formule de Wien dans le domaine des hautes températures. Comme nous l'avons déjà indiqué, la valeur de cette correction, $\Delta T = T - T_w$, est déterminée par l'équation (2).

A première vue, il semble que la valeur de la correction ΔT doit bien dépendre de τ'_i , c'est-à-dire de la transmission du verre absorbant. Cependant, il n'en est pas ainsi [3] dans beaucoup de cas pratiquement essentiels lorsqu'on emploie des verres absorbants dont la valeur de l'affaiblissement pyrométrique est relativement peu sensible à la variation de la température à mesurer.

Dans ces cas, la résolution de l'équation (2) peut être écrite sous la forme suivante

(16)
$$\frac{c_2}{e^{\overline{\lambda}_e T} - 1} = e^{\frac{C_2}{\lambda_e T_w}},$$

où λ_e est la longueur d'onde effective limite du verre rouge du pyromètre à la température T₀, correspondant à T.

L'équation (16) ne se distingue de celle bien connue pour la lumière monochromatique que parce qu'on a précisé, au cours de sa déduction, laquelle des valeurs de la longueur d'onde doit être employée pour le calcul de ΔT si le verre rouge du pyromètre transmet un large intervalle spectral.

La méthode décrite a été employée pour l'étalonnage d'un nouveau pyromètre optique visuel de précision du type $\partial O\Pi - 51 M$. Cet appareil est destiné à des travaux métrologiques pour la reproduction et le transfert de l'Échelle Internationale de Température, pour l'étalonnage des lampes pyrométriques ainsi que pour les mesures précises des hautes températures en vue des recherches scientifiques [3, 4, 5].

L'appareil est construit d'après le schéma classique du pyromètre à filament disparaissant; son aspect général est donné par la fig. 3.

L'objectif du pyromètre a un diamètre de 80 mm et une ouverture 1: 3; il est muni d'une lentille asphérique grâce à laquelle l'aberration a été très diminuée; le diamètre du cercle d'aberration sphérique pour la lumière monochromatique ne dépasse pas 0,01 mm.

Le pyromètre est muni de trois lampes pyrométriques à filament plat. La substitution d'une lampe pyrométrique à l'autre s'effectue par un simple tour de manivelle, ce qui assure un contrôle permanent de la stabilité d'étalonnage du pyromètre.

La longueur d'onde effective du verre rouge du pyromètre est o,665 μ . Devant le verre rouge on peut placer un diaphragme de 2 mm d'ouverture. Ce diaphragme diminue l'intensité, sans changer la composition spectrale du flux lumineux atteignant l'œil de l'observateur. L'utilisation d'un tel diaphragme permet d'obtenir au cours des mesures la brillance la plus commode pour l'œil.

Le pyromètre est muni de quatre verres absorbants destinés à étendre le domaine de l'échelle. En outre, sa construction permet d'employer des secteurs tournants comme systèmes de gradation.

La combinaison des verres absorbants (pour les mesures des températures jusqu'à 3 000° C) est montée sur un support tournant situé entre l'objectif et la lampe pyrométrique.

Fig. 3.

Le verre absorbant supplémentaire (π -6 000), destiné aux mesures dans l'intervalle 2 500-6 000° C, a un diamètre de 80 mm; il est placé devant le tube de l'objectif du pyromètre afin de diminuer son échauffement au cours des mesures aux hautes températures [5].

En introduisant simultanément les deux systèmes de verres absorbants — le verre π -6 ooo et la combinaison de verres colorés, montés sur un support commun — on a la possibilité d'effectuer des mesures dans l'intervalle 3 000-10 000° C.

Les écarts moyens quadratiques du pyromètre $\partial O\Pi$ -51M sont donnés dans le tableau suivant.

	Ecart moven
l'empérature.	quadratique.
1 400°С	0,1 ⁰⁷ / ₂₀
2 000	0.2
6 000	1,0
10 000	1,5

(Avril 1958)

BIBLIOGRAPHIE.

- [1] PHINKELSCHTEIN (V. E.), Izmeritelnaia Tekhnika, 1956, nº 4, p. 31.
- [2] PHINKELSCHTEIN (V. E.), Trud. Inst. Metrol. D. I. Mendeleev, 1958, nº 35 (95).
- [3] KANDIBA (V. V.), Izmeritelnaia Tekhnika, 1956, nº 1, p. 36.
- [4] PHINKELSCHTEIN (V. E.), SPIGUELMAN (E. S.) et KANDIBA (V. V.), Izmerilelnala Tekhnika, 1956, nº 5, p. 52.
- [5] KANDIBA (V. V.), Zavodskaia Laboral., 1956, nº 6.

ANNEXE T19

Institut de Métrologie D. I. Mendéléev (U. R. S. S.)

L'EMPLOI DE LA MÉTHODE PHOTOÉLECTRIQUE POUR LES MESURES PRÉCISES DANS LE DOMAINE DE LA PYROMÉTRIE OPTIQUE (¹)

Par L. A. BOJARSKI, A. N. GORDOV, G. L. IOSELSON, V. V. KANDIBA, J. J. KIRENKOV, V. A. KOVALEVSKI, G. A. KRACHMALNIKOVA, E. A. LAPINA et K. G. TARAJANZ

(Traduction)

Afin de pouvoir satisfaire les exigences de l'industrie moderne concernant la précision des mesures des hautes températures, il est nécessaire d'augmenter la précision des pyromètres optiques étalons. A la différence des autres domaines de la métrologie où la précision des appareils étalons dépasse généralement celle des appareils techniques, dans la pyrométrie optique la précision des appareils techniques et celle des appareils étalons sont du même ordre. Cela résulte de ce que la sensibilité des deux types d'appareils est déterminée par les propriétés de l'œil.

Mais c'est surtout pour la reproduction de l'échelle des températures de luminance et de couleur que l'augmentation de la précision est nécessaire. Dans le même but il faut augmenter considérablement la précision des déterminations de la longueur d'onde effective. Il en résulte que la réalisation d'un spectropyromètre assurant, par rapport aux appareils existants, une précision plus élevée dans la mesure de la luminance et de la longueur d'onde effective, est un problème d'actualité.

La propriété de l'œil de distinguer les différences de luminance étant limitée par le seuil de sensibilité au contraste, on ne peut réaliser une augmentation considérable de la précision qu'en

(1) Trud. Inst. Melrol. D. I. Mendeleev, nº 36 (96), 1958, p. 23.

abandonnant les méthodes de mesure visuelles au profit des méthodes objectives photoélectriques.

On sait que la mesure de la luminance, et par conséquent de la température de luminance, directement d'après le courant photoélectrique ne peut pas assurer une haute précision. Cela est dû à ce que la sensibilité des tubes photoélectriques n'est pas constante et à la présence des fluctuations du courant photoélectrique, surtout lors des mesures de faibles flux lumineux.

Fig. 1.

L'un des moyens possibles pour obtenir une précision élevée des mesures photoélectriques réside dans la réalisation de tubes photoélectriques spéciaux possédant des caractéristiques linéaires et de haute stabilité. On a procédé à des travaux avec de tels tubes, par exemple au Bureau International des Poids et Mesures.

Il existe cependant un autre moyen, évidemment plus efficace,

Le tube photoélectrique peut être employé avec succès comme appareil de zéro dans la comparaison de la luminance mesurée à celle de l'étalon; l'instabilité des caractéristiques du tube et celle de l'amplificateur n'ont plus alors d'importance. La possibilité d'une telle utilisation du tube photoélectrique représente la méthode dite de modulation. Sur cette méthode est fondé le fonctionnement des installations de pyrométrie objective spectrale CHK-1 et CHK-2, réalisées en 1954 et en 1957 à l'Institut des Mesures et Instruments de Mesure à Kharkov pour les étalonnages en températures de luminance et de couleur (lampes pyrométriques) [1].

Le principe de fonctionnement des installations est le suivant.

Le rayonnement des deux sources à comparer tombe alternativement, avec une fréquence donnée, sur le tube photoélectrique. L'alternance des flux lumineux est réalisée de telle sorte que pour des sources de luminances égales, le flux lumineux total reçu par le tube reste invariable dans le temps et le courant photoélectrique n'a pas de composante alternative.

Lorsque l'égalité des luminances est détruite, il existe une composante alternative du courant photoélectrique dont la fréquence est égale à celle de la modulation. Après amplification et détection, cette composante provoque une déviation du galvanomètre, ce qui indique l'inégalité des luminances. Le schéma synoptique (fig. 1) montre l'action réciproque des parties essentielles de l'installation.

Le rayonnement des deux lampes à ruban est modulé de telle sorte qu'à sa sortie du modulateur, le flux lumineux a une composante alternative dont l'amplitude est proportionnelle à la différence des luminances des lampes à comparer. Le monochromateur laisse passer, du flux lumineux modulé, un intervalle spectral suffisamment étroit pour une détermination de haute précision de la longueur d'onde effective.

Projeté sur la cathode du photomultiplicateur, le flux lumineux modulé crée un courant photoélectrique dont la valeur de la composante alternative est déterminée par la différence des luminances comparées. Cette composante est amplifiée par l'amplificateur à bande étroite qui assure ainsi une limitation préliminaire de la bande passante des fréquences; la composante passe ensuite par le détecteur synchronisé commandé par le même générateur qui met en action le modulateur. Le détecteur synchronisé, avec le filtre basses fréquences, assure une bande passante étroite, ce qui permet d'augmenter considérablement le rapport signal/bruit de fond.

Le signe de la tension à la sortie du détecteur synchronisé dépend de la phase de la composante alternative du courant photoélectrique; grâce à cela l'aiguille du galvanomètre dévie d'un côté ou de l'autre, selon le rapport des luminances des sources à comparer. L'expérimentateur observe le galvanomètre et règle le courant dans les lampes en cherchant à obtenir la position zéro de l'aiguille du galvanomètre, ce qui témoigne de l'égalité des luminances.

L'installation CIIR-1, représentée à la figure 2, comporte trois pupitres inclinés; toutes les mesures peuvent être effectuées par une seule personne placée devant le pupitre central.

Sur le pupitre de gauche se trouvent deux rhéostats à cinq

sections destinés au réglage du courant des lampes pyrométriques. Une construction spéciale des rhéostats permet d'obtenir un réglage régulier et d'assurer la stabilité du courant avec une précision de 10⁻⁵. Sur le pupitre de droite se trouve un poten-

Fig. 2.

tiomètre à cinq décades pour la mesure de l'intensité du courant de chaque lampe; cette intensité est mesurée par la chute de tension aux bornes de résistances étalons de $0,005 \Omega$.

Sur le pupitre central sont placés les instruments et les boutons de commande des appareils électroniques. En haut de la table est situé le banc d'optique muni des mécanismes de déplacement des lampes pyrométriques. Les dispositifs de fixation des lampes assurent trois degrés de liberté pour la rotation et pour la translation de chaque lampe.

Au-dessus du centre du banc d'optique se trouve le système optique extérieur avec le modulateur. Deux objectifs (1) donnent une image des rubans des deux lampes (2) à comparer dans le plan de la fente d'entrée (3) du monochromateur (fig. 3 a). Une partie du flux lumineux réfléchie par les lèvres polies de la fente tombe sur l'objectif du microscope (4), permettant ainsi d'observer la position des images des rubans des lampes sur la fente et de localiser la partie visée de chaque lampe.

Afin d'éliminer la non-identité probable des deux trajets du système optique extérieur, on a prévu la transposition de ce dernier

Fig. 3.

au cours des mesures par une rotation de 180° autour de l'axe horizontal passant par le centre de la fente d'entrée du monochromateur.

Devant la fente se trouve le modulateur dont la construction correspond aux exigences des mesures de haute précision. Le modulateur se présente sous la forme d'un petit prisme $(2,5 \times 2 \times 0,5 \text{ mm})$ fixé sur une corde vibrante (5). Dans sa position moyenne le prisme envoie dans l'objectif collimateur du monochromateur la moitié de chaque flux lumineux à comparer. Lorsque le prisme se déplace, l'un des flux est augmenté et l'autre est diminué. Si les luminances des sources ne sont pas égales, il se produit des variations périodiques du flux lumineux total; si les luminances sont égales, le flux total et sa position dans l'espace restent invariables.

La corde traverse le champ d'un aimant permanent et est mise en mouvement vibratoire grâce au courant alternatif qui la parcourt. L'amplitude des vibrations du prisme fixé sur la corde est de 0,3 mm, avec une fréquence de 860 Hz. La corde est connectée à un amplificateur à contre-réaction à deux étages et forme avec lui un générateur à corde autoexcité. Le générateur est muni d'un régulateur automatique de l'amplitude de vibration de la corde.

Cette installation est munie d'un monochromateur à deux prismes; la longueur totale de la base des prismes est 200 mm. La fente de sortie (6) du monochromateur a une largeur réglable et peut être déplacée le long du spectre dans les limites de 0,45 à 1,0 μ .

A côté de la fente de sortie est placée une lampe accessoire (7) qui envoie, à l'aide de la lentille (8), un faisceau lumineux de direction inverse à travers le monochromateur et le système optique extérieur; cette lampe est utilisée pour faciliter le réglage du système optique et la mise en place des lampes pyrométriques.

La fente de sortie et le photomultiplicateur (9), du type $\Phi \partial Y$ -17, $\Phi \partial Y$ -22 ou $\Phi \partial Y$ -25, se déplacent ensemble; selon la région choisie du spectre on peut employer l'un ou l'autre photomultiplicateur. Un redresseur alimente le photomultiplicateur en donnant une tension de 200 à 2 000 V automatiquement stabilisée.

Le courant photoélectrique est amplifié par un amplificateur à bandes étroites possédant une fréquence de résonance de 860 Hz, une bande passante de 100 Hz et un facteur d'amplification de 500. Cette largeur de la bande passante est choisie pour deux raisons : d'une part pour assurer l'affaiblissement des harmoniques supérieurs du courant photoélectrique qui empêcheraient le fonctionnement normal du synchrodyne, d'autre part pour conserver une sensibilité constante malgré les variations probables de la fréquence de modulation.

Le synchrodyne est monté selon le schéma en anneau. Afin d'assurer la stabilité maximum de la position du zéro, toutes les diodes sont fermées sur des piles sèches mises en série. A sa sortie du synchrodyne, le signal redressé passe dans un filtre RC à basse fréquence. Le changement des capacités du filtre permet de modifier la bande passante dans les limites de 1 à 0,01 Hz.

A la fin du montage électronique se trouve l'amplificateur à courant continu, dans le circuit anodique duquel est inséré le galvanomètre indicateur de l'égalité des luminances.

Afin de diminuer l'influence du circuit du modulateur sur les

L'installation $C\Pi K-2$ est, dans l'ensemble, semblable à celle de $C\Pi K-1$ décrite ci-dessus. Les principales différences sont les suivantes : le modulateur (*fig.* 3 *b*) est d'une construction nouvelle, avec un petit miroir oscillant (10) pareil à celui de la boucle magnétique employée dans les oscillographes; ce miroir renvoie la lumière reçue des deux sources à comparer sur la fente du monochromateur, de sorte que le faisceau lumineux couvre la moitié de l'objectif du collimateur quand le miroir est immobile; lorsque le miroir oscille, les faisceaux lumineux se substituent alternativement l'un à l'autre.

L'inégalité des luminances des sources provoque la modulation du flux lumineux reçu par la photocathode. Grâce au prisme séparateur aluminié à arête fine (11), les parties de l'objectif éclairées par les différentes sources se trouvent tout près l'une de l'autre et, si les luminances des rubans des lampes sont égales, l'objectif se trouve alors uniformément éclairé pour n'importe quelle position du miroir.

Le nouveau modulateur possède des avantages sur le modulateur de l'installation CIIK-1. Il est plus fidèle dans son fonctionnement et n'exige ni ajustage, ni réglage; il assure une meilleure qualité des images des lampes pyrométriques dans le plan de la fente d'entrée du monochromateur ainsi qu'un grand champ du microscope de visée, ce qui conduit à une haute précision et à une bonne reproductibilité du montage des lampes dans une position donnée par rapport à l'axe optique.

Dans l'installation CIIK-2, la largeur de la fente d'entrée peut varier de o à 2 mm; la précision de lecture est 0,01 mm. Grâce à cela la graduation du monochromateur est considérablement simplifiée. De plus, une fente réglable permet de réduire l'intervalle spectral et, en cas de nécessité (par exemple pour le travail dans la région spectrale des grandes longueurs d'onde), d'augmenter la précision de la détermination de la longueur d'onde effective.

Les caractéristiques métrologiques essentielles de ces deux installations sont identiques. Les recherches effectuées ont montré que la sensibilité de l'installation est déterminée principalement par la valeur des fluctuations du courant photoélectrique. Le seuil de sensibilité peut être caractérisé par la valeur de l'écart moyen quadratique des lectures individuelles lors de l'égalisation des luminances. Cette valeur a été mesurée par une grande série de répétitions de l'égalisation des luminances de deux lampes. Le courant d'une des lampes était maintenu toujours invariable; le courant de l'autre lampe était réglé jusqu'à ce qu'on obtienne

l'équilibre photométrique, puis il était mesuré; l'intensité de ce courant était alors modifiée arbitrairement, puis de nouveau réglée et mesurée, cette opération étant répétée un certain nombre de fois. L'écart moyen quadratique obtenu pour cette série d'expériences, exprimé en degrés, caractérise la grandeur du seuil de sensibilité pour des valeurs données de la température et de la longueur d'onde.

La grandeur de ce seuil est représentée sur la figure 4 en fonction de la température pour deux longueurs (0,65 μ et 0,83 μ). Sur cette même figure, la courbe en pointillé montre, à titre de comparaison, l'écart moyen des lectures au pyromètre optique visuel étalon pour $\lambda = 0,66 \mu$. On remarque que la sensibilité de l'installation photoélectrique dépasse considérablement celle du pyromètre visuel. De plus, la figure 4 montre que l'installation permet de réaliser les comparaisons à des températures de luminance sensiblement plus basses qu'avec le pyromètre optique.

L'utilisation du monochromateur à deux prismes à haute dispersion assure la détermination de la longueur d'onde effective avec une précision élevée. L'erreur de cette détermination ne dépasse pas 3 à 5 Å, tandis que pour les pyromètres visuels à verre coloré cette valeur est ordinairement de 10 à 15 Å.

L'installation CIIK-1 a été employée à l'Institut de Métrologie

pour l'étalonnage des lampes pyrométriques destinées à la conservation de l'échelle des températures de couleur ainsi que pour l'étalonnage des pyromètres photoélectriques de couleur [2].

Dans ce but, un groupe de trois lampes pyrométriques était étalonné d'avance, à l'aide du pyromètre spectral visuel, dans l'intervalle des températures de luminance de 1300 à 1600° C et aux longueurs d'onde 0,48, 0,52, 0,55, 0,60, 0,65 et 0,69 µ. Un second groupe de lampes était étalonné aux mêmes longueurs d'onde dans l'intervalle des températures de luminance de 1600 à 2 200° C.

Ensuite, avec l'installation CIIR-1, les lampes de chaque groupe ont été comparées deux à deux à des longueurs d'onde et . à des températures de luminance voisines de celles de l'étalonnage des lampes.

Les deux lampes comparées en température de couleur ont été placées sur le banc d'optique de l'installation CIIK-1. L'égalisation des luminances a été effectuée successivement à toutes les longueurs d'onde choisies; puis on faisait la permutation de l'optique extérieure et l'on répétait les mesures avec les mêmes longueurs d'onde. On échangeait ensuite les lampes de place, on faisait de nouveau la permutation du système optique et l'on répétait encore une fois toutes les mesures. Entre les mesures aux diverses longueurs d'onde on ne faisait aucun changement de la mise au point, du réglage, ni du nettoyage des surfaces optiques, afin que l'influence de la mise en place et de la disposition des lampes, les variations de la température intérieure, ainsi que l'affaiblissement de la lumière par les éléments optiques, gardent leur valeur et leur signe pour l'égalisation des luminances à toutes les longueurs d'onde choisies. Par cette méthode, on réduit au minimum les erreurs sur la température de couleur, dues à l'imprécision du réglage des lampes ainsi qu'à la non-identité du trajet des deux faisceaux de l'optique extérieure.

D'après les résultats des comparaisons en série fermée des lampes pyrométriques de chaque groupe, on a précisé les résultats de leur étalonnage. Ceci a permis de diminuer les notables erreurs accidentelles de l'étalonnage des lampes par le pyromètre spectral visuel.

A partir des résultats ainsi précisés de l'étalonnage, on calculait les températures de couleur T_c des lampes par la formule

$$\mathbf{T}_{c}=rac{rac{\mathbf{I}}{\widehat{\lambda}_{1}}-rac{\mathbf{I}}{\widehat{\lambda}_{2}}}{rac{\mathbf{I}}{\mathbf{S}_{1}\widehat{\lambda}_{1}}-rac{\mathbf{I}}{\mathbf{S}_{2}\widehat{\lambda}_{2}}},$$

(1)

tout en calculant pour chaque point d'étalonnage trois valeurs

de T_c (dont on prenait ensuite la moyenne) correspondant aux trois paires de longueurs d'onde 0,48 et 0,60 μ , 0,52 et 0,65 μ , 0,55 et 0,69 μ .

On a ainsi établi deux groupes de lampes pyrométriques étalons qui conservaient les échelles de température de couleur, l'un dans l'intervalle 1400-1800° C, l'autre dans l'intervalle 1800-2500° C.

D'après les deux groupes de lampes pyrométriques étalons et par des comparaisons effectuées avec l'installation $C\Pi K-1$, on étalonnait en température de couleur les lampes employées pour la vérification des pyromètres photoélectriques de couleur.

L'emploi de l'installation CIIR-1 permet d'obtenir une haute , précision dans la comparaison des lampes en température de couleur. Avec l'installation CIIR-1, l'erreur de la comparaison des lampes pyrométriques aux températures de couleur T_c est liée à l'erreur de la comparaison aux températures de luminance S. En différentiant l'équation (1) on a

(2)
$$\Delta T_e = \frac{T_e^2}{S^2} \frac{\lambda_2}{\lambda_2 - \lambda_1} \Delta S = k \Delta S.$$

En prenant pour λ_1 et λ_2 l'une des trois paires de valeurs indiquées plus haut, nous obtenons pour $T_c = 1700^{\circ}$ K, k = 4,4 et pour $T_c = 2700^{\circ}$ K, k = 5,7.

On peut citer les sources d'erreur suivantes lors de la comparaison de lampes en température de couleur sur l'installation CIIR-1.

a. Le seuil de sensibilité du montage électrique dépend du niveau des bruits de fond, principalement des fluctuations du courant photoélectrique, et est voisin de 0,05 à 0,1 degré. L'erreur correspondante de la comparaison en température de couleur ne dépasse pas 0,5 deg.

b. L'influence de la tension au photomultiplicateur sur l'équilibrage du montage électronique. Cette erreur ne dépasse pas 0,1 deg, ce qui correspond dans la comparaison en température de couleur à une erreur d'environ 0,5 deg.

c. Une élimination incomplète de la non-identité du trajet des deux faisceaux de l'optique extérieure de l'installation.

d. L'imprécision du pointage du système optique sur une partie choisie du ruban de la lampe, en raison des gradients de température sur le ruban.

e. L'instabilité de la luminance de la lampe pour une intensité constante du courant.

D'après ce qui précède, la méthode de comparaison choisie a réduit au minimum l'influence des trois dernières sources d'erreurs. L'erreur totale de la comparaison de lampes à ruban en température de couleur a été déterminée à l'aide des résultats expérimentaux par deux moyens :

1º par la divergence des résultats de la comparaison après la permutation des lampes;

2º par l'erreur totale de la comparaison, représentant l'incohérence révélée après la comparaison de trois lampes deux à deux, à chaque température.

Calculé de cette manière, l'écart moyen quadratique de la comparaison en température de couleur de lampes à ruban sur l'installation $C\Pi K-1$ est d'environ ± 1 deg dans l'intervalle de température 1400-1800° C, et ± 2 à 2,5 deg dans l'intervalle 1800-2500° C. Ces nombres montrent une augmentation considérable de la précision d'étalonnage par l'emploi de la méthode photoélectrique.

C'est à l'aide de l'installation CHR-1 qu'on a réalisé, par une méthode objective, la reproduction de l'échelle de température au-dessus de 1063° C d'après la loi de Planck. Conformément à la décision adoptée en 1948 sur l'Échelle Internationale de Température, la valeur de la température dans ce domaine doit être déterminée par l'équation

(3)
$$\frac{E_1}{E_2} = \frac{\frac{C_2}{e^{\lambda}T_2 - 1}}{\frac{C_2}{e^{\lambda}T_1 - 1}}.$$

La précision de la reproduction de l'échelle de température dépend de la précision avec laquelle on peut mesurer, par le dispositif utilisé, le rapport des luminances E_1/E_2 , ainsi que la longueur d'onde effective du rayonnement employé λ . En comparaison de la méthode visuelle, l'installation CIIK-1 permet d'augmenter la précision de la mesure de ces deux grandeurs, grâce à la haute sensibilité de l'appareillage.

Pour la reproduction de l'échelle de température par une méthode visuelle, la mesure du rapport des luminances de deux sources est effectuée plus efficacement à l'aide de secteurs tournants. En ce qui concerne les mesures photoélectriques par modulation, cette méthode n'est pas acceptable car elle exige une grande inertie des récepteurs photoélectriques.

Nous avons adopté la méthode de double luminance pour la reproduction de l'échelle de température à l'aide des mesures photoélectriques (²). Devant une lampe pyrométrique auxiliaire montée sur le banc de l'installation photoélectrique, on place un

⁽²⁾ Voir la licence de V. A. Kovalevski, nº 104.096, 1956.

- T 162 -

semi-transparents (fig. 5). L'un des miroirs divise le rayonnement de la lampe en deux faisceaux qui se réunissent de nouveau sur l'autre miroir. A l'aide de coins optiques et d'écrans on peut régler la luminance de chaque faisceau, substituer exactement un faisceau à l'autre ou bien laisser passer les deux simultanément par un des objectifs du système optique extérieur de l'installation $C\Pi K-1$.

La lampe à étalonner est montée de l'autre côté de l'installation photoélectrique. L'intensité du courant attribuée initialement à cette lampe correspond à la température de départ 1063°C. Le réglage du dispositif à miroirs et du courant dans la lampe

auxiliaire est réalisé de telle sorte que l'installation photoélectrique montre l'égalité des luminances des deux lampes quand on laisse passer séparément chaque faisceau de lumière de la lampe auxiliaire. Si on laisse passer les deux faisceaux de la lampe auxiliaire, la luminance de son image est alors doublée dans le plan de la fente d'entrée du monochromateur. En augmentant l'intensité du courant dans la lampe à étalonner on obtient de nouveau l'égalisation des luminances des images, après quoi la luminance de la lampe devient deux fois plus grande qu'au commencement. Pour une telle expérience, la précision de la duplication de la luminance de la lampe à étalonner est déterminée principalement par la sensibilité de l'installation photoélectrique.

La duplication par cette méthode de la luminance de la lampe à étalonner est répétée successivement jusqu'à ce qu'on obtienne la température limite à laquelle on veut étalonner la lampe.

La température du ruban de la lampe à étalonner, qui augmente à chaque duplication de sa luminance, est calculée d'après la formule (3).

Pour la reproduction de l'échelle de température à des températures supérieures à celle admise pour l'incandescence de la lampe à étalonner, on emploie des verres absorbants comme on La comparaison, à l'aide de l'installation photoélectrique et à diverses températures, des luminances de plusieurs lampes étalonnées par la méthode indiquée, permet de déterminer l'erreur accidentelle totale de la reproduction et du transfert de l'échelle de température par la méthode photoélectrique.

Nous avons réussi à obtenir les valeurs suivantes de l'erreur accidentelle totale pour la reproduction de l'échelle de température en lumière rouge ($\lambda = 0.6562 \mu$).

Température.	Erreur accidentelle totale.
1 400°C	\pm o, 2 deg
1 600	$\pm 0,3$
2 000	\pm 1,0

Ces valeurs sont préliminaires, car elles résultent de la comparaison d'un nombre insuffisant de lampes. L'imprécision sur la valeur de la longueur d'onde effective ($\Delta \lambda = \pm 5 \text{ Å}$) conduit pour les mêmes températures à des erreurs de \pm 0,3, \pm 0,6 et \pm 1,2 deg.

D'après nos estimations, l'écart moyen quadratique de la reproduction de l'Échelle Internationale de Température par les pyromètres visuels étalons est de ± 4 deg à 2 000° C [3].

En résumé, nos recherches ont montré que les erreurs de la reproduction de l'échelle de température par l'installation CIIH-1 sont dues aux phénomènes suivants :

1º Seuil de sensibilité de la partie photoélectrique de l'installation CIIK-1 (influence des bruits de fond);

2º Élimination incomplète de la non-identité du trajet des deux faisceaux du système optique extérieur (pour la comparaison des lampes);

3º Instabilité de la luminance du ruban de la lampe (influence de l'inclinaison, de la température intérieure);

4º Irrégularité de la température du ruban de la lampe dans la région visée;

5º Valeur imprécise de la longueur d'onde effective.

On a l'espoir que les erreurs indiquées ci-dessus pourront être diminuées grâce à un perfectionnement ultérieur des appareils et de la technique expérimentale. Toutefois, la précision déjà atteinte dans la reproduction de l'échelle de température est considérablement élevée, comparée à celle de l'ancienne méthode visuelle.

(Avril 1958)

BIBLIOGRAPHIE.

- KANDIBA (V. V.) et KOVALEVSKI (V. A.), Dokl. Akad. Nauk, S.S.S.R., 108, nº 4, 1956, p. 633-635.
- [2] GORDOV (A. N.), LAPINA (E. A.) et KIRENKOV (J. J.), Trud. Inst. Metrol. D. I. Mendeleev, nº 35 (95), 1958.
- [3] GORDOV (A. N.), Ibid., nº 9 (59), 1950.

ANNEXE T 20

Kamerlingh Onnes Laboratorium (Pays-Bas)

L'ÉCHELLE DE TEMPÉRATURE L 55 A TENSION DE VAPEUR DE L'HÉLIUM

(Traduction)

INTRODUCTION.

Lors de la Conférence de la Physique des Basses Températures. tenue à Paris du 2 au 8 septembre 1955, quelques problèmes relatifs à l'échelle de température fondée sur la tension de vapeur de l'hélium liquide ont été discutés au cours d'une séance spéciale; un rapport sur ces discussions a été rédigé par D, de Klerk, Cette séance avait été précédée par une réunion, à Leyde, de sept spécialistes travaillant à l'amélioration de l'échelle de 1948; ces sept spécialistes avaient présenté à la Conférence un nouveau projet d'échelle à tension de vapeur de l'hélium liquide. Ce projet et le rapport de D. de Klerk sont donnés ci-après (p. T 166 et T 168). Les recommandations contenues dans ce projet ont été approuvées au cours de la dernière séance de la Conférence de Paris, qui les a faites siennes. En conséquence, la table provisoire exprimant la relation p-T, présentée à la Conférence de Paris, a été établie sous une forme définitive de 0,001 en 0,001 degré et a été étendue aux températures inférieures et supérieures comme indiqué dans le projet.

Les valeurs de base pour $T < 4,2^{\circ}$ K ont été calculées de 0,050 en 0,050 degré; elles sont données au tableau B (p. T 175). Le « Mathematical Centrum » d'Amsterdam s'est chargé du calcul des valeurs intermédiaires de la table et de son extension aux températures supérieures à $4,2^{\circ}$ K pour tous les millièmes de degré. Nous sommes reconnaissants à A. Van Wijngaarden et A. J. W. Duijvestijn de ces calculs délicats.

La table fournit des valeurs p-T qui ne diffèrent que de quelques millièmes de degré des résultats expérimentaux. Les écarts trouvés au Kamerlingh Onnes Laboratorium sont pour la plupart de signe contraire à ceux des résultats discutés par Clement aux États-Unis d'Amérique. L'écart dépend de la façon dont les mesures sont faites et interprétées. Dans le projet présenté à la Conférence de Paris, on indique quelques remarques qui permettent de réduire les erreurs d'étalonnage.

Un avantage de cette échelle fondée sur des calculs thermodynamiques est sa cohérence interne. Cette cohérence est due au fait que la relation p-T est en accord étroit avec les meilleurs résultats expérimentaux obtenus par différentes méthodes. Un rapport plus complet des travaux et des calculs effectués à Leyde pour améliorer l'échelle de 1948 sera publié par ailleurs. Ces travaux ont été faits en collaboration avec B. Knook, M^{11e} O. P. Van Wier, F. J. du Chatenier et H. ter Harmsel.

> H. Van Dijk, M. Durieux.

PROJET D'UNE NOUVELLE ÉCHELLE A TENSION DE VAPEUR DE L'HÉLIUM LIQUIDE

1. Une relation p-T a été calculée par Van Dijk et Durieux, pour les températures comprises entre 0,9 et 4,25° K, à partir de considérations purement thermodynamiques. Nous l'estimons exacte à 2.10⁻³ degré près environ.

2. Cette relation peut être étendue très facilement :

a. aux températures inférieures, en prenant les trois premiers termes du développement;

b. aux températures supérieures, en s'appuyant sur les résultats de Berman et Swenson obtenus au moyen du thermomètre à gaz. Ces résultats peuvent être utilisés dans une formule similaire à celle de Berman et Swenson, bien raccordée à l'échelle calculée.

3. Nous proposons à la Conférence cette relation p-T comme une amélioration importante de l'échelle de 1948; les températures dans cette échelle pourraient être désignées par T₅₅. Pour rendre la table d'un emploi commode, elle pourrait être établie pour des intervalles de 0,005 ou 0,001 degré.

4. De petits écarts systématiques entre les résultats expérimentaux et la relation p-T calculée existent aussi bien au Laboratoire de Leyde qu'à ceux des États-Unis; ces écarts ne dépassent toutefois pas quelques millièmes de degré et ils dépendent de la façon dont les mesures sont effectuées et interprétées. 5. Pour réduire les erreurs d'étalonnage, il y a lieu d'éviter :

a. les points froids;

b. un apport de chaleur par le haut du réservoir à tension de vapeur;

c. les oscillations;

d. les gradients de température dans le réservoir.

6. *a.* Selon la technique en usage à Leyde avec un appareil en verre, un réservoir à tension de vapeur, prolongé par une enveloppe tubulaire à double paroi contenant un petit peu d'hélium à une température légèrement supérieure à celle du réservoir, donne des résultats reproductibles en très bon accord avec la relation thermodynamique calculée.

b. D'après l'expérience d'un certain nombre de laboratoires aux États-Unis, un réservoir à tension de vapeur doit être employé, en particulier au-dessus du point λ .

Dans le cas d'un appareil métallique, le réservoir à tension de vapeur doit être prolongé par une enveloppe sous vide, alors qu'une enveloppe sous vide ne convient pas pour un appareil en verre.

Les résultats ainsi obtenus, bien qu'ils diffèrent l'un de l'autre, peuvent être convenablement représentés par une courbe des écarts par rapport à l'équation de Clement (ou par rapport à la table thermodynamique de Van Dijk et Durieux). Tant qu'on ne disposera pas de connaissances plus détaillées sur le mode opératoire pour la mesure exacte des tensions de vapeur, cette courbe des écarts peut être utilisée pour déterminer les températures à partir des tensions de vapeur selon les méthodes indiquées ci-dessus; il est probable qu'en agissant de cette façon, au lieu de se référer simplement à la table de Van Dijk et Durieux, on obtient des températures plus voisines des températures thermodynamiques.

> E. AMBLER, J. R. CLEMENT, H. Van DIJK, M. DURIEUX, R. P. HUDSON, W. E. KELLER, D. de KLERK,

DÉTERMINATION DE LA TEMPÉRATURE ABSOLUE DANS LE DOMAINE DE L'HÉLIUM LIQUIDE

(Rapport de la séance spéciale tenne en liaison avec la Conférence de la Physique des Basses Températures, Paris, septembre 1955)

Au cours des dernières années, des doutes sont apparus sur la précision de la « table 1948 » des tensions de vapeur de l'hélium liquide, table qui est utilisée par la plupart des laboratoires des basses températures pour déterminer les températures à partir des tensions de vapeur mesurées. Plusieurs expérimentateurs utilisant des techniques différentes sont arrivés à la conclusion que des écarts systématiques, pouvant atteindre 0,015 degré, doivent exister entre les températures calculées d'après la table et les températures vraies.

Pour cette raison, une séance spéciale s'est tenue sous la présidence de F. G. Brickwedde, dans le but d'établir une nouvelle échelle plus proche de l'échelle absolue. Cette séance a été précédée d'une réunion, à Leyde, entre J. R. Clement (Naval Research Laboratory), H. Van Dijk, M. Durieux et D. de Klerk (Kamerlingh Onnes Laboratorium), R. P. Hudson et E. Ambler (National Bureau of Standards) et W. E. Keller (Los Alamos Laboratory).

Les résultats des différentes recherches ont conduit à deux échelles : une formule thermodynamique établie par H. Van Dijk et une échelle empirique établie par J. R. Clement.

H. Van Dijk fit remarquer qu'une formule thermodynamique est la meilleure base de départ pour parvenir à la relation vraie entre la tension de vapeur et la température absolue. Les résultats obtenus de cette façon sont indépendants des erreurs systématiques dues aux imperfections du dispositif de mesure de la tension de vapeur. Il a examiné chaque terme de l'équation donnant la tension de vapeur, et justifié le choix des valeurs attribuées aux différentes grandeurs thermodynamiques qui apparaissent dans ces termes. Les températures finalement obtenues à partir de la formule sont probablement exactes à mieux que 0,001 degré à 1° K, et 0,002 degré au point d'ébullition, l'écart maximum étant 0,003 degré à 2,8°K.

J. R. Clement a indiqué que son échelle de température actuelle n'est pas la formule qu'il a publiée il y a quelque temps. Cette formule avait été établie dans le but d'obtenir une relation lissée p-T, qui constituerait en même temps une représentation satisfaisante des résultats expérimentaux. On a toutefois reconnu, il y a un mois environ, que des écarts systématiques existent entre cette formule et divers résultats de mesure, à savoir : les déterminations d'isothermes de Keller, les mesures au thermomètre à gaz de Berman et Swenson et de Schmidt et Keesom, les recherches magnétiques de Hudson et Ambler (qui dépendaient de deux constantes), et les études faites avec des thermomètres à carbone par Corak, Garfunkel, Satterthwaite et Wexler (dont la cohérence ne peut être contrôlée qu'avec une échelle). Dans toutes ces mesures, la tension de vapeur avait été mesurée avec un réservoir à tension de vapeur et tous les résultats présentaient à peu près les mêmes écarts par rapport à la formule initiale de Clement (et aussi, par conséquent, par rapport à la formule thermodynamique de Van Dijk), ce qui justifie la conclusion que les mêmes écarts se produiront dans des conditions expérimentales semblables.

D. de Klerk fit ensuite un compte rendu de la réunion préliminaire de Leyde.

Les échelles de Van Dijk et Clement ont chacune leurs mérites. L'échelle de Van Dijk fournit la relation la plus sûre entre p et T qui puisse être calculée actuellement, bien que quelque doute puisse exister sur les valeurs exactes de certaines grandeurs thermodynamiques.

Les écarts entre les échelles de Van Dijk et de Clement peuvent être dus aux erreurs systématiques dans les déterminations de pression des différents auteurs, donc à des imperfections des appareils. S'il en est ainsi, l'origine de ces erreurs est plutôt obscure, mais il apparaît qu'elles peuvent être très voisines pour des appareils différents.

Pour cette raison, le projet suivant a été soumis aux Membres de la Conférence.

L'échelle de Van Dijk serait acceptée comme échelle de température absolue, ou tout au moins comme la meilleure approximation possible actuellement; les valeurs des températures dans cette échelle seraient désignées par le symbole T_{55} . Une table de cette échelle, établie de 0,01 en 0,01 degré, a été remise aux Membres de la Conférence. Il est prévu, cependant, d'établir prochainement une nouvelle table à intervalles plus rapprochés, pouvant être utilisée commodément à la fois pour la détermination de p en fonction de T et vice versa. La table actuelle couvre la région comprise entre 0,9 et $4,2^{\circ}$ K, mais elle peut être étendue sans difficultés à ses deux extrémités : aux températures plus basses, en utilisant les trois premiers termes du développement thermodynamique; aux températures plus élevées, au moyen des résultats de Berman et Swenson, un bon raccordement étant possible à $4,2^{\circ}$ K entre les résultats de ces auteurs et la formule de Van Dijk.

Une courbe d'écarts donnant les différences entre les échelles de Clement et de Van Dijk sera publiée à peu près en même temps que la table définitive; cette courbe serait désignée sous le nom de « correction de Clement ». Jusqu'au point d'ébullition, les écarts ne dépassent nulle part 0,003 degré. Cette courbe d'écarts peut être employée pour déterminer les températures à partir des tensions de vapeur mesurées; ces valeurs de température peuvent être considérées, sous certaines conditions expérimentales, comme étant plus voisines des températures absolues que les valeurs obtenues avec la seule échelle de Van Dijk.

Certaines difficultés existent encore dans l'interprétation de la mesure des tensions de vapeur; les points essentiels des conditions expérimentales n'apparaissent pas encore clairement. Alors que plusieurs des déterminations examinées par Clement sont en bon accord, les déterminations magnétiques de Van Dijk et Durieux, effectuées avec un dispositif expérimental légèrement différent, donnent des écarts qui ne correspondent pas à la « correction de Clement »; entre 1,9 et $4,2^{\circ}$ K, ces écarts sont même de signe contraire. En outre, des mesures à la partie supérieure du cryostat, compte tenu de la correction de pression hydrostatique habituelle, donnent de nouveau des résultats en désaccord avec la « correction de Clement ».

A première vue, un projet contenant à la fois une échelle et une courbe * de correction ne semble pas très satisfaisant. Nous croyons cependant que c'est la meilleure solution actuellement. L'échelle de Van Dijk représente les propriétés thermodynamiques de l'hélium liquide et la « correction de Clement » tient compte des imperfections expérimentales possibles de certains appareils. Il semble important que l'échelle et la courbe de correction soient, l'une et l'autre, l'objet de nouvelles recherches.

A la fin de la séance, le Dr Dolecek du Naval Research Laboratory, appuyé par le Prof. Gorter de Leyde, a présenté une motion demandant que la Conférence approuve et adopte la recommandation contenue dans le compte rendu de la réunion de Leyde.

Le Prof. de Boer, d'Amsterdam, a suggéré que l'adoption officielle d'une échelle internationale de température soit laissée au Comité Consultatif de Thermométrie auprès du Comité International des Poids et Mesures, et que la présente Conférence des Basses Températures recommande seulement à ses Membres l'emploi d'une échelle.

A la dernière séance de la Conférence, la motion du Dr Dolecek a été acceptée.

D. de KLERK, Secrétaire de la séance.

LA TENSION DE VAPEUR DE 4He

Jusqu'à 4,167° K, la relation température-tension de vapeur de ⁴He a été calculée au moyen de l'équation thermodynamique

$$\ln p = i_0 - \frac{\mathrm{L}_0}{\mathrm{RT}} + \frac{5}{2} \ln \mathrm{T} - \frac{\mathrm{I}}{\mathrm{RT}} \int_0^{\mathrm{T}} \mathrm{S}_{\mathrm{L}} d\mathrm{T} + \frac{\mathrm{I}}{\mathrm{RT}} \int_0^p \mathrm{V}_{\mathrm{L}} dp + \varepsilon,$$

en utilisant les valeurs suivantes

 $i_0 = 12,244$ o(unités C. G. S.), $L_0 = 59,50$ joules/mole, R = 8.316 62 joules/mole.degré.

La tension, en mm Hg, a été réduite à o^o C et à la gravité normale avec

 $\rho_{\text{Hg}} = 13,595 \,\text{Ig/cm}^3$ et $g = 980,665 \,\text{cm/s}^2$.

 \int_{0}^{1} S_L dT a été obtenu par intégration graphique à partir des meilleures valeurs de Leyde pour C_L, réduites avec soin pour cette nouvelle échelle. Pour les températures comprises entre 2,5 et 4,167° K, les valeurs de C_L ont été corrigées au moyen des valeurs de la chaleur de vaporisation obtenues par Dana et Kamerlingh Onnes (¹) et par Berman et Poulter (²).

⁽¹⁾ Commun. Kamerlingh Onnes Lab., nº 179 c, 1926.

⁽²⁾ Phil. Mag., VII, 93, 1952, p. 1047.

Pour calculer $\int_{0}^{\mu} V_{L} dp$, les résultats de Kamerlingh Onnes et Boks (³) ont été utilisés.

 $z = \ln \left(1 + \frac{B}{V_G} \right) - \frac{2B}{V_G}$

a été calculé avec les valeurs de B des tables de Kilpatrick, Keller et Hammel (⁴).

Pour les températures supérieures à $4,167^{\circ}$ K, la tension p, exprimée en mm Hg à 0° C et sous la gravité normale, a été calculée par la formule

$$\log_{10} p = 1,977\ 254 - \frac{2,777\ 08}{T} + 2,5\ \log_{10} T.$$

Cette formule est très voisine de celle de Berman et Swenson (⁵); elle exprime correctement les résultats expérimentaux de ces auteurs et se raccorde bien aux résultats pour $T < 4,167^{\circ}$ K. Dans l'échelle définie de cette façon, la température du point d'ébullition est $4,2160^{\circ}$ K; cette valeur est celle de Schmidt et Keesom (⁶) qui a été confirmée, à la précision expérimentale près, par d'autres mesures effectuées dans des conditions différentes. Selon nos mesures les plus précises, la tension de vapeur au point λ est 37,67 mm Hg à 0° C, ce qui correspond à 2,1684° K dans l'échelle définie par cette table. Au point critique, p = 1718 mm Hg à 0° C (⁷) et $T = 5,206^{\circ}$ K.

Nous avons ajouté à la table p-T, une table donnant le rapport de la masse volumique du mercure entre 10 et 40° C à sa masse volumique à 0° C.

Éléments de base pour le calcul de la relation p-T.

La relation p-T peut se déduire de l'équation de Gibbs reliant les énergies libres des phases liquide et vapeur en présence

$$\begin{split} \mathbf{G}_{\mathrm{L}} &= \mathbf{U}_{0\mathrm{L}} - \int_{0}^{\mathrm{T}} \mathbf{S}_{\mathrm{L}} d\mathbf{T} + \int_{0}^{p} \mathbf{V}_{\mathrm{L}} dp, \\ \mathbf{G}_{\mathrm{G}} &= \mathbf{U}_{0\mathrm{G}} - \mathrm{RT} \left(\ln \frac{\mathrm{T}^{\frac{5}{2}}}{p} + i_{0} + \varepsilon \right). \end{split}$$

 $\varepsilon = o$ pour un gaz parfait; pour l'hélium, jusqu'à son point

(6) Commun. Kamerlingh Onnes Lab., nº 250 b.

⁽³⁾ Commun. Kamerlingh Onnes Lab., nº 170 b, 1924.

⁽⁴⁾ Phys. Rev., 97, 1955, p. 9.

⁽⁵⁾ Phys. Rev., 93, 1954, p. 311.

⁽⁷⁾ KAMERLINGH ONNES et WEBER, Commun. Kamerlingh Onnes Lab., nº 147 b, 1915.

- T 172 -

d'ébullition, on a approximativement

$$p V_{G} = RT \left(I + \frac{B}{V_{G}} \right)$$
 et $\varepsilon = ln \left(I + \frac{B}{V_{G}} \right) - \frac{2B}{V_{G}}$.

Puisque $G_L = G_G$ et $U_{0G} - U_{0L} = L_0$,

$$L_{0} = RT \left(ln \frac{T^{\frac{5}{2}}}{p} + i_{0} + \varepsilon \right) - \int_{0}^{T} S_{L} dT + \int_{0}^{p} V_{L} dp,$$
(1) $ln p = i_{0} - \frac{L_{0}}{RT} + \frac{5}{2} ln T + \varepsilon - \frac{1}{RT} \left[\int_{0}^{T} S_{L} dT - \int_{0}^{p} V_{L} dp \right];$
(2) $L = T (S_{0} - S_{L}) = -T \left(\frac{\partial G_{0}}{\partial T} \right)_{p} - TS_{L}$

$$= RT \left[ln \frac{T^{\frac{5}{2}}}{p} + i_{0} + \varepsilon + \frac{5}{2} + T \left(\frac{\partial \varepsilon}{\partial T} \right)_{p} \right] - TS_{L};$$
 $L = L_{0} + \frac{5}{2} RT + RT^{2} \left(\frac{\partial \varepsilon}{\partial T} \right)_{p} - \int_{0}^{T} C_{L} dT - \int_{0}^{p} V_{L} dp,$
où $T \left(\frac{\partial \varepsilon}{\partial T} \right)_{p} = \frac{B}{V_{0}} - \frac{T}{V_{0}} \frac{dB}{dT};$

(3)
$$C_{L} = \frac{5}{2}R + \frac{d}{dT}\left[RT^{2}\left(\frac{\partial\varepsilon}{\partial T}\right)_{p} - \int_{0}^{p} V_{L} dp - L_{exp}\right].$$

Quelques valeurs numériques pour la relation p-T ont été données dans les paragraphes qui précèdent.

Les valeurs de base utilisées pour calculer L_0 , ε , les intégrales, p, L et C_L sont données dans les tableaux B et C. Pour calculer $\int_0^T S_L dT$, nous avons choisi parmi les valeurs expérimentales disponibles de la chaleur spécifique C_L , celles que nous considérons comme les plus précises. Pour les températures supérieures à 2,4° K, les valeurs expérimentales sont moins précises, mais des valeurs expérimentales de L suffisamment exactes existent et ont permis de faire un choix convenable pour les capacités calorifiques entre 2,5° K et 4,2° K en utilisant une formule équiva-

lente à l'équation (3). On a calculé $\int_0^p V_L dp$ avec les équations

$$\begin{aligned} V_{\rm L}({\rm cm}^3) &= 27,66 - {\rm o}, {\rm oo}4\,734p & {\rm pour} \quad p \leq 38 \,\,{\rm mm}\,{\rm Hg}, \\ V_{\rm L}({\rm cm}^3) &= 27,24 + {\rm o}, {\rm oo}6\,337\,5p & {\rm pour} \quad p > 38 \,\,{\rm mm}\,{\rm Hg}. \end{aligned}$$

Ces deux équations sont en très bon accord avec les résultats expérimentaux de Kamerlingh Onnes et Boks. Les valeurs de L calculées (L_{eale}) et mesurées (L_{exp}) concordent à la précision des mesures près, et montrent le degré d'exactitude de la relation p-T calculée. Le tableau C donne les valeurs L_{cale} calculées avec l'équation (2).

Les unités utilisées dans les tableaux B et C sont : joule/mole.º K; joule/mole; cm³/mole; p en mm Hg à o^o C, g = 980,665 cm.s⁻².

Cette figure donne :

- ¹⁰ Les écarts entre l'échelle définitive (L 55) de Van Dijk et Durieux et leur échelle provisoire (L 55p) de septembre 1955.
- 2º Les écarts entre l'échelle définitive L 55 gt les échelles de Clement de mai 1955 (Cl) et de décembre 1955 (Cl).
- 3º Les écarts entre l'échelle définie par la formule de Berman et Swenson (B. S.) et l'échelle L 55.
- 4º Les différences M L 55 qui représentent les écarts entre les résultats expérimentaux les plus exacts obtenus par E. Ambler et R. P. Hudson au N. B. S. (17 août 1955) et l'échelle L 55.

(9 mars 1956)

- T 174 -

(°K)	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.9	0.04224	0.04738	0.05304	0.05924	0.06604	0.07346	0.08157	0.09039	0.09999	0.11041
1.0	0.12170	0.13393	0.14714	0.16140	0.17676	0.19330	0.21108	0.23016	0.25062	0.27253
1.1	0.29597	0.32101	0.34774	0.37623	0.40657	0.43885	0.47316	0.50958	0.54822	0.58917
1.2	0.63253	0.67840	0.72688	0.77808	0.83211	0.88907	0.94909	1.01226	1.07872	1.14858
1.3	1.22196	1.29899	1.37979	1.46448	1.55321	1.64609	1.74326	1.84487	1.95103	2.06190
1.4	2.17762	2.29833	2,42416	2,55528	2.69183	2.83395	2.98180	3.13553	3.29529	3.46124
1.5	3.63354	3.81234	3.99780	4.19008	4.38934	4.59575	4.80946	5.03064	5.25946	5.49607
1.6	5.74065	5.99336	6.25438	6.52385	6.80196	7.08887	7.38474	7.68975	8.00406	8.32783
1.7	8.66124	9.00445	9.35/62	9.72093	10.0945	10.4786	10.8733	11.2/88	11.6952	12.122/
1.0	17 4010	10 1724	10 7507	10 2570	10.0405	14.7270	21 2214	10.9000	22 5495	17.0415
1.9	17.0010	10.1734	10.7507	19.3370	19,9000	20.3733	21.2010	21,0000	22,0400	23.2214
2.0	23.9199	24.6264	25.3467	26.0809	26,8289	27.5909	28.3670	29.1571	29,9610	30.7789
2.1	31.6106	32.4565	33.3161	34.1894	35.0762	35,9764	36.8896	37.8152	38.7536	39.7069
2.2	40.6754	41.6597	42.6597	43.6757	44,7078	45.7564	46.8217	47.9038	49.0030	50.1193
2.3	51.2531	52.4041	53.5728	54.7591	55.9634	57.1858	58.4264	59.6854	60.9628	62.2590
2.4	63.5739	64.9077	66.2607	67.6328	69.0244	70.4354	71.8661	73.3166	74.7871	76.2776
							to a second			
2.5	77.7884	79.3196	80.8713	82.4436	84.0368	85.6509	87.2861	88.9425	90.6203	92.3197
2.6	94.0407	95.7837	97.5486	99.3356	101.145	102,977	104.831	106.707	108,607	110.529
2.7	112.474	114.443	116.435	118,450	120.489	122.552	124.639	126.749	128.884	131.043
2.8	133.227	135.435	137.668	139.926	142.208	144.516	146.849	149.208	151.592	154.001
2.9	156.437	158.899	161.386	163.900	166.440	169.007	171.600	174.220	176.867	179,541
3.0	182.242	184.971	187,727	190.511	193.322	196,162	199.029	201,925	204.849	207.801
3.1	210.782	213,792	216.830	219.898	222,994	226.120	229.275	232,460	235.674	238.918
3.2	242.192	245.496	248.830	252,195	255.590	259.016	262.473	265,960	269.479	273.029
3.3	276.610	280.222	283.866	287.542	291,249	294.989	298.761	302.565	306,402	310.272
3.4	314.174	318,109	322,077	326.078	330,113	334.181	338.283	342.418	346.588	350.792
3.5	355.030	359.303	363.610	367.952	372,329	376.741	381.188	.385.671	390.189	394.744
3.6	399.334	403.960	408.623	413.323	418.059	422.832	427.642	432.490	437.375	442.297
3.7	447.258	452.257	457.293	462.368	467.482	472.635	477.827	483.058	488.328	493.638
3.8	498.988	504.378	509.808	515.279	520.790	526.342	531.935	537.570	543.246	548.963
3.9	554.723	560.524	566.368	572.254	578,183	584.156	590.172	596.233	602.337	608.486
4.0	614,680	620,919	627,203	633.533	639,909	646.332	652,801	659.317	665.881	672,492
4.1	679.152	685.860	692.617	699.424	706.281	713.188	720.146	727.156	734.212	741.313
4.2	748,459	755.649	762.886	770,167	777.494	784.867	792.285	799.749	807.259	814.816
4.3	822.418	830.067	837.762	845.504	853,293	861.129	869.011	876.941	884.918	892.942
4.4	901.013	909.132	917.299	925.514	933.777	942.087	950.446	958.853	967.309	975.813
4.5	984.366	992.967	1001.62	1010.32	1019.07	1027.86	1036.71	1045.61	1054.55	1063.55
4.6	1072.60	1081.69	1090.84	1100.03	1109.28	1118.57	1127.92	1137.32	1146.77	1156.27
4.7	1165.82	1175.42	1185.07	1194.78	1204.53	1214.34	1224.20	1234.11	1244.07	1254.08
4.8	1264.15	12/4.27	1284.44	1294.66	1304.94	1315.27	1325.65	1336.09	1346.57	1357.11
4.9	1367.71	1378,36	1389.06	1399,81	1410.62	1421.48	1432.40	1443.37	1454.39	1405,47
5.0	1476,60	1487.79	1499.03	1510.33	1521.68	1533.08	1544.54	1556.06	1567,63	1579.26
5.1	1590.94	1602.68	1614.47	1626.32	1638.23	1650,19	1662.21	1674.28	1686.41	1698.59
5.2	1710.84	1723.14	1735.49							
		R	apports of	ies masse	es volumi	ques du	mercure	P(t°C)		

TABLEAU A. — L'échelle L 55 pour la tension de vapeur de ⁴He. (Unité : mm Hg à 0° C, g = 980,665 cm. s⁻²).

								1 (0 0)		
t	0	1	2	3	4	5	б	7	8	9
10 20 30	0,998 18 0,996 37 0,994 57	998 00 996 19 994 39	997 82 996 01 994 21	997 64 995 83 994 03	997 46 995 65 993 85	997 28 995 47 993 67	997 10 995 29 993 49	996 92 995 11 993 31	996 74 994 93 993 13	996 56 994 7 5 992 95

TABLEAU B. — Éléments de base pour le calcul de la relation p-T.

T	and the second							(25)	chur he
°K	$10^{3}C_{L}$	10 ³ S _L	$10^3 \int_0^1 C_{\rm L} \mathrm{d}T$	$10^3 f_0^1 S_{\rm L} dT$	B	VG	Е	$-RT^{2}\left(\overline{\partial T}\right)_{p}$	JEVLAP
0.10	0.09	0.03	0.002	0.001		p i i i i i i i i i i i i i i i i i i i			
0.20	0.75	0.25	0.038	0.013				1.00	
0.30	2.54	0.85	0.191	0.064		1			
0.40	6.02	2.01	0.603	0.201	1711.4				
0.50	11.76	3.92	1.47	0.490	1206.9	1.86×10^{9}	0.000001		1
0.60	20.42	6.79	3.05	1.017	914.1	1.31×10^{8}	0.000007		0.000001
0.70	39.2	11.1	5.86	1.92	727.7	1.87×10^{7}	0.000039		0.000009
0.80	88.9	19.1	11.9	3.51	600.9	4.29×10^{6}	0.000141		0.000043
0.90	204.2	35.4	25.7	6.47	510.1	1328000	0.000384		0.000156
0.95	297.5	48.9	38.2	8.56	473.8	805800	0.000587		0.000271
1.00	417.2	67.1	56.0	11.44	442.4	512000	0.000863	0.0168	0.000449
1.05	568.6	90.9	80.5	15.36	414.6	338400	0.001224	0.024	0.000713
1.10	764.7	121.7	113.6	20.65	390.2	231400	0.001684	0.0354	0.001091
1.15	1001	161.0	157	27.68	368.4	163100	0.002255	0.049	0.001619
1.20	1293	209.4	214	36.90	348.9	118000	0.002953	0.0670	0.002334
1.25	1660	269.2	288	48.81	331.3	87368	0.003782	0.089	0.003280
1.30	2098	342.6	381	64.05	315.3	66045	0.004762	0.1164	0.004506
1.35	2590	430.9	498	83.32	300.8	50853	0.005900	0.148	0.006070
1.40	3171	545.3	656	107.40	287.62	39814	0.007198	0.1876	0.008030
1.45	3892	658.5	818	137.15	275.48	31638	0.008670	0.233	0.010449
1.50	4644	802,8	1031	173.60	264.33	25483	0.010318	0.2872	0.013395
1.55	5509	968.7	1284	217.79	253.98	20779	0.012146	0.349	0.016941
1.60	6486	1158.9	1583	270,87	244,48	17136	0.014160	0.4182	0.021159
1.65	7571	1374.9	1934	334.10	235.60	14278	0.016360	0.498	0.026129
1.70	8801	1618.9	2343	408.81	227.32	12010	0.018746	0.5876	0.031923
1.75.	10182	1893.4	2817	496.48	219.61	10191	0.021314	0.703	0.038609
1.80	11699	2201.4	3364	598.71	212.39	8718.4	0.024060	0.7974	0.046276
1.85	13365	2544.0	3989	717.19	205.61	7516.6	0.026973	0.919	0.054997
1.90	15343	2925.8	4705	853.75	· 199.23	6525.9	0.030052	1.0529	0.064830
1.95	18041	3357.4	5536	1010.6	193.21	5704.6	0.033283	1.196	0.075836
2.00	21040	3850.2	6510	1190.5	187.53	5018,7	0.036650	1.3533	0.088066
2.05	24970	4415.3	7655	1396.8	182.17	4442.6	0.040141	1.521	0.101555
2.10	29890	5073.6	9021	1633.6	177.08	3956.8	0.043720	1.7011	0.116308
2.15	40000	5868.7	10711	1906.3	172.25	3545.0	0.047369	1.8903	0.132326
2.16	45430	6065.4	11135	1965.9	171.30	3470.5	0.048099	1.9265	0.135676
2.17	40600	6303,3	11651	2027.7	170.38	3398.4	0.048836	1.9650	0.139072
2.18	20040	6422.1	11909	2091.4	169.46	3328.4	0.049572	2,0037	0.142523
2.19	17020	6506.1	12092	2156.0	168.58	3260.4	0.050319	2.0427	0.146027
2.20	15210	6579.1	12253	2221.5	167.66	3194.7	0.051053	2.0879	0.149582
2.25	11990	6871.0	12902	2558.1	163.30	2892.7	0.054795	2,2964	0.168209
2.30	10690	7113.1	13452	2907.8	159.14	2629.2	0.058618	2,5182	0.188354
2.35	9790	7331.0	13959	3269.0	155.17	2397.15	0.062540		0.210154
2,40	9440	7533.1	14439	3640.6	151.38	2191.72	0.066560	3.0003	0.233705
2.45	9240	7725.3	14905	4022.1	147.75	2010.04	0.070664		0.258992
2.50	9170	7911.2	15365	4413.1	144,28	1848,18	0.074851	3.5356	0.286138
2.55	9130	8092,2	15822	4813,2	140.95	1703.34	0.079123		0.315244
2.60	9130	8269.3	16278	5222,2	137.76	1573.59	0.083480	4,1296	0.346344
2.65	9210	8443.8	16736	5640.1	134.69	1457,20	0.087886		0.379443
2.70	9330	8617.0	17199	6066.6	131.75	1351.82	0.092378	4,7762	0.414779
2.75	9460	8789.3	17669	6501.8	128,92	1256.32	0.096961		0.452406
2.80	9610	8961.0	18145	6945.6	126.20	1169.68	0.101616	5.4947	0.492350

TABLEAU B (suite).

T °K	10 ³ C _L	10 ³ S _L	$10^{3}\int_{0}^{T}C_{L}dT$	$10^{9} \int_{0}^{T} S_{\mathrm{L}} \mathrm{d}T$	—В	VG	ε	$-RT^2\left(\frac{\partial\varepsilon}{\partial T}\right)_p$	ßV⊥ dp
2.85	9810	9132.9	18631	7397.9	123.57	1091.02	0.106316	1	0.534639
2.90	10020	9305.5	19127	7858.9	121.04	1019.16	0.111098	6.2752	0.579463
2.95	10230	9478.7	19634	8328.5	118.60	953.52	0.115938	1. 1	0.626829
3.00	10440	9652.5	20151	8806.8	116.24	893.34	0.120839	7.1341	0.676877
3.05	10650	9826.9	20678	9293.7	113.96	838.11	0.125794		0.729636
3.10	10860	10002	21216	9789.5	111.76	787:20	0.130825	8,0564	0.785302
3.15	11070	10177	21765	10293.9	109.63	740.31	0.135901		0.843847
3.20	11280	10353	22323	10807.2	107.57	696.99	0.141034	9.0561	0.905422
3.25	11480	10530	22893	11329 3	105.57	656.92	0.146219		0.970076
3.30	11690	10707	23472	11860.2	103.64	619.71	0.151466	10.1580	1.037998
3.35	11900	10884	24062	12400.0	101.76	585.15	0.156762		1.109246
3.40	12110	11062	24663	12948.6	99.94	552.92	0.162130	11.3532	1.184044
3.45	12320	11241	25274	13506.2	98.17	522.93	0.167537		1.262293
3.50	12530	11419	25895	14072.7	96.46	494.92	0.173009	12.6108	1.344177
3.55	12740	11599	26527	14648.1	94.80	468.68	0.178553		1.429931
3.60	12950	11778	27169	15232.6	93.18	444.08	0.184151	14.0248	1.519678
3.65	13150	11958	27822	15826.0	91.61	421.01	0.189806		1.613368
3.70	13360	12139	28485	16428.4	90.09	399.25	0.195547	15.5272	1.711437
3.75	13570	12320	29159	17039.8	88.60	378.81	0.201346		1,813701
3.80	13780	12501	29843	17660.4	87.15	359,54	0.207202	17,2134	1.920444
3.85	13990	12682	30537	18289.9	85.74	341.27	0.213143		2.031995
3.90	14200	12864	31242	18928.6	84.37	323.97	0,219167	19.0280	2.148281
3.95	14410	13047	31957	19576.4	83.03	307.54	0.225274	1	2.269687
4.00	14620	13229	32683	20233.3	81.73	291.91	0.231483	21.0290	2.396187
4.05	14820	13412	33419	20899.3	80.46	276,95	0.237814		2,528385
4.10	15030	13595	34166	21574.5	79.22	262.67	0.244236	23.3239	2.666061
4.15	15240	13779	34923	22258.8	78.01	248.93	0.250787	· · · · · · · · · · · · · · · · · · ·	2.809666
4.20	15450	13963	35691	22952.4	76.83	235.63	0.257506	25.8334	2,959621
4.25	15660	14147	36469	23655.1	75.68	222.69	0.264409		3.116191

TABLEAU C. — Chaleur de vaporisation de ⁴He.

<i>Т</i> ₁₅₅ °К	L _{calc} joule mole ⁻¹	L _{exp} joule mole ⁻¹	<i>Т</i> ₁₅₅ °К	L _{calc} joule mole ⁻¹	L _{exp} joule mole ⁻¹
1.000	80.22		2.400	91.73	91.91
1.100	82.22		2.500	92.29	92.46
1.200	84,17		2.600	92.80	92.95
1.300	86.03		2.700	93.25	93.31
1.400	87.76		2.800	93.58	93.59
1.500	89.36	89.70	2.900	93.81	93.81
1.600	90.74	90.86	3.000	93.91	93.90
1.700	91.88	91.92	3.100	93.90	93.90
1.800	92.72	92.72	3.200	93.75	93,78
1.900	93.17	93.13	3.300	93.44	93.50
2.000	93.13	93.01	3.400	92.99	93.06
2.100	92.32	92.03	3.500	92.42	92.46
2.150	91.47	91.16	3.600	91.64	91.67
2.160	91.21	90.98	3.700	90.71	90.71
2.170	90.86	90.79	3.800	89.53	89.55
2.190	90.75	90.71	3.900	88.17	88.22
2,200	90.75	90.77	4.000	86,56	86.62
2.250	90.91	91.05	4.100	84.59	84.76
2.300	91.16	91.34	4.200	82.34	82,46

ANNEXE T 21

U. S. Naval Research Laboratory (États-Unis d'Amérique)

L'ÉCHELLE DE TEMPÉRATURE 55 E A TENSION DE VAPEUR DE L'HÉLIUM

Par J. R. CLEMENT

INTRODUCTION.

A la Conférence de la Physique des Basses Températures tenue à Paris en septembre 1955, l'insuffisance de l'échelle 1948 [1] définie par une relation entre la tension de vapeur de ⁴He et la température a été discutée et il a été proposé de remplacer cette échelle [2]. L'une des deux nouvelles échelles recommandées (L 55) était le résultat d'un calcul thermodynamique de la tension de vapeur, ce calcul étant basé sur l'égalité des potentiels thermodynamiques de Gibbs pour les phases liquide et vapeur coexistantes; ce calcul a été fait par Van Dijk et Durieux [3]. L'autre échelle (55 E) était une échelle empirique établie par l'auteur [4] d'après des mesures récentes [5-10] qui donnent directement la relation entre la tension de vapeur et la température. Le tableau D (p. T 183) donne les tensions de vapeur dans l'échelle 55 E pour des intervalles de 0,01 degré entre 0,5° K et 5,22° K.

ÉTABLISSEMENT DE L'ÉCHELLE 55 E.

Les données fondamentales qui ont constitué la base de l'échelle 55 E étaient les isothermes de Keller [5], les mesures au thermomètre à gaz de Berman et Swenson [6] et les mesures avec les thermomètres magnétiques de Erickson et Roberts [7] et de Ambler et Hudson [8]. L'échelle 55 E a été établie de façon à s'accorder aussi étroitement que possible avec tous les résultats de ces mesures. De plus, nous avons utilisé le rapport entre $\frac{\Delta \log R}{\Delta \left(\frac{I}{T} \right)}$

et T provenant des résultats obtenus par Clement, Logan et

Gaffney [9] et par Corak, Garfunkel, Satterthwaite et Wexler [10] avec des thermomètres à carbone. Nous avons imposé à l'échelle que le rapport $\frac{\Delta \log R}{\Delta \left(\frac{1}{T}\right)}$ en fonction de T soit une courbe régulière

qui puisse être extrapolée d'une manière raisonnable vers la région des températures de l'hydrogène liquide [11]. A cause des discontinuités au point λ dans les résultats de Erickson et Roberts, aussi bien que dans ceux de Clement *et al.*, on a attaché moins d'importance à ces derniers résultats, particulièrement au-dessus

Fig. 1. — Comparaison entre les principaux résultats donnant directement la relation entre la tension de vapeur et la température, et les indications de l'échelle 55 E.

•	sel	ler	4	H	e)	;
---	-----	-----	---	---	----	---

O Keller (³He);

Berman et Swenson;

Ambler et Hudson.

du point λ . D'ailleurs, pour que le calcul soit, jusqu'à un certain point, thermodynamiquement cohérent, nous nous sommes astreints à ce que la dérivée première de l'échelle s'accorde, dans l'équation de Clausius-Clapeyron, avec les résultats obtenus par la substitution des valeurs de la chaleur de vaporisation mesurées par Dana et Onnes [12] et par Berman et Poulter [13].

L'échelle 55 E est définie au-dessus du point λ (2,173 5° K) par l'équation

(1)
$$\ln p_{\rm I} = 6,220\ 77 - \frac{8,386\ {\rm I}}{{\rm T}} + 0,945\ {\rm ln\,T} + 0,247\ 5\,{\rm T},$$

et au-dessous du point λ par l'équation

(2)
$$\ln p_{\rm H} = 5,048.62 - \frac{7.181.32}{\rm T} + 2.5 \ln {\rm T} - 4.75.10^{-5} {\rm T}^9,$$

Fig. 2. — La « dérivée » du logarithme de la résistance par rapport à l'inverse de la température 55 E pour les résultats obtenus avec le thermomètre à carbone (Corak *et al.*).

Fig. 3. — Les nouveaux résultats de Durieux avec des thermomètres magnétiques, comparés aux indications de l'échelle 55 E.
O KCr(SO₄)₂. 12H₂O;
Mn(NH₄)₂(SO₄)₂. 6H₂O.

des valeurs discontinues pour d^2p/dT^2 . La figure 1 montre le rapport entre l'échelle 55 E et les résultats les plus importants utilisés pour son établissement. La figure 2 montre que la condition concernant les résultats des thermomètres à carbone a été satisfaite.

Récemment, Durieux a fait de nouvelles mesures avec des thermomètres magnétiques [14]; les écarts entre ses nouveaux résultats et l'échelle 55 E sont reportés à la figure 3. A l'exception d'un changement de 0,001 deg dans les constantes de Weiss pour les deux substances, les points indiqués dans la figure représentent les mêmes valeurs que celles obtenues par Durieux dans son analyse.

ÉVALUATION THERMODYNAMIQUE DE L'ÉCHELLE 55 E.

L'égalité des potentiels thermodynamiques de Gibbs pour les phases coexistantes du liquide et de la vapeur conduit, dans le cas d'une substance monoatomique telle que ⁴He, à l'expression suivante pour la tension de vapeur [15]

(3)
$$\ln p = i_0 - \frac{L_0}{RT} + \frac{5}{2} \ln T - \frac{1}{RT} \int_0^T S_l dT + \frac{1}{RT} \int_0^p V_l dp - \varphi,$$

où i_0 est la constante chimique; L_0 , la chaleur de vaporisation à o^o K; R, la constante des gaz parfaits; S_l et V_l, l'entropie et le volume moléculaire du liquide; et φ , un terme qui tient compte du caractère imparfait de la vapeur. Quand l'équation d'état de la vapeur est exprimée sous la forme

(1)
$$(PV_g/RT) = I + (B/V_g) + (C/V_g^2),$$

on a alors

5)
$$\varphi = (2 \operatorname{B}/\operatorname{V}_g) + (3 \operatorname{C}/2 \operatorname{V}_g^2) - \ln(\operatorname{PV}_g/\operatorname{RT}).$$

Dans cette équation (5), B et C sont les deuxième et troisième coefficients du viriel, et V_g est le volume moléculaire de la vapeur en équilibre avec le liquide.

Pour faire un calcul thermodynamique, il faut substituer des valeurs numériques dans l'équation (3). Les éléments de base utilisés par l'auteur étaient les suivants : selon la mécanique statistique, i_0 est (8 $\pi^3 m^3 k^5$)^{1/2}h⁻³, où *m* est la masse d'un atome, *k* est la constante de Boltzmann, et *h* est la constante de Planck; avec *p* en dynes/cm², $i_0 = 12,244$ o. L'auteur a adopté R = 8,31662.

L'intégrale de l'entropie liquide, $\int_{0}^{T} S_{l} dT$, a été calculée au moyen des valeurs de l'entropie trouvées par Kramers, Wasscher et Gorter [16] au-dessous de 1,8° K (après une correction pour éduction à l'échelle 55 E) et correction tributer la correction (17) et

réduction à l'échelle 55 E), et par Hill et Lounasmaa [17] audessus de 1,8° K (les valeurs de Hill et Lounasmaa étaient déjà calculées sur la base de l'échelle 55 E). Dans le voisinage immédiat du point λ , les valeurs de Hill et Lounasmaa ont été ajustées pour être compatibles avec les résultats relatifs de Fairbanks, Buckingham et Kellers [18].

Pour calculer l'intégrale du volume liquide $\int_{0}^{p} V_{l} dp$, on a utilisé les densités orthobariques indiquées par Kerr [19]. Pour continuer les calculs jusqu'à 4,6° K, il fallait extrapoler un peu les résultats de Kerr. Le fait que la relation entre V_{l} et p est presque linéaire au-dessus du point λ a rendu cette extrapolation possible avec l'exactitude nécessaire pour ces calculs.

Une nouvelle analyse de toutes les isothermes [5, 20-22] a précédé le calcul de φ . Cette analyse a été faite de la manière suivante : les valeurs de B calculées par Kilpatrick, Keller et Hammel [23] ont été admises comme correctes, puisqu'elles semblent avoir un fondement théorique satisfaisant et qu'elles s'accordent avec les valeurs expérimentales. On peut représenter ces valeurs de B dans de petits intervalles de température par des équations de la forme B = a - (b/T), dans lesquelles a et bdoivent avoir des valeurs particulières à chaque intervalle de température. Si l'on substitue une équation de cette forme dans l'équation (4), on obtient

(6)
$$\frac{(\mathrm{PV}_{g}^{a}/\mathrm{R}) + b}{a + \mathrm{V}_{g}} = \mathrm{T} + \frac{\mathrm{CT}}{\mathrm{V}_{g}(a + \mathrm{V}_{g})}.$$

Le membre de gauche de cette équation est calculable et doit fournir une relation linéaire en fonction de $\frac{1}{V_g(a+V_g)}$. On peut donc obtenir les valeurs de T et de CT; les valeurs de C qui en résultent s'accordent bien avec l'équation

(7)
$$C = (5.10^3/T) - (10^6/T^5).$$

Dans cette équation, C est exprimé en cm⁶/mole². On a calculé φ d'après l'équation (5) en utilisant les valeurs de B de Kilpatrick *et al.*, les valeurs de C données par l'équation (7), et les valeurs de *p* provenant de l'échelle 55 E.

 L_0 est une quantité indéterminée; la meilleure façon de l'évaluer est de la tirer de l'équation (3) après avoir introduit dans cette équation les valeurs expérimentales de p et de T; les isothermes de ⁴He de Keller et une partie des résultats obtenus au thermomètre à gaz par Berman et Swenson ont servi pour ce but. Pour qu'un calcul thermodynamique soit complètement cohérent, les mêmes valeurs des coefficients du viriel doivent être employées dans tous les calculs où elles apparaissent. C'est pourquoi, avant de calculer L_0 , les valeurs de la température ont été calculées de nouveau en partant des résultats de Keller, et en se servant
des valeurs de B et C employées dans le calcul de φ . Swenson avait déjà recalculé les résultats de Berman et Swenson en utilisant les valeurs de B d'après Kilpatrick *et al.* [Ces nouveaux résultats ne sont pas modifiés par la valeur de C tirée de l'équation (7).] L'examen de ces résultats recalculés a conduit l'auteur à adopter pour L₀ la valeur 59,718 joules/mole.

Dans le calcul thermodynamique d'une échelle, on a besoin d'une relation provisoire entre la pression et la température pour calculer γ et $\int_{0}^{p} V_{l} dp$ (l'échelle 55 E a servi comme échelle

Fig. 4. — Résultats du calcul thermodynamique comparés aux indications de l'échelle 55 E.

provisoire pour les calculs précédents); il faut donc opérer par approximations successives jusqu'à ce que les résultats ne soient plus modifiés d'une manière significative. L'auteur a repris ses calculs pour diverses valeurs de la température. Les changements produits par une seule révision étaient insignifiants, comparés aux incertitudes inhérentes aux données fondamentales employées.

Les résultats du calcul thermodynamique sont présentés numériquement au tableau E (p. T 185) et graphiquement à la figure 4. La courbe des différences de température de la figure 4 donne un écart maximum de + 0,001 3 degré à 2,6° K et de - 0,001 3 degré à 3,8° K. Une extrapolation au-dessus de 4,6° K, la plus haute température à laquelle le calcul thermodynamique était possible, a été ajoutée à cette courbe; cette extrapolation est donnée seulement pour montrer que par un choix raisonnable, le prolongement de la courbe ne dépasse guère l'incertitude de l'échelle 55 E, estimée par nous à 0,002 degré.

TABLEAU D. — L'échelle 55 E pour la tension de vapeur saturée de 4He liquide.

(Unité : mm Hg à 0° C, $g = 980,665 \text{ cm. s}^{-2}$)

Т°К	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,50	,000016	,000022	,000031	,000042	,000056	,000075	,000099	,000129	,000167	,000216
0,60	,000275	,000349	,000440	,000550	,000684	,000845	,001037	,001267	,001539	,001861
0,70	,002238	,002679	,003193	,003789	,004478	,005270	,006179	,007218	,008401	,009745
0,80	,011267	,012984	,014917	,017087	,019517	,022230	,025253	,028612	,032336	,036457
0,90	,041005	,046017	,051527	,057574	,064197	,071437	,079340	,087950	,097314	, 107484
1,00	, 118511	, 130448	, 143353	, 157284	, 172300	, 188466	, 205847	, 224509	, 244523	, 265960
1,10	,288895	, 313404	, 339566	, 367463	, 397178	,428797	,462408	,498102	, 535972	, 576113
1,20	,618623	,663602	,711152	,761377	,814385	,870285	,929187	,991206	1,05646	1,12506
1,30	1,19713	1,27280	1,35219	1,43542	1,52262	1,61393	1,70948	1,80940	1,91383	2,02291
1,40	2,13678	2,25559	2,37947	2,50857	2,64305	2,78304	2,92872	3,08021	3,23769	3,40131
1,50	3,57122	3,74758	3,93056	4,12032	4,31701	4,52081	4,73188	4,95038	5,17648	5,41035
1,60	5,65216	5,90207	6,16026	6,42689	6,70215	6,98618	7,27918	7,58131	7,89274	8,21363
1,70	8,54417	8,88452	9,23485	9,59532	9,96611	10,3474	10,7393	11,1420	11,5557	11,9806
1,80	12,4167	12,8642	13,3234	13,7943	14,2771	14,7720	15, 2790	15,7983	16,3301	16,8745
1,90	17,4316	18,0015	18,5843	19,1802	19,7892	20,4115	21,0471	21,6962	22,3587	23,0348
2,00	23, 7245	24, 4278	25, 1449	25,8757	26,6203	27,3786	28,1508	28,9366	29,7362	30,5495
2,10	31, 3765	32,2170	33,0710	33,9384	34,8191	35,7130	36,6198	37,5395	38,4726	39,421,5
2,20	40,3866	41,3680	42,3658	43,3802	44, 4113	45,4593	46, 5244	47,6065	48,7060	49,8229
2,30	50,9573	52, 1095	53, 2796	54,4676	55,6738	56,8982	58,1411	59,4026	60,6827	61,9817
2,40	63, 2996	64,6367	65,9931	67,3688	68,7641	70,1791	71,6139	73,0686	74, 5435	76,0386

- T 183 -

TABLEAU D (Suite).

Τ°Κ	,00	,01	,02	,03	.04	,05	,06	,07	,08	,09
2,50	77, 5540	79,0900	80,6466	82,2241	83,8225	85,4419	87,0826	88,7446	90,4281	92,1332
2,60	93,8601	95,6089	97, 3797	99,1728	100,988	102,826	104,686	106,570	108,476	110,405
2,70	112,357	114,332	116.331	118,354	120,400	122, 470	124,564	126,682	128,825	130,992
2.80	133, 183	135, 399	137,640	139,906	142, 197	144.513	146.855	149,222	151,615	154.033
2,90	156,478	158,948	161,445	163,968	166, 518	169,094	171,697	174,327	176,984	179,668
3.00	182.380	185, 119	187.886	190.680	193.502	196.353	199.231	202.138	205.074	208.038
3, 10	211.030	214.052	217, 103	220, 182	223, 291	226.430	229.598	232.796	236.024	239, 282
3.20	242, 570	245.889	249.238	252,617	256.027	259,469	262,941	266, 444	269,979	273, 545
3,30	277, 143	280,773	284,435	288, 128	291,854	295,612	299,403	303, 227	307,083	310,972
3,40	314,895	318,850	322, 839	326,862	330,918	335,008	339,132	343, 291	347, 483	351,710
3,50	355,972	360,269	364,600	368,966	373, 368	377,805	382,278	386,786	391, 330	395,910
3,60	400,527	405, 179	409,868	414, 594	419,356	424, 156	428,992	433,866	438,777	443,726
3,70	448,712	453,736	458,798	463,899	469,038	474,215	479,431	484,686	489,980	495, 313
3,80	500,685	506,097	511, 549	517,040	522, 571	528, 143	533,754	539,407	545,099	550,833
3,90	556,608	562, 424	568,281	574,179	580,119	586,101	592,125	598, 192	604,300	610,451
4,00	616,645	622.881	629,161	635, 484	641,850	648,259	654,712	661,210	667,751	674,336
4,10	680,966	687,640	694,360	701,124	707,933	714,788	721,688	728,633	735,625	742,662
4,20	749,746	756,876	764,053	771,276	778,546	785,864	793,228	800,641	808,101	815,608
4,30	823, 164	830,768	838,420	846,121	853,871	861,670	869,518	877,415	885, 362	893,358
4,40	901,405	909,501	917,648	925,846	934,094	942, 393	950,743	959,145	967,598	976,102
4,50	984,659	993, 268	1001,929	1010,642	1019,408	1028,227	1037,099	1046,025	1055,004	1064,036
4,60	1073,123	1082, 263	1091 <mark>,</mark> 458	1100,708	1110,012	1119,371	1128,785	1138,255	1147,780	1157, 361
4,70	1166,998	1176,691	1186,441	1196, 247	1206,110	1216,030	1226,008	1236,043	1246, 135	1256, 286
4,80	1266,494	1276,761	1287,087	1297,471	1307,914	1318,417	1328,979	1339,601	1350,283	1361,024
4,90	1371,826	1382,689	1393,613	1404, 597	1415,643	1426,750	1437,919	1449,150	1460,444	1471,799
5,00	1483, 217	1494,698	1506,243	1517,850	1529, 521	1541,256	1553,055	1564,918	1576,846	1588,839
5,10	1600,896	1613,019	1625,208	1637, 462	1649,782	1662, 168	1674,621	1687.140	1699,726	1712, 380
5,20	1725, 101	1737,890	1750,746	*******						

- T 184

TABLEAU E. — Résumé des calculs thermodynamiques.

T	Sl	$\int_{O}^{T} S_{\ell} dT$	$\int_{0}^{p} \nabla_{\ell} dp$	۳g	- <i>\varphi</i>	р	T-T55E
1,00	0,067	0,011	0,000	525920	0,0008	0,1185	-0,05
1,20	0,208	0,037	0,002	120650	0,0029	0,6188	-0,05
1,40	0,539	0,107	0,008	40576,5	0,0071	2,1371	-0,05
1,60	1,136	0,268	0,021	17404,9	0,0141	5,6487	+0,15
1,80	2,152	0,588	0,046	8819,4	0,0241	12,389	+0,65
1,90	2,858	0,837	0,064	6587,71	0,0302	17,380	+0,90
2,00	3,766	1,166	0,087	5057,77	0,0369	23,647	+1,10
2,05	4,321	1,368	0,101	4474,70	0,0404	27,293	+1,10
2,10	4,970	1,600	0,115	3983,61	0,0441	31,288	+1,05
2.15	5,736	1,865	0,131	3568,39	0,0478	35,635	+0,85
2,17	6,118	1,984	0,137	3420,59	0,0492	37,462	+0,85
2,18	6,294	2,048	0,141	3350,18	0,0500	38,395	+0,85
2,20	6,462	2,177	0,148	3215,23	0,0515	40,303	+0,85
2,40	7,389	3,570	0,231	2197,03	0,06 73	63,147	+1,15
2,60	8,102	5,121	0,344	1571,99	0,0846	93,631	+1,30
2,80	8,773	6,808	0,490	1165,57	0,10307	132,948	+1,05
3,00	9,448	8,630	0,675	888,71	0,12249	182,236	+0,55
3,20	10,133	10,588	0,904	692,69	0,14275	242,615	-0,15
3,40	10,833	12,685	1,184	549,375	0,16371	315,174	-0,70
3,60	11,547	14,922	1,521	441,616	0,18532	401,053	-1,15
3,80	12,281	17,305	1,923	358,570	0,20756	501,380	-1,30
4,00	13,048	19,837	2,398	293,093	0,23042	617,350	-1,15
4,10	13,444	21,162	2,668	265,353	0,24209	681,615	-0,95
4,20	13,850	22,526	2,959	240,286	0,25392	750,280	-0,75
4,30	14,283	23,931	3,274	217,452	0,26597	823,560	-0,50
4,40	14,738	25,378	3,616	196,527	0,27816	901,604	-0,25
4,50	15,216	26,873	3,985	177,081	0,29059	984,541	+0,15
4,60	15,722	28,420	4,385	158,570	0,30342	1072,721	+0,45

Unités : T, degré K; S_l, joule/mole.degré; $\int_{0}^{1} S_{l} dT$ et $\int_{0}^{10} V_{l} d_{p}$, joule/mole; V_{s} , cm³/mole; φ , sans dimension; p, mm Hg à 0° C, g = 980,665 cm.s⁻²; T – T_{55 E}, millidegré.

- T 185

CONCLUSIONS.

Les conclusions principales que l'on peut tirer des résultats présentés ici sont 1° que l'échelle 55 E est en accord satisfaisant (à \pm 0,002 degré) avec toutes les mesures récentes qui donnent directement la relation entre la tension de vapeur et la température et 2° que l'échelle 55 E est thermodynamiquement compatible (à \pm 0,002 degré) avec les données thermiques les plus récentes. L'échelle 55 E est donc une échelle complètement satisfaisante, tant au point de vue des mesures de la pression qu'au point de vue thermodynamique.

(Texte révisé, juillet 1958)

BIBLIOGRAPHIE.

- Van DIJK (H.) et SHOENBERG (D.), Nature, 164, 1949, p. 151; voir aussi Procès-Verbaux C. I. P. M., 23-B, 1952, p. T 151.
- Bulletin Institut International du Froid, Supplément, Annexe 1955-3, p. 608.
- [3] Van DIJK (H.) et DURIEUX (M.), Progress in low temperature physics, vol. II, North-Holland Publishing Co., 1957, p. 431; Physica, 24, 1958, p. 1; ce volume, Annexe T 20, p. T 165.
- [4] CLEMENT (J. R.), LOGAN (J. K.) et GAFFNEY (J.), Phys. Rev., 100, 1955, p. 743 (voir « note added in proof »). Cette échelle est aussi appelée quelquefois « Clement's scale of december 1955 » ou « the Baton Rouge table », parce qu'elle a été distribuée pour la première fois sous la forme définitive pendant une conférence de physique des basses températures à Baton Rouge, Louisiana, en décembre 1955.
- [5] KELLER (W. E.), Phys. Rev., 97, 1955, p. 1 (isothermes de ⁴He); Phys. Rev., 98, 1955, p. 1571 (isothermes de ³He); Phys. Rev., 100, 1955, p. 1790 (errata des isothermes de ⁴He).
- [6] BERMAN (R.) et SWENSON (C. A.), Phys. Rev., 95, 1954, p. 311.
- [7] ERICKSON (R. A.) et ROBERTS (L. D.), Phys. Rev., 93, 1954, p. 957.
- [8] AMBLER (E.) et HUDSON (R. P.), J. Res. Nat. Bur. Standards, 56, 1956, p. 99; 57, 1956, p. 23.
- [9] CLEMENT (J. R.), LOGAN (J. K.) et GAFFNEY (J.), Naval Research Laboratory Report nº 4542, mai 1955 (voir aussi la référence [4]).
- [10] CORAK (W. S.), GARFUNKEL (M. P.), SATTERTHWAITE (C. B.) et WEXLER (A.), Phys. Rev., 98, 1955, p. 1699; Westinghouse Research Report nº 60-94466-5-R1, 10 décembre 1955.
- [11] CLEMENT (J. R.), QUINNELL (E. H.), STEELE (M. C.), HEIN (R. A.) et DOLECEK (R. L.), Rev. Sc. Inst., 24, 1953, p. 545 (voir fig. 3).
- [12] DANA (L. I.) et ONNES (H. K.), Proc. Amst. Acad. Sc., 29, 1926, p. 1051; Comm. de Leyde nº 179c.

- [13] BERMAN (R.) et POULTER (J.), Phil. Mag., 43, 1952, p. 1047.
- [14] Van DIJK (H.) et DURIEUX (M.), Communication privée.
- [15] Voir MAYER (J. E.) et MAYER (M. G.), Statistical Mechanics, John Wiley and Sons, Inc., New York, 1940, p. 292.
- [16] KRAMERS (H. C.), WASSCHER (J. D.) et GORTER (C. J.), Physica, 18, 1952, p. 329; Comm. de Leyde nº 288c.
- [17] HILL (R. W.) et LOUNASMAA (O. V.), Phil. Mag., 2, 1957, p. 143.
- [18] FAIRBANK (W. M.), BUCKINGHAM (M. J.) et KELLERS (C. F.), Bull. Amer. Phys. Soc., 2, 1957, p. 183.
- [19] KERR (E. C.), J. Chem. Physics, 26, 1957, p. 511.
- [20] ONNES (H. K.) et BOKS (J. D. A.), Comm. de Leyde nº 170b (1924).
- [21] KEESOM (W. H.) et WALSTRA (W. K.), Physica, 7, 1940, p. 985; Comm. de Leyde nº 260c.
- [22] KISTEMAKER (J.) et KEESOM (W. H.), Physica, 12, 1946, p. 227; Comm. de Leyde nº 269b.
- [23] KILPATRICK (J. E.), KELLER (W. E.) et HAMMEL (E. F.), Phys. Rev., 97, 1955, p. 9.

ANNEXE T 22

L'ÉCHELLE DE TEMPÉRATURE A TENSION DE VAPEUR DANS LE DOMAINE DE L'HÉLIUM LIQUIDE

(Traduction)

Leyde, 17 juin 1958.

Monsieur le Président du Comité Consultatif de Thermométrie,

Nous proposons, en tant qu'échelle de référence internationale pour les mesures thermométriques entre 0,5 et 5,20° K, l'adoption de la table de la tension de vapeur de l'hélium établie aux termes de l'accord réalisé sur ce point par Van Dijk, Durieux, Clement et Logan le 16 juin 1958 (p. T 190). Les valeurs de la tension de vapeur sont données dans cette table à intervalles suffisamment rapprochés pour permettre l'interpolation et le calcul des températures avec une exactitude mathématique meilleure que l'incertitude des mesures actuelles avec des thermomètres à tension de vapeur. Les températures de cette table sont exprimées dans l'échelle thermodynamique Kelvin, avec la valeur 273,16° K pour le point triple de l'eau.

La table donnant la tension de vapeur de l'hélium en fonction de la température, table proposée comme échelle de référence, est le fruit de nombreuses années de recherches remontant aux travaux de H. Kamerlingh Onnes, précurseur en ce domaine; par la suite, son successeur W. H. Keesom effectua de nombreux travaux de recherche sur la question, travaux poursuivis ces dernières années par Van Dijk et Durieux à Leyde, et par Clement et Logan à Washington au U. S. Naval Research Laboratory. Ces quatre physiciens, signataires de l'accord réalisé, sont les experts reconnus dans ce domaine de la physique. Aux États-Unis d'Amérique, d'importantes recherches sur l'échelle de l'hélium liquide ont également été effectuées (Hudson et Ambler; Erickson et Roberts; Keller; Berman et Swenson; Corak, Garfunkel, Satterthwaite et Wexler). A la suite de leurs travaux sur l'échelle de l'hélium liquide, Van Dijk et Clement, travaillant indépendamment l'un de l'autre, ont déjà proposé deux échelles différentes, connues sous les noms de L 55 (p. T 165) et 55 E (p. T 177). Bien que ces deux échelles soient presque identiques et ne diffèrent que de quantités du même ordre que les incertitudes dont chacune d'elles est affectée, l'existence simultanée de deux échelles de référence à usage international a conduit à des confusions embarrassantes; seuls Van Dijk et Clement pouvaient remédier à cette situation en s'accordant sur une échelle unique.

Le 16 juin 1958 à Leyde, Van Dijk, Durieux, Clement et Logan se sont mis d'accord sur l'échelle que nous proposons d'adopter comme référence internationale; les termes de cet accord ainsi que la table donnant la tension de vapeur de l'hélium en fonction de la température sont reproduits ci-après; ils feront l'objet d'une diffusion générale à la Conférence Kamerlingh Onnes qui aura lieu à Leyde, du 23 au 28 juin 1958.

Par le passé, les physiciens travaillant dans le domaine des basses températures ont recherché un accord international sur l'échelle de température à tension de vapeur de l'hélium, par le moyen de la Commission des très Basses Températures de l'Union Internationale de Physique Pure et Appliquée (U. I. P. P. A.). Cette Commission tient régulièrement séance tous les deux ans et l'on y discute régulièrement de l'échelle de température. A la session de 1955 de cette Commission, tenue à Paris, une procédure relative à l'échelle à tension de vapeur de l'hélium a été adoptée; des réunions de spécialistes ont été organisées en liaison avec les séances de la Commission à Madison, Wisconsin, en 1957, et à Leyde, juin 1958. Le but de ces réunions a été la recherche d'un accord international sur les perfectionnements à apporter à l'échelle. Les séances tenues par la Commission des Basses Températures sous les auspices de l'U. I. P. P. A., sont l'occasion pour les physiciens du domaine des basses températures d'étudier dans de bonnes conditions le problème des échelles de température et de parvenir à des accords à leur sujet.

Il a été suggéré que les accords internationaux sur l'échelle de température à tension de vapeur de l'hélium devraient être sanctionnés par le Comité International des Poids et Mesures. Si tel est l'avis du Comité Consultatif de Thermométrie, le moment est venu de proposer à ce dernier l'échelle qui vient de faire l'objet d'un accord entre Van Dijk, Durieux, Clement et Logan. Nous pouvons dire avec assurance que cette échelle conviendra à l'ensemble des physiciens des basses températures et que l'adoption formelle d'une échelle de référence unique est vivement désirée. Tout en présentant cette échelle à tension de vapeur de l'hélium au Comité Consultatif de Thermométrie en vue de son adoption internationale, nous nous réservons également le droit de la présenter à la Conférence Kamerlingh Onnes pour les dispositions à prendre au cas où le Comité Consultatif n'aurait pas émis de résolution favorable dans ses séances des 20 et 21 juin 1958. Les physiciens du domaine des basses températures ont un besoin urgent d'une échelle approuvée formellement.

C. J. GORTER,

Director, Kamerlingh Onnes Laboratorium,

F. G. BRICKWEDDE, Dean, Pennsylvania State University

and Consultant to the Director National Bureau of Standards.

L'ÉCHELLE DE TEMPÉRATURE 1958 A TENSION DE VAPEUR DE L'HÉLIUM

Depuis 1955, deux échelles de température à tension de vapeur de ⁴He sont en usage : l'échelle 55 E de J. R. Clement du United States Naval Research Laboratory (Annexe T 21, p. T 177) et l'échelle L 55 de H. Van Dijk et M. Durieux du Kamerlingh Onnes Laboratorium (Annexe T 20, p. T 165).

Bien que ces deux échelles ne diffèrent que de quelques millièmes de degré et que cette différence soit insignifiante pour la plupart des résultats expérimentaux, elle peut cependant avoir une influence sur certains résultats, tels que ceux de mesures très précises de chaleurs spécifiques, par exemple. En outre, il est regrettable que chaque fois que des températures sont données à 0,001 degré près, le petites différences apparaissent suivant l'échelle employée et que des réductions soient nécessaires pour une comparaison des résultats.

Dans le but de remédier à cette fâcheuse situation, une réunion s'est tenue au National Bureau of Standards, Washington, les 30, 31 juillet et 1^{er} août 1957. Les difficultés concernant l'échelle dans le domaine de ⁴He liquide ont été minutieusement examinées et un programme a été adopté pour la mise au point, par les auteurs des échelles L 55 et 55 E, d'une échelle unique susceptible de recevoir un accord général.

La conclusion essentielle de cette réunion a été que Clement, Van Dijk et Durieux essaieraient de calculer une nouvelle échelle reposant principalement sur une base thermodynamique, mais en tenant compte également de tous les renseignements précis que l'on peut tirer des mesures de la tension de vapeur avec des thermomètres secondaires.

Récemment, Van Dijk et Durieux à Leyde, Clement et Logan à Washington, ont considéré plusieurs échelles nouvelles.

Les signataires proposent maintenant pour les mesures de température entre 0,5 et 5,20° K (point critique), une échelle unique définie par la table ci-après (tableau F) donnant la tension de vapeur d'équilibre de ⁴He liquide en fonction de la température.

Nous recommandons l'emploi général de cette table et nous suggérons de l'appeler « Échelle 1958 », les températures dans cette échelle étant désignées par T_{58} .

Lorsqu'en 1948 la Commission des Basses Températures de l'U. I. P. P. A. recommandait l'emploi de l'« Échelle 1948 », elle encourageait aussi les physiciens du domaine des basses températures à étudier et à améliorer cette échelle; elle avait en effet pleinement conscience que si l' « Échelle 1948 » était la meilleure sur laquelle on pouvait s'accorder à l'époque, elle n'était pas satisfaisante à tous égards. On se rendait compte en 1948, comme nous le faisons aussi maintenant, que tous les résultats expérimentaux sont affectés d'erreurs de mesure et d'incertitudes, et qu'il n'est pas possible de les rendre tous parfaitement cohérents, même les meilleurs et les plus sûrs. Nous recommandons aussi que les physiciens du domaine des basses températures continuent à étudier et à améliorer l'échelle.

La table (F) qui définit l'échelle donne la relation entre la tension de vapeur de ⁴He liquide et la température exprimée dans l'échelle thermodynamique Kelvin, dans laquelle la température du point triple de l'eau est 273,16° K. Lors de la mesure d'une température entre 0,5 et 5,20° K à l'aide du thermomètre à tension de vapeur de l'hélium, la question se pose toujours de savoir si le corps ou le milieu dont on désire connaître la température est en relation thermique bien définie avec l'hélium dont on mesure la tension de vapeur. La réponse à cette question dépend de l'appareillage et du procédé expérimental. Quelle que puisse être la valeur de l'échelle de température, une mesure de température ne sera bonne que si le thermomètre et le milieu dont on désire connaître la température sont en équilibre thermique.

La table, établie de centième en centième de degré, est suffisante pour définir l'échelle.

Pour plus de commodité au laboratoire et pour faciliter l'interpolation, une table plus détaillée, de millième en millième de degré, sera calculée et publiée; afin que les valeurs de cette table détaillée soient distribuées plus régulièrement nous avons admis

— T 192 —

0.5. 0.16342 0.22745 0.031287 0.05722 0.07356 1.0081 1.13190 1.7112 2.2021 2.7767 2.7272 3.2344 3.8549 4.5543 5.3591 6.2820 7.3365 8.5376 9.9013 1.1.451 13.187 15.147 17.738 19.811 22.661 29.027 32.800 36.974 4.1.581 46.656 52.234 58.355 65.059 72.386 80.382 89.933 98.567 108.853 1.0 120.000 132.070 145.116 159.198 174.375 190.711 208.274 223.109 30.700 106.6.77 103.55 1132.85 764.057 823.257 285.00 30.600 30.60.37 204.057 215.53 224.169 31.48.01 3428.07 7028.47 7322.17 732.81 7028.1 112.12 1103.55 1132.85 1133.55 170.58 1111.12 11605.1 1203.01 1123.55 193.11 1203.01 1003.79 7028.21 703.78.4	T	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
28121 33649 .44877 .56118 .69729 766116 1.0574 1.2911 1.5662 1.9903 2.777 2.7272 3.2494 3.8594 4.5543 6.5200 7.3365 8.5376 6.5200 7.3365 8.5376 6.5207 7.366 80.382 29.027 32.800 36.974 1.0 120.000 132.070 145.116 159.198 174.375 190.711 208.274 227.132 247.350 269.006 225.169 316.923 343.341 371.12 401.514 433.437 467.365 501.309 541.617 135.85 1930.79 2040.67 2155.35 2274.99 2399.73 252.972 265.509 2952.60 3105.04 326.48 3428.07 1.5 589.73 376.32 3960.32 4151.07 4348.79 455.358 4765.66 4985.18 521.29 2040.67 122.46 421.5 4343.61 132.61 1372.46 547.32 1164.51 157.24 547.7 1665.1	0.5	.016342	.022745	.031287	.042561	.057292	.076356	.10081	.13190	.17112	.22021
1.2,777 2.2727 3.2494 3.8549 4.5543 5.3591 6.2820 7.3365 8.3576 9.903 36.974 11.465 13.167 15.147 17.348 19.911 22.869 36.927 32.800 36.974 41.581 46.656 52.234 58.355 65.059 72.386 80.382 89.903 98.567 108.857 292.169 316.923 343.341 371.512 401.514 433.307 467.365 503.396 541.617 582.17 246.307 2040.67 2155.35 2274.99 2399.73 252.72 265.09 2805.99 3105.04 326.44 428.07 1.5 3589.87 377.6.2 396.032 151.07 4348.79 455.35.8 476.56 4935.18 521.26 510.51 1203.0.1 1.466.1 1291.37 1372.8 13843.6 1432.6.1 13035.9 1078.2 1191.2 1605.1 1203.0.1 1.2466.1 1291.3 1372.8 13843.6 1442.1 </th <th>1</th> <th>.28121</th> <th>.35649</th> <th>.44877</th> <th>.56118</th> <th>.69729</th> <th>.86116</th> <th>1.0574</th> <th>1.2911</th> <th>1.5682</th> <th>1.8949</th>	1	.28121	.35649	.44877	.56118	.69729	.86116	1.0574	1.2911	1.5682	1.8949
11.445 13.187 15.147 17.348 19.811 22.561 25.624 29.027 32.800 38.974 41.581 46.656 52.234 58.355 65.059 72.386 80.382 89.093 39.667 108.853 1.0 120.000 132.070 145.116 159.198 174.375 190.711 208.274 227.132 247.350 269.006 2202.169 316.923 343.341 311.512 401.514 433.437 475.61 128.62.12 128.55 1930.79 2040.67 2155.35 2274.99 2399.73 2529.72 2665.09 2805.99 2952.60 3105.04 3263.48 3428.07 1.5 569.86 5940.76 619.90 614.74 673.23 1752.21 1797.7 1692.17 17478.2 1695.1 1282.50 1693.1 12825.0 1383.6 1322.51 1432.0 1329.61 1282.51 1282.51 193.77 128.44 1271.7 1692.17 1692.17 1692.17 1692.17		2 2787	2 7272	3.2494	3,8549	4 5543	5 3591	6.2820	7 3365	8 5376	9.9013
41.581 46.656 52.234 58.355 65.059 72.386 80.382 89.933 98.567 108.853 1.0 120.000 132.070 145.116 159.198 174.375 190.711 208.274 227.132 247.350 269.006 625.05 670.411 178.386 790.057 822.527 878.916 938.30 1000.67 1066.67 105.04 3263.48 3428.07 2155.53 2274.99 2997.32 252.72 2665.09 2952.60 3105.04 3263.48 3428.07 1.5 3588.97 3776.32 3960.32 4151.07 438.79 4553.38 4765.68 4985.18 5212.26 5447.11 1.466.1 1291.37 13372.8 13843.6 14326.1 14820.7 15327.3 15846.3 16377.7 16921.7 1.446.6 1291.37 13372.8 13943.6 1432.61 14820.7 15327.3 15846.3 16377.7 16921.7 1.4446.6 42443.5 43455.7 1522.7		11 445	13,187	15,147	17.348	19.811	22 561	25.624	29.027	32 800	36.974
1.0. 1.0.000 132.000 145.116 159.198 174.375 190.711 208.274 227.132 247.350 269.006 2.29.169 316.923 343.341 317.1512 401.514 433.437 467.365 503.396 541.617 208.274 227.132 247.350 269.006 2.25.55 527.0411 718.386 769.057 822.527 878.916 938.330 1000.87 136.558 1930.79 2040.67 2.155.35 2274.99 2399.73 2529.72 2665.09 2805.99 2952.60 3105.04 3263.48 3428.07 1.5 569.88 5940.76 6199.90 647.42 674.32 7028.47 7322.31 7665.22 2077.9 22002.20 2307.7 15846.3 1697.7 1692.1 7173.7 72402.0 2307.9 2200.20 2376.7.4 24470.9 25188.1 25919.2 26664.2 27423.3 28196.3 26972.2 3550.2 3950.3 36690.9 37614.3 35550.2 3950.3 36693.2 <th></th> <th>41.581</th> <th>46 656</th> <th>52 234</th> <th>58 355</th> <th>65.059</th> <th>72 386</th> <th>80 382</th> <th>89 093</th> <th>98 567</th> <th>108 853</th>		41.581	46 656	52 234	58 355	65.059	72 386	80 382	89 093	98 567	108 853
1.0 120,000 132,070 145,116 159,198 174,375 190,711 202,724 227,132 227,132 247,350 290,000 202,169 316,923 343,341 31512 401,514 433,437 473,65 503,396 541,617 582,129 1208,51 1284,81 1364,83 1448,73 1536,61 1522,62 1724,91 1252,56 1930,79 2040,67 71,55 5274,99 2399,73 2529,72 2650,00 2005,94 3263,48 3428,07 1,56 598,97 3776,32 3960,32 4151,07 4348,77 4553,58 4765,56 4985,18 5212,26 5447,11 1,2466,1 1291,37 13343,6 1432,61 1492,07 1532,73 15846,3 1637,7 1692,17 1,4428,1 322,11 31428,0 33760,3 36690,3 37614,3 36550,2 3570,3 36690,3 37614,3 36550,2 3570,3 5693,03 5694,30 5693,30 5694,30 5076,2		41.001	10.000	02.201	00.000	00.007	72.000	00.002	07.070	70.007	100.000
292.169 316.923 343.341 371.512 401.514 433.437 467.365 503.96 541.617 582.129 625.025 670.411 718.366 670.957 825.22 878.416 988.300 1000.87 1066.67 1135.85 1208.51 1284.81 1364.83 1448.73 1536.61 1628.62 1724.91 1825.58 1930.79 2040.67 15.5 3598.97 3776.32 3960.32 4151.07 4348.79 4553.58 4765.68 4985.18 521.2.66 5447.11 12666.1 1291.37 13372.81 1384.36 14326.1 10788.2 1141.72 1632.77 1692.17 17478.2 18047.7 18630.1 1922.55 1983.1 20455.9 21091.1 2173.97 22402.0 23077.9 2.0 23767.4 24470.9 25188.1 2591.92 26664.2 2742.33 28196.3 28983.2 29784.2 30500.3 31428.1 33271.1 33128.6 43455.4 44867.45 <	1.0	120.000	132.070	145.116	159.198	174.375	190.711	208.274	227.132	247.350	269.006
625.025 670.411 718.386 769.057 822.527 878.916 938.330 1000.672 1255.35 2274.99 2399.73 2529.72 2665.09 2805.99 2952.60 3105.04 3263.48 3428.07 1.5 3598.97 3776.32 3960.32 4151.07 4348.79 4553.58 4765.68 4985.18 5212.26 5447.11 5689.88 5940.76 6199.90 6467.42 6743.57 7028.47 7322.31 7625.21 7937.40 8259.02 8590.22 8931.18 928.20.6 643.02 1001.3 10359.91 1373.73 15846.3 1637.77 16921.7 17478.2 18047.7 18630.1 1922.55 1983.41 20455.9 21091.1 21739.7 2400.20 23077.9 2.0 23767.4 24470.9 25188.1 25919.2 2664.2 2742.33 2816.3 28983.2 29784.2 39590.1 3.1426.5 41445.6 42443.5 43485.5 44553.5 7152.0 71580.2		292.169	316.923	343.341	371.512	401.514	433.437	467.365	503.396	541.617	582.129
1208.51 1284.81 1364.83 1448.73 1536.61 1628.62 1724.91 1825.85 1930.79 2040.67 2155.35 2274.99 2399.73 2529.72 2665.09 2805.99 2952.60 3105.04 3263.48 3428.07 1,5 599.87 3776.32 3960.32 4151.07 4348.79 4553.58 4765.68 4985.18 5212.66 5447.11 5699.22 8931.18 9282.06 9643.02 10014.3 10395.9 10788.2 1111.2 11605.11 12030.1 12466.1 12913.7 1337.28 1384.36 14326.1 4802.7 15327.3 1584.3 1564.3 36590.2 2071.7 16921.7 1673.7 16921.7 1693.7 1693.2 2077.9 2240.0 23077.9 2240.0 23077.9 2240.0 23077.9 2240.0 23077.9 2240.0 23077.9 2240.0 23077.9 2240.0 23077.9 2240.0 23077.9 2240.0 23077.7 16921.7 1691.1 31485.4		625.025	670.411	718.386	769.057	822.527	878.916	938,330	1000.87	1066.67	1135.85
2155.35 2274.99 2399.73 2529.72 2665.09 2805.99 2952.60 3105.04 3263.48 3428.07 1.5 3598.97 3776.32 3960.32 4151.07 4348.79 4553.58 4765.68 4985.18 5212.26 5447.11 5689.88 5940.76 6199.90 6467.42 6743.57 7028.47 7322.31 7625.21 1737.40 8259.02 12466.1 12913.7 13372.8 13843.6 14326.1 14820.7 15327.3 15846.3 16921.7 1424.1 34271.1 3128.0 3399.6 3482.8 35780.3 3669.9 3761.4.3 38550.2 3950.3 51012.3 5210.2 5332.8 5459.2 55710.5 56930.0 5816.7.8 5942.3 60698.6 61992.0 5332.4 5476.0 9724.0 8908.2 10838 102669 104525 106403 103804 110228 5473.4 95476.0 9724.0.8 9028.2 100838 102669 104555		1208.51	1284.81	1364.83	1448.73	1536.61	1628.62	1724.91	1825.58	1930.79	2040.67
1.5 3598.97 3776.32 3960.32 4151.07 4348.79 4553.58 4765.68 4985.18 5212.26 5447.11 5699.88 5940.76 6199.90 6467.42 673.57 7028.47 7322.31 7652.21 7937.40 8259.0.2 8590.22 8931.18 9282.06 9643.02 10014.3 10395.9 10788.2 11191.2 11637.71 16921.7 17478.2 18047.7 18630.1 19225.5 19834.1 20455.9 21091.1 21739.7 22402.0 23976.2 31428.1 32271.1 33128.0 33998.6 34882.8 35780.3 36690.9 37614.3 38550.2 39500.3 51012.3 52160.2 53325.8 54590.2 55710.5 5693.0 58167.8 5942.8 60981.2 8963.67 90313.8 92012.6 9373.4 95476.0 9724.0 9902.2 100838 102669 104525 106403 110228 112175 114145 116139 118156 120191<		2155.35	2274.99	2399.73	2529.72	2665.09	2805.99	2952.60	3105.04	3263.48	3428.07
1.5 5595.97 3776.32 6199.00 4436.77 473.57 7028.47 7322.31 7652.21 7937.40 8259.02 8590.22 8931.18 9282.06 9643.02 10014.3 10395.9 10786.2 11191.2 11605.1 12037.40 8259.02 8590.22 8931.18 9282.06 9643.02 10014.3 10395.9 10786.2 11591.2 11605.1 12037.40 8259.02 2.0 23767.4 24470.9 25188.1 25919.2 26664.2 27423.3 28196.3 28983.2 29784.2 30599.1 31428.1 332271.1 33128.0 33996.6 34882.8 35780.3 36690.9 37614.3 38550.2 39500.3 63304.3 64635.2 65985.4 6735.8 6874.5 70152.0 71580.2 73028.1 74496.0 75984.2 7749.3 19022.2 8057.2 82142.9 8373.46 8634.7 9031.8 92012.6 9373.3 9547.0 9724.8 9028.2 100838 10269 104525 106403 108304 110228		0500.07	277/ 22	2010.22	4151.07	1210 70	4552.50	1715 10	1005 10	5212.04	F 447 14
Sb89.86 S940.76 6199.90 646.7.4 6743.57 7028.47 7022.31 7022.31 7023.7.1 7037.40 8259.02 12466.1 12913.7 13372.8 13843.6 14326.1 14520.7 15327.3 15846.3 16377.7 16921.7 17478.2 18047.7 18630.1 19225.5 19634.1 20455.9 21091.1 21739.7 22402.0 23077.1 31428.1 32271.1 33128.0 33996.6 34882.8 35700.3 36500.9 37614.3 38550.2 39500.3 40465.6 41446.6 42443.5 43456.5 44485.7 45531.3 46535.5 47672.5 48768.6 49981.8 51012.3 5210.2 5325.8 5450.9 2571.5 56030.0 58161.7 5942.2 60598.8 61992.0 73081.1 74496.0 75984.2 2.5 77493.1 79022.2 80572.2 82142.9 8373.4 8547.2 86981.2 8636.7 90313.8 92012.6 93733.4 9	1.5	3598.97	3776.32	3960.32	4151.07	4348.79	4553.58	4765.68	4985.18	5212.26	5447.11
8590.22 8931.18 928.26 9643.02 10018.3 10098.2 10788.2 1191.2 1162.1 12030.1 12466.1 1291.7 13372.8 14320.1 15326.1 14820.7 1532.6 16921.7 22002.0 23077.9 2.0 23767.4 24470.9 25188.1 25919.2 26664.2 27423.3 28196.3 28983.2 29784.2 30599.1 31428.1 32271.1 33128.0 33998.6 3488.8 35780.3 36690.9 37614.3 38550.2 39500.3 63304.3 64635.2 65954.4 6374.8 6473.5 70152.0 71580.2 73028.1 74496.0 75984.2 2.5 77493.1 79022.2 80572.2 8124.9 8374.6 85347.2 86981.2 8636.7 9031.8 92012.2 100828 102669 104525 106403 106229 104525 106403 18024 151349 15374 12175 14145 116139 118156 120198 122253 <td< th=""><th></th><th>5689.88</th><th>5940.76</th><th>6199.90</th><th>6467.42</th><th>6743.57</th><th>7028.47</th><th>1322.31</th><th>7625.21</th><th>1937.40</th><th>8259.02</th></td<>		5689.88	5940.76	6199.90	6467.42	6743.57	7028.47	1322.31	7625.21	1937.40	8259.02
1246.1 12913.7 1332.2.8 1332.2.8 1432.0.1 1422.0.1 1532.7.3 1534.3 1202.0 20077.9 2.0 23767.4 24470.9 25188.1 25919.2 26664.2 27423.3 28196.3 28983.2 29784.2 30599.1 31428.1 32271.1 33128.0 33998.6 34882.8 35780.3 36690.9 37614.3 38550.2 39500.3 40465.6 41446.6 4243.5 43456.5 44485.7 45531.3 46593.5 4772.5 48768.6 49881.8 5010.5 5630.0 58167.8 5423.8 60698.8 61992.0 73028.7 7495.0 7594.2 2.5 77493.1 79022.2 80572.2 82142.9 83734.6 85347.2 86981.2 86636.7 9313.8 92012.6 9373.4 95476.0 97240.8 99028.2 100838 10269 104525 106403 108034 110228 112175 114145 116139 118154 126465 126465		8590.22	8931.18	9282.06	9643.02	10014.3	10395.9	10788.2	11191.2	11605.1	12030.1
17478.2 18047.7 18630.1 19225.5 19934.1 20455.9 21091.1 21739.7 22402.0 23077.9 2.0 23767.4 24470.9 25188.1 25919.2 26664.2 27423.3 28196.3 29780.2 30599.1 31428.1 32271.1 33128.0 33996.6 34882.8 35780.3 36690.9 37614.3 38550.2 39500.3 40465.6 41446.6 42443.5 43456.5 55710.5 56930.0 58167.8 59433.8 60698.8 61992.0 63304.3 64635.2 65954.4 67354.8 68743.5 70152.0 71580.2 73028.1 74496.0 75984.2 2.5 77493.1 79022.2 80572.2 82142.9 83734.6 85347.2 86981.2 8636.7 90313.8 92012.6 112175 114145 116139 118156 120198 122263 124353 126465 128603 130765 3.00 182073 184810 187574 190366 193187		12466.1	12913.7	13372.8	13843.6	14326.1	14820.7	15327.3	15846.3	16377.7	16921.7
2.0 23767.4 24470.9 25188.1 25919.2 26664.2 27423.3 28196.3 28983.2 29784.2 30599.1 31428.1 32271.1 33128.0 33998.6 34882.8 35780.3 36690.9 37614.3 38550.2 39500.3 6304.3 64635.2 65985.4 67354.8 68743.5 70152.0 71580.2 73028.1 74496.0 75984.2 2.5 77493.1 79022.2 80572.2 82142.9 83734.6 85347.2 86981.2 88636.7 90313.8 92012.6 9373.4 95476.0 97240.8 9028.2 100838 102669 1046257 106403 108304 110228 11275 114145 116139 1183653 141499 144260 146597 149961 151349 153763 156204 158671 161164 163684 166230 168802 171402 174028 176682 179364 3.0 182073 184810 187574 190366 193187 <th></th> <th>17478.2</th> <th>18047.7</th> <th>18630,1</th> <th>19225.5</th> <th>19834.1</th> <th>20455.9</th> <th>21091.1</th> <th>21739.7</th> <th>22402.0</th> <th>23077.9</th>		17478.2	18047.7	18630,1	19225.5	19834.1	20455.9	21091.1	21739.7	22402.0	23077.9
31428.1 32271.1 33128.0 33998.6 34882.8 35780.3 36690.9 37614.3 38550.2 39500.3 40465.6 41446.6 42443.5 43456.5 44485.7 45531.3 46593.5 6409.9 37614.3 38550.2 39500.3 63304.3 64635.2 65985.4 67354.8 66743.5 70152.0 71580.2 73028.1 74496.0 75984.2 2.5 77493.1 79022.2 80572.2 82142.9 83734.6 85347.2 66981.2 88636.7 90313.8 92012.6 112175 114145 116139 118156 12019 122263 124353 126465 128003 130765 15222 135164 137401 139665 14149 144260 146597 149914 151349 156204 156624 17932 216783 219864 222975 226115 223248 235714 239874 24266 245587 248939 252322 25736 259182 266616 269706	2.0	23767.4	24470.9	25188.1	25919.2	26664.2	27423.3	28196.3	28983.2	29784.2	30599.1
40465.6 41446.6 42443.5 43456.5 44485.7 45531.3 46593.5 47672.5 48768.6 49881.8 51012.3 52160.2 53322.8 534509.2 55710.5 56930.0 58167.2 59423.8 60598.6 61992.0 71580.2 73028.1 74496.0 75984.2 2.5 77493.1 79022.2 8057.2 82142.9 83734.6 85347.2 86981.5 106403 108304 110228 112175 114145 116139 118156 120198 122263 124353 126465 126603 130765 132952 135164 137401 139663 141499 144260 146597 148961 151349 153763 3.0 182073 184810 187574 190366 193187 196037 198914 201820 204755 207719 210711 213732 216783 219864 222975 226115 229285 232464 235714 238974 303008 306871 310768		31428.1	32271.1	33128.0	33998.6	34882.8	35780.3	36690.9	37614.3	38550.2	39500.3
51012.3 52160.2 53325.8 54509.2 55710.5 56930.0 58167.8 59423.8 60698.8 61992.0 2.5 77493.1 79022.2 80572.2 82142.9 83734.6 85347.2 86981.2 88636.7 90313.8 92012.6 93733.4 95476.0 97240.8 99028.2 100838 102269 104525 106403 10304 110228 11275 114145 1161164 153684 166230 124353 124455 126465 126661 267719 207719 201711 217402 17		40465.6	41446.6	42443.5	43456.5	44485.7	45531.3	46593.5	47672.5	48768.6	49881.8
63304.3 64635.2 65985.4 67354.8 68743.5 70152.0 71580.2 73028.1 74490.0 75984.2 2.5 77493.1 79022.2 80572.2 82142.9 83734.6 85347.2 86981.2 86636.7 90313.8 92012.6 93733.4 95476.0 97240.8 99028.2 100838 102669 104525 106403 108304 110228 112175 114145 116139 118156 120198 122263 124353 126465 128603 130765 132952 135164 137401 139663 141949 144260 146951 15149 153763 156204 158671 161164 163684 166230 18802 171402 174028 176682 179364 3.0 182073 184810 187574 190366 193187 196037 198914 201820 204755 207719 210711 213732 216783 291615 229285 323464 330308 30	1	51012.3	52160.2	53325.8	54509.2	55710.5	56930.0	58167.8	59423.8	60698.8	61992.0
2.5 77493.1 79022.2 80572.2 82142.9 83734.6 85347.2 86981.2 86836.7 90313.8 92012.6 93733.4 95476.0 97240.8 99028.2 100838 102669 104525 106403 108304 110228 112175 114145 116139 118156 120198 122263 124353 126465 128603 130765 132952 135164 137401 139663 141949 144260 146597 14961 151349 153763 156204 158671 161164 163684 166230 168802 171402 174028 176682 179364 3.0 182073 184810 187574 190366 193187 196037 19914 201820 204755 207119 21711 213732 216783 219864 229757 226115 229285 323484 33876 343141 347341 351575 3.14697 318659 322654 326684 30747		63304.3	64635.2	65985.4	67354.8	68743.5	70152.0	71580.2	73028.1	74496.0	75984.2
2.5 77493.1 79022.2 80572.2 82142.9 83734.6 85347.2 86636.7 90313.8 92012.6 93733.4 95476.0 97240.8 90028.2 100838 102669 104525 106403 108304 110228 112175 114145 116139 118156 120198 122263 124353 126465 128603 130765 132952 135164 137401 139663 141949 144260 146597 148961 151349 153763 156204 158671 161164 163864 166230 168802 171402 174028 176682 179364 210711 213732 216783 219864 222975 226115 229285 232484 235714 238974 242266 245587 248183 287883 291615 295302 299178 303008 306871 310768 314697 318659 322654 326684 30747 334845 338976 343141 347341 351575 3,5 355844 360147 364885 368860 <th></th> <th></th> <th></th> <th></th> <th>Transfer State and</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					Transfer State and						
93733.4 95476.0 97240.8 99028.2 100838 102669 104525 106403 108304 110228 112175 114145 116139 118156 120198 122263 124353 126465 128033 130765 15520 135164 137401 139663 141949 144260 146597 148961 151349 153763 156204 158671 161164 163684 166230 168802 171402 174028 176682 204755 207719 210711 213732 216783 219864 222975 226115 229285 232484 235714 238974 242266 245587 24939 252322 255736 299178 303008 306671 310768 314697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3,5 355844 360147 364885 368800 373269 377714 382194 386710	2.5	77493.1	79022.2	80572.2	82142.9	83734.6	85347.2	86981.2	88636.7	90313.8	92012.6
112175 114145 116139 118156 120198 122263 124353 1226465 128603 130765 132952 135164 137401 139663 141949 144260 146597 148961 151349 153763 3.0 182073 184810 187574 190366 193187 196037 198914 201820 204755 207719 210711 213732 216783 219864 222975 226115 229285 232484 235714 238974 242266 245587 248939 252322 255736 259182 262658 266166 269706 273278 314697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3,5 355844 360147 364885 368860 373269 377714 382194 386710 391262 395849 400471 405130 409825 414556 419324 424128 428968 <td< th=""><th></th><th>93733.4</th><th>95476.0</th><th>97240.8</th><th>99028.2</th><th>100838</th><th>102669</th><th>104525</th><th>106403</th><th>108304</th><th>110228</th></td<>		93733.4	95476.0	97240.8	99028.2	100838	102669	104525	106403	108304	110228
132952 135164 137401 139663 141949 144260 146597 148961 151349 153763 3.0 182073 184810 187574 190366 193187 196037 198914 201820 204755 207719 210711 213732 216783 219864 222975 226115 229285 232484 235714 238974 242266 245587 248939 252322 255736 259182 262658 266166 269706 273278 3.4697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3.5 355844 360147 364485 366860 373269 377714 382194 386710 391262 395849 400471 405130 409825 414556 419324 421128 428968 433846 438760 443713 448702 453729 458794 46387 469038 474218 479435 4		112175	114145	116139	118156	120198	122263	124353	126465	128603	130765
156204 158671 161164 163684 166230 168802 171402 174028 176682 179364 3,0 182073 184810 187574 190366 193187 196037 198914 201820 204755 207719 210711 213732 216783 219864 222975 226115 229285 232484 235714 238974 242266 245587 248939 252322 255736 259182 262658 266166 269706 273278 314697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3,5 355844 360147 364885 368860 373269 377714 82194 386710 391262 395849 400471 405130 409825 414556 419324 424128 428968 433846 438760 443713 448702 453729 458794 463897 46938 74218 479435 484	L 1	132952	135164	137401	139663	141949	144260	146597	148961	151349	153763
3.0 182073 184810 187574 190366 193187 196037 198914 201820 204755 207719 210711 213732 216783 219864 222975 226115 229285 232484 235714 238974 242266 245587 248939 252322 255736 259182 26668 266166 269706 273278 314697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3.5 355844 360147 364485 36860 373269 377714 382194 386710 391262 395849 448702 453729 458794 463876 449312 47218 47933 48469 489985 495317 506688 566038 511547 517036 52264 528132 533739 539387 545075 550805 680740 687399 694103 700851 707643 714479 721360 728285		156204	158671	161164	163684	166230	168802	171402	174028	176682	179364
210711 213732 216783 219864 222975 226115 229285 232484 235714 238974 242266 245587 248939 252322 255736 259182 262658 266166 269706 273278 314697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3.5 355844 360147 364485 36860 373269 377714 382194 386710 391262 395849 400471 405130 409825 414556 419324 424128 428968 433846 438760 443713 506688 506098 511547 517036 522564 528132 533739 539387 545075 550805 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 749328 756431 706357 70772 778010 785294 792623 79	3.0	182073	184810	187574	190366	193187	196037	198914	201820	204755	207719
242266 245587 248939 252322 255736 259182 262658 266166 269706 273278 314697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3.5 355844 360147 364485 368860 373269 377714 382194 386710 391262 395849 400471 405130 409825 414556 419324 424128 428968 433846 438760 443713 448702 453729 458794 463897 469038 474218 479435 484691 489985 495317 500688 506098 511547 517036 522564 528132 533739 598110 604210 610352 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 749328 756431 763579 770772 778010 782247 792623	1.00	210711	213732	216783	219864	222975	226115	229285	232484	235714	238974
276880 280516 284183 287833 291615 295380 299178 303008 306871 310768 3,5 316697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3,5 355844 360147 36485 368860 373269 377714 382194 386710 391262 395849 400471 405130 409255 414556 419324 424128 428968 433846 438760 443713 448702 453729 458794 463897 469038 474218 479435 484691 489985 495317 500688 506098 511547 517036 522564 528132 533739 539387 545075 550805 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 749328 756431 763579 70772 778010 785294 79262		242266	245587	248939	252322	255736	259182	262658	266166	269706	273278
314697 318659 322654 326684 330747 334845 338976 343141 347341 351575 3,5 355844 360147 364485 368800 373269 377714 382194 386710 391262 395849 400471 405130 409825 414556 419324 424128 428964 433846 438760 443713 448702 453729 458794 463897 469038 474218 479435 484691 489985 495317 500688 506098 511547 517036 522564 528132 533739 598110 604210 610352 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 680740 687399 694103 700851 707643 714479 721360 728285 735255 742269 749328 756431 763579 770772 778010 785294 792623		276880	280516	284183	287883	291615	295380	299178	303008	306871	310768
3,5 355844 360147 364485 368800 373269 377714 382194 386710 391262 395849 400471 405130 409825 414556 419324 424128 428084 433846 438760 443713 448702 453729 458794 463897 469038 474218 479435 484691 489985 495317 500688 506098 511547 517036 522564 528132 533739 539387 545075 550805 56574 562383 568234 574126 580059 586034 592051 598110 604210 610352 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 749328 756431 763579 770772 778010 785294 792623 799999 807422 814893 822411 829978 837592 845255 852966 860725 868533 8		314697	318659	322654	326684	330747	334845	338976	343141	347341	351575
3.5 355844 360147 364485 368600 373269 377714 382194 386710 391262 395849 400471 405130 409825 414556 419324 424128 428968 433846 438760 443713 448702 453729 458794 463897 469038 474218 479435 484691 489985 495317 500688 506098 511547 517036 522564 528132 533739 539387 545075 550805 556574 562383 568234 574126 580059 586034 592051 598110 604210 610352 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 680740 687399 694103 700851 707643 714479 721360 728285 735255 742269 749328 756431 763579 770772 778010 785294 792623										_	
400471 405130 409825 414556 419324 424128 428968 433846 438760 443713 448702 453729 458794 463897 469038 474218 479435 48691 489985 495317 500688 506098 511547 517036 522564 528132 533739 539387 545075 550805 556574 562383 568234 574126 580059 586034 592051 598110 604210 610352 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 680740 687399 694103 700851 707643 714479 721360 728285 735255 742269 749328 756431 763579 770772 778010 785294 792623 799999 807422 814893 822411 829978 837592 845255 852966 860725 868533 876390 <t< th=""><th>3.5</th><th>355844</th><th>360147</th><th>364485</th><th>368860</th><th>373269</th><th>377714</th><th>382194</th><th>386710</th><th>391262</th><th>395849</th></t<>	3.5	355844	360147	364485	368860	373269	377714	382194	386710	391262	395849
448702 453729 458794 463897 469038 474218 479435 484691 489985 495317 500688 506098 511547 517036 522564 528132 533739 539387 545075 550805 556574 562383 568234 574126 580059 586034 592051 598110 604210 610352 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 680740 687399 694103 700851 707643 714479 721360 728285 735255 742269 749328 756431 763579 770772 778010 785294 799263 799999 807422 814893 822411 829978 837592 845255 852966 860725 868533 876390 884296 892252 900258 908313 916418 924573 932778 941033 949338 957693 <		400471	405130	409825	414556	419324	424128	428968	433846	438760	443713
500688 506098 511547 517036 522564 528132 533739 539387 545075 550805 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 680740 687399 694103 700851 707643 714479 721360 728285 735255 742269 749328 756431 763579 770772 778010 785294 792623 799999 807422 814893 822411 829978 837592 845255 852966 860725 868533 876390 884296 892252 900258 908313 916418 924573 932778 941033 949338 957693 966099 974556 4.5 983066 991628 1000239 1008905 1017621 1026390 <td< th=""><th></th><th>448702</th><th>453729</th><th>458794</th><th>463897</th><th>469038</th><th>474218</th><th>479435</th><th>484691</th><th>489985</th><th>495317</th></td<>		448702	453729	458794	463897	469038	474218	479435	484691	489985	495317
4.0 616537 622383 568234 574126 580059 586034 592051 598110 604210 610352 4.0 616537 622764 629033 635345 641700 648099 654541 661026 667554 674125 680740 687399 694103 700851 707643 714479 721360 728285 735255 742269 749328 756431 763579 770772 778010 785294 792623 799999 807422 814893 822411 829978 837592 845255 852966 860725 868533 876390 884296 892252 900258 908313 916418 924573 932778 941033 949338 957693 966099 974556 4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 1071029 1080114 1089254 1098449 1107699 1117002		500688	506098	511547	517036	522564	528132	533739	539387	545075	550805
4.0 616537 680740 622764 687399 629033 694103 635345 700851 641700 707643 648099 714479 654541 721360 661026 728285 667554 735255 674125 742269 749328 756431 763579 770772 778010 785294 792623 799999 807422 814893 822411 829978 837592 845255 852966 860725 868533 876390 884296 892252 900258 908313 916418 924573 932778 941033 949338 957693 966099 974556 4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 1071029 1080114 1089254 1098449 1107699 1117002 1126359 1335722 145239 1253069 1357136 1263212 1273414 1283673 1293991 1304367 1314802 1325297 1335850 1346462 1357136 1367870 1378662		556574	562383	568234	574126	580059	586034	592051	598110	604210	610352
680740 687399 694103 700851 707643 714479 721360 728285 735255 742269 749328 756431 763579 770772 778010 785294 792623 799999 807422 814893 822411 829978 837592 845255 852966 860725 868533 876390 884296 892252 900258 908313 916418 924573 932778 941033 949338 957693 966099 974556 4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 1071029 1080114 1089254 1098449 1107699 1117002 1126359 1135772 1145239 1154761 164339 1173972 1183662 1193407 1203209 1213066 1222981 1232955 1242983 1253059 1263212 1273414 1283673 1293991 1304367 1314802 1325257	4.0	616537	622764	629033	635345	641700	648099	654541	661026	667554	674125
4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 1164339 1173972 1183662 1193407 1203209 1213066 1222981 1232955 1242983 1253064 1263212 1273414 1283673 1293991 1304367 1314802 1325257 1335850 1346462 1357136 1367870 1378662 1389516 1400429 1411404 1422438 1433533 1444690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 1644000 1656305 1668673 1681108 1693612 1706180		680740	687399	694103	700851	707643	714479	721360	728285	735255	742269
4.5 983066 991628 100239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 1071029 1080114 1089254 1098449 1107699 1117002 1126359 1135772 1145239 1154761 1164339 1173972 1183662 1193407 1203209 1213066 1222981 1232955 1242983 1253069 1263212 1273414 1283673 1293991 1304367 1314802 1325297 1335850 134642 135713 1367870 1378662 1389516 1400429 1411404 1422438 1433533 1444690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 </th <th></th> <th>749328</th> <th>756431</th> <th>763579</th> <th>770772</th> <th>778010</th> <th>785294</th> <th>792623</th> <th>799999</th> <th>807422</th> <th>814893</th>		749328	756431	763579	770772	778010	785294	792623	799999	807422	814893
4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 1071029 1080114 1089254 1098449 1107699 1117002 1126359 1135772 1145239 1154761 1164339 1173972 1183662 1193407 1203209 1213066 1222981 1223955 1242983 1253069 1263212 1273414 1283673 1293991 1304367 1314802 1325297 1335850 1346462 1357136 1367870 1378662 1389516 1400429 1411404 1422438 1433533 1444690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 163176		822411	829978	837592	845255	852966	860725	868533	876390	884296	892252
4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 1071029 1080114 1089254 1098449 1107699 1117002 1126359 1135772 1145239 1154761 1263212 1273414 1283673 1293991 1304367 1314802 1325297 1335850 1346462 1357136 1367870 1378662 1389516 1400429 1411404 1422438 1433533 1444690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 1644000 1656305 1668673 1681108 1693612 1706180		900258	908313	916418	924573	932778	941033	949338	957693	966099	974556
4.5 983066 991628 1000239 1008905 1017621 1026390 1035213 1044087 1053014 1061995 1071029 1080114 1089254 1098449 1107699 1117002 1126359 1135772 1145239 1154761 1164339 1173972 1183662 1193407 1203209 1213066 1222981 1232955 1242983 1253069 1263212 1273414 1283673 1293991 1304367 1314802 1325297 1335850 1346462 1357136 1367870 1378662 1389516 1400429 1411404 1422438 1433533 144690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 1644000 1655305 1668673 1681108 1693612 1706180											
1071029 1080114 1089254 1098449 1107699 1117002 1126359 1135772 1145239 1154761 1164339 1173972 1183662 1193407 1203209 1213066 1222981 1232955 1242983 1253069 1263212 1273414 1283673 1293991 1304367 1314802 1325297 1335850 1346462 1357136 1367870 1378662 1389516 1400429 1411404 1422438 1433533 144690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 1644000 1656305 1668673 1681108 1693612 1706180	4,5	983066	991628	1000239	1008905	1017621	1026390	1035213	1044087	1053014	1061995
1164339 1173972 1183662 1193407 1203209 1213066 1222981 1232955 1242983 1253069 1263212 1273414 1283673 1293991 1304367 1314802 1325297 1335850 1346462 1357136 1367870 1378662 1389516 1400429 1411404 1422438 1433533 1444690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 1644000 1656305 1668673 1681108 1693612 1706180		1071029	1080114	1089254	1098449	1107699	1117002	1126359	1135772	1145239	1154761
1263212 1273414 1283673 1293991 1304367 1314802 1325297 1335850 1346462 1357136 1367870 1378662 1389516 1400429 1411404 1422438 143533 1444690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 1644000 1656305 1668673 1681108 1693612 1706180		1164339	1173972	1183662	1193407	1203209	1213066	1222981	1232955	1242983	1253069
1367870 1378662 1389516 1400429 1411404 1422438 1433533 1444690 1455911 1467191 5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 1644000 1656305 1668673 1681108 1693612 1706180		1263212	1273414	1283673	1293991	1304367	1314802	1325297	1335850	1346462	1357136
5.0 1478535 1489940 1501409 1512940 1524535 1536192 1547912 1559698 1571546 1583458 1595437 1607481 1619589 1631761 1644000 1656305 1668673 1681108 1693612 1706180		1367870	1378662	1389516	1400429	1411404	1422438	1433533	1444690	1455911	1467191
1595437 1607481 1619589 1631761 1644000 1656305 1668673 1681108 1693612 1706180	5.0	1478535	1489940	1501409	1512940	1524535	1536192	1547912	1559698	1571546	1583458
1718917 1731521 174/200		1595437	1607481	1619589	1631761	1644000	1656305	1668673	1681108	1693612	1706180
		1718817	1731521	1744290							

TABLEAU F. — Tension de vapeur de ⁴He : Échelle ⁴He 1958. (Unité : 10⁻³ mm Hg à 0° C, g = 980,665 cm.s⁻²)

une tolérance de ± 2 unités sur le dernier chiffre des tensions de vapeur.

Une table inverse donnant la température en fonction de la tension de vapeur sera également publiée, ainsi que des tables auxiliaires.

H.	Van Dijk,	J. 1	R.	CLEMENT,
M.	DURIEUX,	J. 1	K.	LOGAN.

Note du Bureau International des Poids et Mesures. — La recommandation du Comité Consultatif de Thermométrie (p. T17), approuvée par le Comité International des Poids et Mesures en octobre 1958, fait de la table du tableau F la définition officielle de l' « Échelle 4He 1958 ».

Le nombre de chiffres que comportent les valeurs de cette table est uniquement donné pour faciliter l'interpolation et la dérivation.

ANNEXE T 23

National Bureau of Standards (États-Unis d'Amérique)

NOTE SUR LE PROJET DE RÉVISION DU TEXTE DE L'ÉCHELLE INTERNATIONALE DE TEMPÉRATURE DE 1948

(Traduction)

Dans les Procès-Verbaux de la session de 1954 du Comité Consultatif de Thermométrie, nous lisons ceci : « Mr Volet remarque que la décision qui vient d'être prise [définition de l'échelle thermodynamique au moyen d'un point fixe fondamental] obligera à réviser le texte de l'Échelle Internationale. Il insiste pour que cette révision se limite à la première partie qui sert d'introduction, et non à la deuxième partie qui contient la définition de l'Échelle Internationale, et qu'il ne lui paraît pas opportun de changer pour le moment ». Le Président demanda alors au Membre du Comité Consultatif représentant le N. B. S. « de préparer la révision de l'introduction de l'Échelle Internationale, en tenant compte de ce qui aura été adopté à cette session » (*Procès-Verbaux C. I. P. M.*, 24, 1954, p. T 22). Le National Bureau of Standards soumet en conséquence au Comité Consultatif le projet suivant (p. T 198) pour base de discussion.

A plusieurs reprises, au cours des séances, on s'accorda à reconnaître que des modifications ou additions devraient être faites dans d'autres parties du texte. Pour ces raisons, ce projet n'est pas limité uniquement à l'introduction, mais constitue une révision de l'ensemble du texte. En dépit des apparences, nous croyons que cette révision est en accord avec l'opinion émise par Mr Volet, en ce sens que « l'objet de la présente révision n'est pas de modifier la valeur des températures, mais de rendre le texte de l'échelle conforme aux décisions des Neuvième et Dixième Conférences Générales des Poids et Mesures, ainsi qu'aux modes opératoires actuels. Étant donné qu'aucune température ne sera modifiée d'une quantité supérieure aux erreurs de mesure, l'échelle conservera le nom d'Échelle Internationale de Température de 1948 ».

Le changement le plus important dans la partie du texte se rapportant aux définitions est le remplacement du point de fusion de la glace par le point triple de l'eau comme point fixe de l'Échelle. Ce changement est en accord avec une résolution adoptée en 1948 qui pose que le point triple de l'eau constitue un repère thermométrique plus précis que le point de fusion de la glace.

A la première séance de la session de mai 1948 du Comité Consultatif, il est apparu à l'unanimité que le point triple de l'eau devrait remplacer le point de fusion de la glace comme point fixe de l'Échelle Internationale; mais on attira l'attention sur le fait que cela conduirait à un intervalle de 99,99 degrés seulement entre le point triple et le point d'ébullition de l'eau. Un tel intervalle fondamental, fit-on remarquer, serait incompatible avec le mot « centigrade », alors en usage dans de nombreux pays. A la deuxième séance, il fut décidé de conserver le point de glace comme point fixe de l'échelle, mais de recommander que « pour les travaux de très haute précision, le point zéro soit réalisé à l'aide du point triple de l'eau, point auquel la valeur + 0,010 0 °C fut assignée ». Ce procédé a été adopté dans plusieurs laboratoires depuis plus de dix ans.

En octobre 1948, la Conférence Générale décida d'elle-même d'abandonner l'usage des mots « Centigrade » et « Centésimal », et de les remplacer par celui de « Celsius », qui avait d'ailleurs été toujours utilisé dans plusieurs pays. Cette décision semble avoir supprimé la principale objection à l'adoption du point triple de l'eau comme point fixe de l'Échelle, de sorte que cette dernière peut maintenant être définie avec plus de précision. « De plus, ce changement fait coïncider exactement l'Échelle Internationale avec l'échelle thermodynamique au point qui définit la grandeur du degré dans l'échelle thermodynamique, »

Pour les thermomètres à résistance et les thermocouples étalons, le critère de pureté du platine est fondé sur le rapport R_{100}/R_0 . En 1948, la limite inférieure de ce rapport a été portée à 1,391 o; cette augmentation ne fut pas aussi grande qu'on le souhaitait, car l'on craignait à cette époque que certains pays ne puissent se procurer du platine de pureté suffisante. Maintenant qu'il est possible d'obtenir du platine de pureté plus grande, il semble souhaitable d'augmenter la limite inférieure du rapport.

A la session de 1952 du Comité Consultatif, R. J. Corruccini a montré qu'un grand nombre de thermocouples soumis ces dernières années au National Bureau of Standards pour étalonnage, ne pouvait prétendre au qualificatif de thermocouples étalons en se basant sur les définitions établies en 1948 pour l'Échelle Internationale de Température (*Procès-Verbaux C.I.P.M.*, 23-B, 1952, Annexe T 14, p. T 132). Il expliquait ce fait en montrant que la pureté du platine dans ces thermocouples était trop élevée. On a toujours fixé des critères pour la limite inférieure de la pureté du platine, mais on n'en a jamais suggéré pour une limite supérieure. Corruccini proposait des critères qui permettraient de qualifier ces thermocouples de thermocouples étalons.

A la troisième séance de la session de 1954, G. Kondratiev exposait que même les critères proposés en 1952 éliminaient le platine le plus pur; mais à ce moment il ne pouvait dire comment modifier les critères pour inclure ce platine dans les tolérances. Il pensait qu'une nouvelle révision était sans doute nécessaire (*Procès-Verbaux C. I. P. M.*, 24, 1954, p. T 39). Les critères de Corruccini sont donnés ici en vue d'une modification ultérieure.

Dans la partie du texte concernant les thermomètres à résistance étalons, les critères pour les constantes B et C sont ceux qui figurent à l'Annexe T 11 de la session de 1952 (*Procès-Verbaux C. I. P. M.*, 23-B, 1952, p. T 104); ils remplacent les critères plus compliqués, mais essentiellement équivalents, du texte de l'Échelle de 1948.

Au sujet de la pression, H. Moser disait voir deux définitions de l'atmosphère normale (Procès-Verbaux C. I. P. M., 24, 1954, p. T 19). L'une d'elles se rapportait à 760 mm Hg, la masse volumique du mercure étant prise à o° C sous une attraction de gravitation normale. Cette référence n'a pas d'utilité pratique, sinon de rappeler l'évolution de la définition de l'atmosphère; elle n'est pas utilisée dans la présente révision. A la place de la masse volumique moyenne du mercure à o° C, on donne une valeur à sept chiffres pour 20° C et 0,5 atmosphère; cette valeur provient de la plus récente détermination du N. P. L. pour 20° C et 1 atmosphère. Heureusement, cette valeur arrondie à six chiffres est en accord avec l'ancienne valeur de la masse volumique du mercure définie à o° C, de sorte que cette modification n'entraînera pas de changements sensibles de la valeur des températures. Pour la valeur locale de la gravité, le système de Potsdam doit être utilisé comme l'a proposé le Comité Consultatif et recommandé le Comité International en 1954, jusqu'à ce que ce dernier ait sanctionné l'emploi d'un autre système (Procès-Verbaux C. I. P. M., 24, 1954, p. 83, 86).

Les mesures de pression sont nécessaires pour la réalisation des points d'ébullition. En pratique, l'évolution vers une plus grande stabilité et une plus grande exactitude conduit à utiliser des systèmes clos, où la pression peut être maintenue très voisine de 1 atmosphère. Pour cette raison, on a jugé inutile de conserver les formules logarithmiques permettant d'obtenir les températures d'ébullition dans de larges intervalles de pression.

Dans la première séance de la session de 1954 du Comité Consultatif, l'attention fut attirée sur les variations possibles de la composition isotopique de l'eau utilisée dans les ampoules à point triple. Ces variations sont petites, il est vrai, mais pourraient devenir discernables à l'avenir. Il fut décidé à l'époque que des remarques de cette nature devraient figurer dans la partie « Recommandations »; elles ont donc été incluses au paragraphe III.4.

Les paragraphes concernant les points d'ébullition de l'oxygène et de l'eau et les points de solidification de l'argent et de l'or ont été revus légèrement pour les mettre en accord avec les modes opératoires actuels. Quelques changements et additions minimes ont été apportés à la dernière partie du texte « Renseignements supplémentaires » pour la mettre à jour.

Un nouveau paragraphe (III.9) pour le point de solidification du zinc, a été ajouté dans le but de provoquer une discussion sur ce sujet à la session de 1958. Dans les Procès-Verbaux des sessions de 1952 et de 1954, il est fait état à plusieurs reprises de la possibilité d'utiliser le point de solidification du zinc comme point fixe de l'Échelle. La technique de réalisation de ce point a été portée à un haut degré de perfection au National Research Council, au Canada. Le point de solidification du zinc semble spécialement intéressant comme point fixe en ce sens qu'une variation de pression donnée affecte la température de ce point 10⁴ fois moins que celle du point d'ébullition du soufre. D'après le N. R. C., le point de solidification du zinc de très grande pureté est hautement reproductible; des échantillons de zinc en provenance de divers pays ont donné, au Canada, les mêmes températures de palier à la précision des mesures près (0,000 2 degré).

Le soufre, de son côté, semble moins satisfaisant dès qu'une plus grande précision est recherchée; sa pureté demande plus de précautions; mais il peut y avoir d'autres facteurs plus importants qui n'ont pas été mis en évidence. On a trouvé, dans les deux laboratoires nationaux d'Amérique du Nord, que la température d'ébullition évoluait encore longtemps après le début de l'ébullition, ce qui soulève plusieurs questions. Pourquoi cette évolution existe-t-elle dans certains laboratoires ? Quand la température d'équilibre est-elle atteinte ? Cette température d'équilibre est-elle la même dans les différents laboratoires ? Actuellement, le point de solidification du zinc ne devrait pas figurer dans la partie du texte « Recommandations », parce qu'il n'est qu'un repère secondaire et non un point fixe de l'Échelle. Il serait cependant possible au Comité Consultatif de se mettre d'accord sur une valeur pour le point de solidification du zinc, en s'appuyant sur des déterminations faites avec des thermomètres à résistance étalonnés dans différents laboratoires, à partir du point d'ébullition du soufre. Cette valeur pourrait ainsi être considérée comme en accord avec l'Échelle de 1948 aux erreurs de mesure près. Le point de solidification du zinc pourrait alors remplacer le point d'ébullition du soufre comme point fixe et l'échelle serait encore l'Échelle Internationale de Température de 1948. Si l'Échelle était ainsi rendue plus précise et plus reproductible, ce changement serait le bienvenu.

(7 janvier 1958)

Projet de révision du texte de L'ÉCHELLE INTERNATIONALE DE TEMPÉRATURE DE 1948

établi par le National Bureau of Standards (7 janvier 1958)

(Traduction)

I. INTRODUCTION.

L'échelle Kelvin, dans laquelle les températures sont désignées par ${}^{\circ}$ K et représentées par le symbole T, est reconnue comme l'échelle thermodynamique fondamentale à laquelle toute mesure de température doit pouvoir être finalement rapportée. Quand Kelvin établit les bases de cette échelle en ${}^{\circ}$ 854, il définit la grandeur du degré en fixant à 100 degrés l'intervalle entre le point de fusion de la glace et le point d'ébullition de l'eau, afin de conserver « une liaison avec la thermométrie pratique en usage jusqu'alors ». Il ajouta cependant qu'il serait préférable de fixer la grandeur du degré en choisissant une valeur pour une température bien définie, telle que le point de fusion de la glace, et qu'un tel procédé devrait être adopté finalement. Le désir de Kelvin fut réalisé en 1954 lorsque la Dixième Conférence Générale des Poids et Mesures redéfinit la grandeur du degré, en adoptant pour le point triple de l'eau la valeur ${}^{\circ}73, {}^{\circ}16$ exactement.

Une résolution adoptée par la Neuvième Conférence Générale des Poids

et Mesures en 1948 avait déjà reconnu que le point triple de l'eau était un repère thermométrique plus précis que le point de fusion de la glace, et elle avait en conséquence estimé que le zéro de l'échelle thermodynamique Celsius devait être défini comme étant la température inférieure de 0,0100 degré à celle du point triple de l'eau pure. Dans l'échelle thermodynamique Celsius, les températures sont maintenant désignées par °C (therm.), représentées par le symbole t_{th} et égales à T - 273, 15.

Les difficultés expérimentales inhérentes aux mesures de température dans l'échelle thermodynamique conduisirent à l'adoption en 1927, par la Septième Conférence Générale des Poids et Mesures, d'une échelle pratique qui fut désignée sous le nom d'Échelle Internationale de Température. Cette échelle devait s'accorder avec l'échelle thermodynamique Celsius (alors appelée échelle thermodynamique centigrade) aussi étroitement qu'il était possible dans l'état des connaissances à cette époque. Elle fut établie de façon à être aisément et exactement reproductible et à fournir les moyens de spécifier toute température entre des limites beaucoup plus étroites qu'il était possible dans l'échelle thermodynamique.

L'Échelle Internationale de Température fut révisée en 1948, avec quelques changements sensibles de la valeur des températures au-dessus du point de solidification de l'or. L'objet de la présente révision n'est pas de modifier la valeur des températures, mais de rendre le texte de l'Échelle conforme aux décisions des Neuvième et Dixième Conférences Générales des Poids et Mesures ainsi qu'aux modes opératoires actuels. Étant donné qu'aucune température ne sera modifiée d'une quantité supérieure aux erreurs de mesure, l'Échelle conservera le nom d'Échelle Internationale de Température de 1948.

Un des changements essentiels de la présente révision est le remplacement du point de fusion de la glace par le point triple de l'eau comme point fixe de l'Échelle. Ce changement est en accord avec le principe énoncé dans la Résolution 3 de la Neuvième Conférence Générale des Poids et Mesures (1948), qui stipule que le point triple de l'eau est un repère thermométrique plus précis. De plus, ce changement fait coïncider exactement l'Échelle Internationale avec l'échelle thermodynamique au point qui définit la grandeur du degré de l'échelle thermodynamique.

Le tableau suivant donne la nomenclature adoptée pour relier mutuellement les échelles internationale et thermodynamique; les flèches indiquent le sens du passage de la température définie en premier lieu à la température dérivée par changement d'origine.

ÉCHELLE INTERNATIONALE.

Température internationale

indication : °C (Int. 1948) degré Celsius international 1948 Température internationale Kelvin $T_{int} = t + 273, 15 (exactement)$

> indication : ^oK (Int. 1948) degré Kelvin international 1948

ÉCHELLE THERMODYNAMIQUE.

(La simple indication °C ou °K sera suffisante dans bien des cas.)

II. Définition de l'Échelle Internationale de Température de 1948.

Les températures Celsius dans l'Échelle Internationale de Température de 1948 sont désignées par °C ou °C (Int. 1948) et représentées par le symbole t. Les températures internationales Kelvin correspondantes sont désignées par °K (Int. 1948) et représentées par le symbole T_{int} .

L'Échelle Internationale de Température est fondée sur six températures reproductibles (points fixes) auxquelles sont assignées des valeurs numériques, et sur des formules spécifiées établissant la relation entre la température et les indications des instruments étalonnés au voisinage de ces températures. Ces points fixes sont définis par des états d'équilibre spécifiés, chacun d'eux, sauf pour le point triple de l'eau, étant sous une pression de 1 atmosphère normale, c'est-à-dire 101 325 newtons par mètre carré, par définition.

La température internationale Kelvin T_{int} est égale à t + 273, 15.

Les points fixes de l'Échelle et les valeurs numériques exactes qui leur sont assignées sont donnés au tableau I.

TABLEAU I.

Points fixes de définition sous la pression de 1 atmosphère normale, sauf pour le point triple de l'eau.

Tompánatura

		porturare
	°C (1	nt. 1948).
Température d'équilibre entre l'oxygène liquide et sa vapeur		
(point d'ébullition de l'oxygène)		182,97
Température d'équilibre entre la glace, l'eau liquide et la		
vapeur d'eau (point triple de l'eau normale)	+	0,01
Température d'équilibre entre l'eau liquide et sa vapeur (point		
d'ébullition de l'eau)		100
Température d'équilibre entre le soufre liquide et sa vapeur		
(point d'ébullition du soufre)		444,6
Température d'équilibre entre l'argent solide et l'argent		
liquide (point de solidification de l'argent)		960,8
Température d'équilibre entre l'or solide et l'or liquide (point		
de solidification de l'or)		1063

- T 201 -

L'échelle de température est divisée en quatre régions.

a. De 0° C à 630,5° C, la température l est définie par la formule

$$\mathbf{R}_t = \mathbf{R}_0(\mathbf{1} + \mathbf{A}t + \mathbf{B}t^2),$$

dans laquelle R_i est la résistance à la température *t* du fil de platine d'un thermomètre à résistance étalon entre les points de bifurcation formés par la soudure du conducteur de courant et du conducteur de potentiel, et R_0 la résistance à 0° C. Les constantes R_0 , A et B doivent être déterminées à partir des valeurs de R_i au point triple de l'eau et aux points d'ébullition de l'eau et du soufre. Le platine d'un thermomètre à résistance étalon doit être recuit et sa pureté doit être telle que R_{100}/R_0 ne soit pas inférieur à 1,392 2.

b. Du point d'ébullition de l'oxygène à o $^{\circ}$ C, la température t est définie par la formule

$$R_{t} = R_{0} [1 + At + Bt^{2} + C(t - 100)t^{3}],$$

dans laquelle R_0 , A et B sont déterminées de la même façon que ci-dessus en (*a*), la constante C étant déterminée à partir de la valeur de R_t au point d'ébullition de l'oxygène.

c. De 630,5° C au point de solidification de l'or, la température *l* est définie par la formule

$$\mathbf{E} = a + bt + ct^2,$$

dans laquelle E est la force électromotrice d'un thermocouple étalon de platine et platine rhodié, lorsque l'une des soudures est à o° C et l'autre à la température *t*. Les constantes *a*, *b*, *c* doivent être déterminées à partir des valeurs de E à 630,5° C, et aux points de solidification de l'argent et de l'or. La température *t* à laquelle se fait l'étalonnage à 630,5° C doit être déterminée par un thermomètre à résistance étalon.

Le fil de platine du thermocouple étalon doit être recuit et d'une pureté telle que le rapport R_{100}/R_0 ne soit pas inférieur à 1,392 o. Le fil d'alliage doit contenir nominalement 90 pour 100 de platine et 10 pour 100 de rhodium en poids. Quand l'une des soudures du thermocouple est à 0° C et l'autre, soit à 630,5° C, soit au point de solidification de l'argent, soit au point de solidification de l'or, le thermocouple achevé doit donner des forces électromotrices telles que l'on ait

$$\begin{split} \mathbf{E}_{Au} &= 10\ 300\ \pm\ 50\ \mu\ V,\\ \mathbf{E}_{Au} &- \mathbf{E}_{Ag} &= 1\ 183\ +\ 0\,, 158\,(\mathbf{E}_{Au} - 10\ 300\,)\ \pm\ 4\,\mu\ V,\\ \mathbf{E}_{Au} &- \mathbf{E}_{630,5} &=\ 4\ 766\ +\ 0\,, 631\,(\mathbf{E}_{Au} - 10\ 300\,)\ \pm\ 8\,\mu\ V. \end{split}$$

d. Au-dessus du point de solidification de l'or, la température t est définie par la formule

$$\frac{\mathbf{J}_{t}}{\mathbf{J}_{\mathrm{Au}}} = \frac{e^{\overline{\lambda_{1}(1063+270,15)}}-1}{e^{\overline{\lambda_{1}(t+270,15)}}-1},$$

dans laquelle

 J_i et J_{Au} sont les énergies de rayonnement de longueur d'onde λ par

intervalle unité de longueur d'onde, émises en une unité de temps par l'unité d'aire d'un corps noir dans l'angle solide unité, à la température et au point de solidification de l'or;

 $C_2 = \tau$,438 cm. degré;

à est exprimé en centimètres;

e est la base des logarithmes népériens.

III. RECOMMANDATIONS.

Les recommandations suivantes sont des conseils plutôt que des prescriptions. Les appareils, les méthodes et les modes opératoires recommandés représentent une bonne pratique à l'époque actuelle, mais on n'a pas eu l'intention de retarder la mise au point et l'utilisation d'améliorations et de perfectionnements. L'expérience a montré que ces recommandations sont favorables à l'uniformité et à la reproductibilité dans la réalisation de l'Échelle de Température définie au chapitre II.

1. Thermomètre à résistance étalon. — Un thermomètre à résistance étalon doit être conçu et construit de façon que le fil résistant de platine soit aussi dépourvu de tension qu'il est possible et qu'il reste dans cet état pendant son utilisation. Le fil de platine doit être étiré à partir d'un lingot fondu, et non d'une mousse martelée.

Des thermomètres à résistance étalons ont été fabriqués avec du fil d'un diamètre compris entre 0,05 et 0,5 mm, un court tronçon au moins de chaque conducteur aboutissant à la résistance étant également en platine. La bobine de résistance du thermomètre, une fois achevée, doit être recuite dans l'air à une température supérieure à la température la plus élevée à laquelle le thermomètre doit être utilisé; cette température de recuit ne doit, dans aucun cas, être inférieure à 450° C. Il est recommandé que le tube qui protège la bobine terminée soit empli d'un gaz contenant un peu d'oxygène.

Un critère utile qui sert de sauvegarde contre un défaut de construction du thermomètre achevé et contre des erreurs dans l'étalonnage aux points fixes est que la valeur de la constante B soit (0,585 $7 \pm 0,001$ 0). $10^{-6}/\text{deg}^2$ et celle de C, (4,35 $\pm 0,05$). $10^{-12}/\text{deg}^4$. Un autre critère utile pour juger de l'efficacité du recuit et de la fidélité du thermomètre est la constance de sa résistance à une température repère. Par exemple, la résistance d'un thermomètre au point triple de l'eau ne doit pas changer d'une quantité supérieure à celle qui correspond à 0,001 degré lorsque le thermomètre est soumis à un cycle de variations de température tel que celui qui est nécessaire pour son étalonnage.

2. Thermocouple étalon. — Des thermocouples étalons ont été fabriqués avec des fils d'un diamètre compris entre 0,35 et 0,65 mm. Avant l'étalonnage, les fils du thermocouple doivent être recuits dans l'air pendant une heure à environ 1450° C. Les fils du thermocouple doivent être montés de telle sorte que soit évitée toute contrainte mécanique aux endroits où des gradients élevés de température risquent de se présenter.

La force électromotrice du thermocouple à $630,5^{\circ}$ C doit être déterminée par des mesures effectuées à une température uniforme et constante, comprise entre 630,3 et $630,7^{\circ}$ C.

- T 203 -

3. Pression. — Par définition, l'atmosphère normale est la pression de 101325 newtons par mètre carré. En pratique, la pression est déterminée au moyen d'une colonne de mercure. On peut admettre que la masse volumique à 20° C du mercure pur est 13,54587 g/cm³ en moyenne dans la colonne de mercure qui équilibre 1 atmosphère. Dans la détermination pratique de l'atmosphère normale, le Comité International des Poids et Mesures recommande que la valeur de la gravité locale soit exprimée dans le système de Potsdam, jusqu'à ce qu'il sanctionne l'emploi d'un autre système.

Dans les paragraphes suivants concernant les points d'ébullition de l'oxygène, de l'eau et du soufre, les formules qui fournissent les températures d'équilibre l_p sont données sous forme de polynomes en fonction de $\left(\frac{p}{p_0}-1\right)$, où p est la pression d'ébullition et p_0 la pression de 1 atmosphère normale. La limite d'exactitude des formules est indiquée pour un intervalle de pression donné. En pratique, les erreurs dues à l'emploi de ces formules sont inférieures à celles qui résultent de l'instabilité des systèmes ouverts à l'atmosphère. Une plus grande stabilité et une exactitude accrue peuvent être obtenues dans les systèmes fermés, maintenus à une pression constante voisine de 1 atmosphère à quelques millièmes près; dans ce cas,

seul le premier terme en $\left(rac{p}{p_{a}}-1
ight)$ des polynomes est nécessaire.

4. Point zéro de l'échelle et point triple de l'eau :

a. Point zéro de l'échelle. — Le point zéro de l'Échelle Internationale de Température Celsius est défini comme étant la température inférieure de $_{0,01}$ degré exactement à celle du point triple de l'eau. Les calculs montrent que la température de l'ancien « point de fusion de la glace », défini comme étant la température d'équilibre entre la glace et l'eau saturée d'air sous une pression de 1 atmosphère normale, est o° C à $_{0,000}$ 1 degré près. Ainsi, dans bien des cas, la température o° C peut-elle être réalisée avec une précision suffisante en utilisant un mélange de glace finement divisée et d'eau saturée d'air à o° C dans un vase bien isolé, tel qu'un vase de Dewar.

Pour réaliser cette température à mieux que 0,000 2 degré, il est nécessaire d'observer quelques précautions particulières concernant la pureté de la glace et de l'eau, la saturation de l'eau à 0° C avec de l'air non contaminé, et l'effet de la pression. On peut calculer l'effet de la pression par la formule

$$l = 0.01 \left(1 - \frac{p}{p_0} \right) - 0.7.10^{-6} h,$$

dans laquelle t est la température d'équilibre, p la pression atmosphérique ambiante, p_0 la pression de 1 atmosphère normale, et h la profondeur en millimètres au-dessous de la surface de l'eau.

b. Point triple de l'eau. — La température du point triple de l'eau a été réalisée dans des ampoules de verre scellées ne contenant que de l'eau d'une grande pureté; ces ampoules présentent un puits rentrant axial pour les thermomètres. Dans de telles ampoules, la température du point triple est obtenue où de la glace est en équilibre avec une surface liquide-vapeur. A une profondeur h (en millimètres) au-dessous de la surface

liquide-vapeur, la température d'équilibre entre la glace et l'eau liquide est donnée par la formule

$$t = 0,01 - 0,7.10^{-6}h_{*}$$

La méthode recommandée pour préparer une ampoule à point triple consiste à former d'abord autour du puits une couche épaisse de glace par un refroidissement de l'intérieur du puits, puis à faire fondre une partie suffisante de cette couche de glace, par l'intérieur du puits également, pour produire une nouvelle surface de contact eau-glace au voisinage du puits; l'eau à cette surface de contact a ainsi été purifiée par congélation fractionnée. Une ampoule préparée de cette façon est capable de maintenir une température constante à 0,000 1 degré près pendant plusieurs jours, si elle est conservée entièrement immergée dans un bain de glace. Lorsque des ampoules d'origines diverses ont été comparées, aucune différence supérieure à 0,000 2 degré n'a été constatée.

L'eau provenant de la plupart des sources naturelles (eau normale) contient environ 0,014 8 mole pour cent de deutérium, 0,20 mole pour cent de 1 $^{8}_{8}$ O et 0,04 mole pour cent de 1 $^{7}_{3}$ O. Des variations autour de ces pourcentages, pouvant atteindre 0,001 5 mole pour cent, ont été observées pour le deutérium contenu dans l'eau naturelle. Un accroissement de 0,001 mole pour cent du deutérium contenu dans l'eau correspond à un accroissement de 0,000 04 degré de la température du point triple. L'eau des rivières qui prennent leurs sources dans la zone sous le vent de régions montagneuses ou à la base de glaciers permanents peut contenir une quantité de deutérium inférieure à la normale, tandis que l'eau de surface de grands lacs peut en contenir une quantité supérieure à la normale.

La composition isotopique à la surface de contact eau-glace dans les ampoules à point triple dépend aussi des différences naturelles dans la proportion des isotopes de l'oxygène, du procédé de distillation de l'eau et de la technique de congélation. L'influence de ces compositions isotopiques diverses sur la température réalisée dans les ampoules à point triple est probablement suffisamment faible pour être négligée, mais jusqu'ici son importance pratique n'a pas été établie.

5. Point d'ébullition de l'oxygène. — La température d'équilibre entre l'oxygène liquide et sa vapeur est habituellement réalisée par la méthode statique. La bobine de platine du thermomètre étalon et l'oxygène liquide dans son récipient sont portés à la même température dans un bloc de métal placé dans un cryostat convenable. Le bloc de métal est généralement immergé dans un bain bien agité d'oxygène liquide ouvert à l'atmosphère, mais une plus grande stabilité a pu être obtenue en enfermant le bloc de métal dans une enceinte vide d'air maintenue à une température uniforme voisine de celle du point d'ébullition de l'oxygène. La tension de vapeur de l'oxygène est transmise par un tube relié extérieurement à un manomètre; ce tube doit être, sur toute sa longueur, à une température supérieure à la température de saturation de l'oxygène pur.

L'obtention de la température d'équilibre peut être contrôlée par les critères suivants : la température observée, ramenée à une pression constante correspondant à celle de la surface libre de l'oxygène, doit être indépendante de petites variations de la profondeur d'immersion du thermomètre dans le bloc de métal, du rapport du volume d'oxygène liquide au volume de vapeur d'oxygène, et de petites variations de la température de l'enveloppe.

La température d'équilibre l_p correspondant à une pression p à la surface de l'oxygène liquide, peut être calculée avec une exactitude de quelques millièmes de degré dans le domaine compris entre p = 660 et p = 860 mm Hg au moyen de la formule

$$t_{p} = -182,97 + 9,530 \left(\frac{p}{p_{0}} - 1\right) - 3,72 \left(\frac{p}{p_{0}} - 1\right)^{2} + 2,2 \left(\frac{p}{p_{0}} - 1\right)^{3}.$$

6. Point d'ébullition de l'eau. — La température d'équilibre entre l'eau liquide et sa vapeur est habituellement réalisée par la méthode dynamique, le thermomètre étant placé dans la vapeur saturée. Des systèmes ouverts ont été utilisés autrefois pour la réalisation du point d'ébullition de l'eau mais, pour les étalonnages précis, il est préférable d'utiliser des systèmes fermés dans lesquels la chaudière et le manomètre sont reliés à un manostat rempli d'hélium.

La chaudière doit être construite de façon à éviter toute contamination de la vapeur. Le thermomètre doit être protégé du rayonnement émis par les corps qui sont à des températures différentes de la température de saturation.

L'obtention de la température d'équilibre peut être contrôlée par les critères suivants : la température observée, ramenée à une pression constante, doit être indépendante de l'eau utilisée, du temps écoulé, des variations dans le débit de chaleur fourni au liquide, et de la profondeur d'immersion du thermomètre.

La température d'équilibre t_p , correspondant à la pression p, peut être calculée avec une exactitude de 0,001 degré dans le domaine compris entre p = 660 et p = 860 mm Hg au moyen de la formule

$$t_{p} = 100 + 28,012 \left(\frac{p}{p_{0}} - 1\right) - 11,64 \left(\frac{p}{p_{0}} - 1\right)^{2} + 7,1 \left(\frac{p}{p_{0}} - 1\right)^{3},$$

Une modification de la proportion de deutérium dans l'eau produit une variation de la température d'ébullition de l'eau dans le même sens que pour le point triple, mais environ trois fois plus faible.

7. Point d'ébullition du soufre. — La température d'équilibre entre le soufre liquide et sa vapeur est habituellement réalisée par la méthode dynamique, dans une chaudière en aluminium analogue par sa forme à celle qui est utilisée pour le point d'ébullition de l'eau; une protection supplémentaire contre les effets de rayonnement, et de plus grands espaces pour la libre circulation de la vapeur sont toutefois nécessaires.

On a signalé que l'addition au soufre de o, i pour cent d'arsenic, puis de o, i pour cent de sélénium, augmente le point d'ébullition normal de o, o_2 degré, puis de o, o_7 degré. Ces éléments se trouvent normalement dans le soufre d'origine volcatique, mais non dans celui de la région du Golfe du Mexique. Le soufre commercial contient des impuretés organiques qui se décomposent lentement et libèrent du carbone durant l'ébullition du soufre; ce carbone est probablement sans influence sur la température d'ébullition mais, pour des étalonnages de haute précision, il est recommandé d'éliminer les matières organiques et le carbone.

Les critères pour contrôler que le point d'ébullition du soufre a été réalisé

correctement sont similaires à ceux du point d'ébullition de l'eau, sauf qu'il peut être nécessaire d'attendre plusieurs heures pour obtenir une température constante.

La température d'équilibre l_p correspondant à une pression p, peut être calculée avec une exactitude de 0,001 degré environ dans le domaine compris entre p = 660 et p = 820 mm Hg au moyen de la formule

$$t_{p} = 444, 6 \div 69,010 \left(\frac{p}{p_{0}} - 1\right) - 27,48 \left(\frac{p}{p_{0}} - 1\right)^{2} + 19,14 \left(\frac{p}{p_{0}} - 1\right)^{2}.$$

8. Points de solidification de l'argent et de l'or. — La température d'équilibre entre l'argent solide et liquide, ou entre l'or solide et liquide, a été réalisée dans des creusets couverts, soit en graphite artificiel de grande pureté, soit en céramique, soit en silice vitreuse. On doit tenir compte pour les dimensions des creusets de la forte augmentation de volume des métaux durant la fusion; leur profondeur doit être suffisante pour éliminer l'influence de la conduction thermique le long des fils du thermocouple. L'argent doit être protégé contre l'oxygène lorsqu'il est en fusion.

Le creuset et son contenu doivent être portés à une température uniforme, supérieure de quelques degrés au point de fusion du métal, puis refroidis lentement. Un thermocouple, monté dans un tube protecteur de porcelaine ou de toute autre matière réfractaire convenable, muni d'isolateurs qui séparent les deux fils, est immergé dans le métal fondu qu'on laisse ensuite se solidifier.

L'obtention de la température d'équilibre peut être contrôlée par les critères suivants : la force électromotrice du thermocouple doit être indépendante de petites variations de la profondeur d'immersion au cours de solidifications successives, et elle doit demeurer pratiquement constante durant au moins cinq minutes au cours d'une même solidification.

Dans le domaine de l'Échelle situé au-dessus de 1063°C, où l'on utilise la formule de Planck, le creuset servant au point de solidification de l'or doit être modifié de façon à constituer un corps noir à la température de solidification de l'or.

9. Point de solidification du zinc. — Des températures très reproductibles, étroitement liées à celles que donne le liquidus d'un alliage, ont été réalisées à l'aide du palier observé dans les courbes de température au cours de la congélation lente du zinc de très grande pureté (99,999 pour cent en poids).

La fusion et la congélation du zinc étaient produites dans des creusets de graphite artificiel très pur (99,999 pour cent en poids) munis d'un puits axial pour le thermomètre; ces creusets, d'un diamètre d'environ 5 cm et d'une profondeur suffisante pour éliminer l'influence de la conduction thermique le long des fils du thermomètre, étaient chauffés dans un simple four à bloc métallique.

Au début du refroidissement, quand le solide commençait à se former sur la paroi du creuset, le thermomètre était enlevé, refroidi, puis replacé dans son puits de façon à produire un mince manchon de zinc solide autour du puits. La température correspondant au palier était celle de l'équilibre entre le zinc liquide et ce manchon solide, pendant que la congélation se poursuivait lentement de l'extérieur du creuset vers l'intérieur. On préfère opérer en atmosphère inerte afin d'empêcher l'oxydation du graphite et du zinc; on n'a cependant pas pu mettre en évidence une influence, sur les températures de palier, de la présence d'oxyde de zinc dans le métal en fusion, même après un chauffage prolongé à l'air. On a observé que la température de palier augmentait de 0,004 3 degré par atmosphère.

Un critère pour contrôler que la pureté d'un échantillon de zinc est satisfaisante est que son intervalle de fusion ne soit pas supérieur à 0,001 degré environ. Des échantillons de zinc de cette pureté élevée, provenant de différents pays, ont donné des températures de palier pratiquement identiques (à 0,000 2 degré près). Des échantillons présentant des intervalles de fusion de 0,01 degré environ ont donné des températures de palier plus basses de 0,000 4 à 0,001 6 degré.

IV. RENSEIGNEMENTS SUPPLÉMENTAIRES.

1. Formules résistance-température. — La formule d'interpolation pour l'intervalle de température entre o° C et 630,5° C, telle qu'elle est donnée dans la définition de l'Échelle (paragraphe II.a)

$$\mathbf{R}_{0} = \mathbf{R}_{0}(\mathbf{1} + \mathbf{A}t + \mathbf{B}t^{2}),$$

peut être écrite sous la forme de Callendar

$$t = \frac{1}{\alpha} \left(\frac{R_i}{R_0} - 1 \right) + \delta \left(\frac{t}{100} - 1 \right) \frac{t}{100},$$

dans laquelle

$$\alpha = \frac{r}{100} \Big(\frac{R_{100}}{R_0} - i \Big). \label{alpha}$$

Les relations entre les coefficients sont :

$$A = \alpha \left(I + \frac{\delta}{100} \right), \quad \alpha = A + 100 B,$$
$$B = -\frac{\alpha \delta}{100^2}, \quad \delta = -\frac{100^2 B}{A + 100 B}$$

La formule d'interpolation pour l'intervalle entre o° C et le point d'ébullition de l'oxygène, telle qu'elle est donnée dans la définition de l'Échelle (paragraphe II.b)

$$\mathbf{R}_{t} = \mathbf{R}_{0} [\mathbf{1} + \mathbf{A}t + \mathbf{B}t^{2} + \mathbf{C}(t - 100)t^{3}],$$

peut être écrite sous la forme de Callendar-Van Dusen

$$\mathbf{I} = \frac{\mathbf{I}}{\alpha} \left(\frac{\mathbf{R}_t}{\mathbf{R}_0} - \mathbf{I} \right) + \tilde{\mathbf{0}} \left(\frac{t}{100} - \mathbf{I} \right) \frac{t}{100} + \beta \left(\frac{t}{100} - \mathbf{I} \right) \left(\frac{t}{100} \right)^3.$$

Les relations entre A, B et z, δ sont les mêmes que ci-dessus; les autres relations sont

$$C = -\frac{\alpha\beta}{100^4}, \qquad \beta = -\frac{100^4 C}{A + 100 B}.$$

2. Points fixes secondaires. — En plus des six points fixes de définition de l'Échelle donnés au tableau I, on peut disposer d'autres points de référence. Quelques-uns de ces points, ainsi que leur température dans l'Échelle Internationale de Température de 1948, sont donnés dans le tableau II.

- T 208 -

Sauf pour les points triples, chaque température est celle d'un système en équilibre sous la pression de 1 atmosphère normale. Les formules donnant la variation de la température avec la pression sont destinées à être utilisées dans le domaine qui s'étend de p = 680 à p = 780 mm Hg.

TABLEAU II.

Points fixes secondaires sous la pression de 1 atmosphère normale (sauf pour les points triples).

Le dernier chiffre de chaque température peut être incertain.

	•C(Int. 1948).
Température d'équilibre entre l'anhydride carbonique solide	
et sa vapeur	— 78,5
$t_{p} = -78,5 + 12,12\left(\frac{p}{p_{0}} - 1\right) - 6,4\left(\frac{p}{p_{0}} - 1\right)^{2}$	
Température de solidification du mercure	- 38,87
Température d'équilibre entre la glace et l'eau saturée d'air Température du point triple du phénoxybenzène (oxyde de	0,000
diphényle) Température de transition du sulfate de sodium décahy-	26,877
draté	32,38
Température du point triple de l'acide benzoïque	122,362
Température de solidification de l'indium	156,612
Température d'équilibre entre le naphtalène et sa vapeur	218,0
$t_p = 218, 0 + 44, 4\left(\frac{p}{p_0} - 1\right) - 19\left(\frac{p}{p_0} - 1\right)^2$	
Température de solidification de l'étain	231,91
Température d'équilibre entre le benzophénone et sa vapeur	305,9
$t_p = 305, 9 + 48, 8\left(\frac{p}{p_0} - 1\right) - 21\left(\frac{p}{p_0} - 1\right)^2$	4
Température de solidification du cadmium	321,033
Température de solidification du plomb	327,3
Température d'équilibre entre le mercure et sa vapeur	356,58
$t_p = 356,58 + 55,552 \left(\frac{p}{p_0} - 1\right) - 23,03 \left(\frac{p}{p_0} - 1\right)^2 + 14,0 \left(\frac{p}{p_0} - 1\right)^2$	$\left(\frac{p}{p_0}-1\right)^3$
Température de solidification du zinc	419,504
Température de solidification de l'antimoine	630,5
Température de solidification de l'aluminium Température de solidification du cuivre en atmosphère	66o, I
réductrice	1083
Température de solidification du nickel	1453
Temperature de solidification du cobalt	1492
Température de solidification du palladium	1552
Température de solidification du platine	1709
Température de solidification de l'iridium	2663
Température de fusion du tungstène.	3380
	5000

3. Relation entre l'Échelle Internationale de Température et l'Échelle thermodynamique. — Quand l'Échelle Internationale de Température fut adoptée en 1927, elle était en accord avec l'échelle thermodynamique aussi étroitement que les connaissances de l'époque permettaient de le vérifier. On a toutefois reconnu que des recherches ultérieures devraient accroître nos connaissances sur les différences réelles entre les valeurs des températures dans les deux échelles. Quand on désire connaître la valeur d'une température dans l'échelle thermodynamique, le procédé pratique consiste à obtenir la température dans l'Échelle Internationale et à la convertir ensuite dans l'échelle thermodynamique en ajoutant la différence appropriée entre les échelles. Ces différences, cependant, ont dù être déterminées expérimentalement; ce sont des expériences difficiles à faire avec exactitude, les différences étant petites par rapport aux valeurs absolues des températures.

De temps en temps, des chercheurs ont publié les différences qu'ils ont trouvées dans diverses régions de l'Échelle. Quelques-unes d'entre elles sont données plus loin pour montrer l'état actuel de nos connaissances sur l'écart entre les deux échelles. Les valeurs de ces différences n'ont pas fait l'objet d'un accord international, de sorte qu'elles ne figurent pas dans les recommandations.

Compte tenu des incertitudes sur ces différences, il semble préférable de ne pas modifier la valeur des températures dans l'Échelle Internationale et de continuer à parfaire nos connaissances sur les différences entre les échelles. On peut, si on le désire, améliorer les moyens de détermination des températures dans l'Échelle Internationale, sans changer de façon appréciable la valeur des températures. Cette manière de faire évitera la confusion qui résulterait de changements trop fréquents de la valeur des températures.

Dans l'intervalle entre o° C et le point d'ébullition du soufre, des comparaisons entre deux thermomètres à azote et des thermomètres à résistance étalons ont été effectuées par le Massachusetts Institute of Technology (1939). Les différences trouvées entre la température t_{th} (1954) et la température t (Int. 1948) s'expriment par la formule

$$t_{\rm th}(1954) - t\,({\rm Int.}\ 1948) = \frac{t}{100} \left[-0,006\ 0 + \left(\frac{t}{100} - 1\right)(0,041\ 06 - 7,363.10^{-5}\ t) \right]^{4}$$

Cette relation donne $99,994^{\circ}$ C (therm.) pour le point d'ébullition de l'eau et $444,70^{\circ}$ C (therm.) pour le point d'ébullition du soufre. Les résultats obtenus avec les deux thermomètres à gaz différaient de 0,005 degré au point d'ébullition de l'eau et de 0,05 degré au point d'ébullition du soufre.

Dans l'intervalle entre le point d'ébullition de l'oxygène et 0° C, des recherches faites à la Physikalisch-Technische Reichsanstalt (1932) et à l'Université de Leyde (1935) ont donné un groupe de valeurs indiquant que les différences $t_{\rm th} - t$ ont un maximum de + 0,04 degré environ au voisinage de - 80° C. Au-dessous de - 100° C, quelques-unes des différences publiées sont de signes contraires. Ces différences sont de l'ordre de grandeur des incertitudes possibles des mesures au thermomètre à gaz. Des recherches faites à la Pennsylvania State University (1953) ont donné la valeur - 183,00° C (therm. 1954) pour le point d'ébullition de l'oxygène.

L'Échelle Internationale de Température n'est pas définie au-dessous du point d'ébullition de l'oxygène.

Dans l'intervalle entre $630,5^{\circ}$ C et le point de solidification de l'or, des résultats du Tokyo Institute of Technology (1956) ont donné les valeurs $961,28^{\circ}$ C (therm.) pour le point de solidification de l'argent et 1063,69° C (therm.) pour le point de solidification de l'or. Des résultats de la Physikalisch-Technische Bundesanstalt (1957) ont donné pour ce dernier point la valeur 1064,76° C (therm.).

Dans le domaine situé au-dessus du point de solidification de l'or, on utilise la formule de Planck. Cette formule est conforme à l'échelle thermodynamique et, de ce fait, devrait donner la vraie valeur des températures Kelvin si l'on connaissait la valeur correcte de la température Kelvin du point de solidification de l'or et de la constante C_2 .

Une analyse des variances des valeurs des constantes atomiques, faite au California Institute of Technology en 1955, donnait la valeur 1,438 88 cm. degré pour C_8 . Une étude analogue faite à la Johns Hopkins University en 1957 donnait la valeur 1,438 86 cm. degré.

ANNEXE T 24

Electrotechnical Laboratory (Japon)

RECUIT DES FILS DES THERMOCOUPLES ÉTALONS

Par K. OKADA et H. SATONE

(Traduction)

On stabilise la force électromotrice d'un thermocouple par recuit des fils qui le composent. Cependant, la température de recuit ne doit pas dépasser une certaine limite si l'on veut éviter un comportement anormal du thermocouple. Pour déterminer la température de recuit optimum, on a observé l'évolution de la force électromotrice à diverses températures. Le fil à l'essai, suspendu horizontalement dans l'air, était chauffé en courant alternatif sur toute sa longueur; la température du fil était observée à l'aide d'un pyromètre optique, en prenant pour le pouvoir émissif du platine 0,30 et pour celui du rhodium 0,27.

Un fil de platine, recuit à 1000° C pendant cinq minutes pour supprimer les contraintes mécaniques, était soudé avec un fil de platine de référence déjà stabilisé; la force électromotrice de ce couple était mesurée à plusieurs températures échelonnées de 200 en 200 degrés environ. Le couple était ensuite soumis à un chauffage prolongé à des températures fixées par avance; on mesurait la force électromotrice de temps en temps, le chauffage étant provisoirement interrompu durant la mesure. La différence entre la force électromotrice ainsi obtenue et celle qui était mesurée initialement représente le changement de la force électromotrice.

Les figures 1, 2 et 3 montrent comment évolue la force électromotrice en fonction de la durée d'un chauffage prolongé à 1200, 1400 et 1600° C; elle décroît rapidement au cours des dix premières minutes, se modifie de façon compliquée dans l'heure qui suit, et devient finalement très stable.

On a trouvé qu'un fil de platine de haute qualité se stabilisait après un recuit de 1 heure à une température comprise entre 1200 et 1600° C. Des observations analogues ont été effectuées sur plusieurs fils de platine rhodié à 10 %. Les résultats, obtenus pour des chauffes prolongées à 1000, 1200, 1400, 1500, 1550 et 1600° C, sont donnés aux figures 4 à 9. Pour des températures de recuit inférieures à 1500° C, l'augmentation de la force électromotrice est rapide au cours de la première heure, puis progressive; plus

 Fig. 1 à 3. — Changement de la force électromotrice d'un fil de platine en fonction de la durée d'un chauffage prolongé. En abscisses : durée du chauffage, en heures.

En ordonnées : variation de la force électromotrice, en u.V.

la température de recuit est élevée, plus l'augmentation est grande. Pour un recuit à 1550° C, la force électromotrice croît rapidement au cours des 30 premières minutes, demeure presque constante pendant les 10 heures qui suivent, puis diminue très lentement. Pour un recuit supérieur à 1600° C, la force électromotrice tombe brusquement; la cause en est l'évaporation du rhodium, phénomène qui apparaît dès 1550° C.

Pour mettre en évidence l'influence d'un recuit de 1 heure à 1450° C, on a fait des observations au cours d'une chauffe prolongée à 1100° C sur un fil ainsi traité (*fig.* 10). Les courbes des figures 10, 5 et 4, correspondant à la température de mesure de 1000° C, ont été tracées sur un même graphique; ce sont - T 213 -

Fig. 4 à 10. — Changement de la force électromotrice d'un fil de platine rhodié à 10 % en fonction de la durée d'un chauffage prolongé.
En abscisses : durée du chauffage, en heures.
En ordonnées : variation de la force électromotrice, en 2V.

respectivement les courbes A, B, C de la figure 11; la courbe en pointillé D, correspondant à une température de chauffe de 1100° C, a été obtenue par interpolation. En comparant A et D, on voit que la stabilité la meilleure dans l'intervalle de 1 à 16 heures correspond à la courbe A.

Les résultats obtenus avec un fil de platine rhodié à 10 % d'une autre origine sont donnés aux figures 12 et 13. L'évolution de la force électromotrice au cours d'un chauffage à 1100° C était lente; mais, après cinq heures d'un tel chauffage, quand on portait la température à 1450° C, on observait une brusque augmentation, comme le montre la figure 12. Toutefois, avec le fil d'abord recuit à 1450° C durant 1 heure, on n'observait plus cette discontinuité marquée lors du même passage à 1450° C (*fig.* 13). Les résultats des figures 11, 12 et 13 confirment que le recuit à 1450° C

En résumé, les conclusions de notre étude sont les suivantes :

1º La stabilité est meilleure après un recuit à 1450º C qu'après un recuit à 1100º C;

2º 1500° C semble être la température maximum de recuit;

T 215

3° La limite supérieure des températures mesurables est 1550° C. Quand le fil est recuit à cette température, sa stabilité reste encore convenable pendant les dix heures qui suivent.

(15 mai 1958)

ANNEXE T 25

Bureau International des Poids et Mesures

PROJET D'UN BAROMÈTRE A MERCURE INTERFÉRENTIEL

Par J. TERRIEN

L'observation interférentielle des surfaces de mercure d'un baromètre est peu séduisante à première vue, pour deux raisons : elle impose une élimination difficile des ondes superficielles, et sa précision, de l'ordre de 0,1 à 0,01 µ, est plus élevée qu'il n'est nécessaire.

Dans notre projet, les interférences sont produites en lumière blanche; lorsqu'une certaine différence de marche est inférieure à quelques microns, des franges deviennent visibles; on se contente de constater leur présence, sans pointer leur position, et une agitation résiduelle n'est pas gênante. Lorsque l'égalité des trajets optiques est ainsi constatée, la hauteur barométrique est le double de la distance de deux miroirs de verre. On mesure alors la distance de ces deux miroirs; cette opération est plus facile que la mesure de la distance de deux niveaux de mercure, et nous n'avons pas encore choisi parmi les méthodes classiques, interférentielles ou autres, qui s'offrent pour cette mesure.

Le schéma optique des faisceaux lumineux qui frappent les surfaces de mercure est dessiné à la figure. Le miroir séparateur semi-transparent S et le miroir M sont horizontaux. Les franges en lumière blanche apparaissent lorsque B', symétrique de la surface de mercure supérieure B par rapport à M, et A', symétrique de la surface inférieure A par rapport à S, sont très voisins; les franges se produisent dans la mince couche d'air entre A' et B'.

La hauteur barométrique est la distance verticale h = ABcomptée positivement de bas en haut. Supposons A' et B' en coïncidence exacte. Algébriquement,

$$\overline{AB} = \overline{AS} + \overline{SM} + \overline{MB}.$$
Or,

$$\mathbf{S}\mathbf{M} = \mathbf{S}\mathbf{B}' + \mathbf{B}'\mathbf{M} = \mathbf{A}\mathbf{S} + \mathbf{M}\mathbf{B},$$

Donc,

$$AB = 2 SM$$
.

Ce résultat prouve que si S et M sont horizontaux et si des franges en lumière blanche sont visibles, la hauteur barométrique

est $2\overline{SM}$, quelle que soit la hauteur des surfaces de mercure par rapport à l'ensemble des miroirs S et M.

Bien entendu, les épaisseurs de verre traversées par les deux faisceaux doivent se compenser; c'est pourquoi la lame de fermeture de la chambre barométrique supérieure et la lame séparatrice ont la même épaisseur. De plus, une petite correction de quelques microns devra tenir compte des indices de réfraction différents dans le vide et dans l'air.

Dans un premier essai expérimental, où les surfaces de mercure étaient remplacées par des miroirs, on a produit les franges en lumière blanche par variation de la distance SM; leur comportement a été conforme aux prévisions.

Dans un second essai, deux bains de mercure ont été placés à 500 mm l'un au-dessus de l'autre sur un cadre suspendu à des ressorts, et l'on a obtenu des franges d'interférence en lumière monochromatique, produites conformément au schéma figuré.

Les vibrations des surfaces de mercure ont été atténuées par une suspension à ressorts analogue à celle que M. Hamy a réalisée à l'Observatoire de Paris (¹); dans la suspension que nous avons utilisée, trois ressorts à boudin verticaux s'allongent d'environ 1 m sous la charge des objets à soustraire aux vibrations. Avec des bains de mercure ainsi suspendus, les franges d'interférence sont visibles, mais s'agitent encore d'environ 0,2 à 0,5 interfrange. Nous essaierons d'améliorer leur stabilité.

Il semble donc que la réalisation et l'utilisation d'un tel baromètre interférentiel soient possibles. L'appareil serait placé sous une cloche métallique étanche favorisant l'uniformité de température et protégeant la suspension élastique contre les mouvements de l'air. Cette cloche serait reliée à l'atmosphère libre, ou à l'atmosphère des appareils où l'on veut connaître la pression.

Quels sont les principaux avantages de notre projet comparé aux baromètres en usage ?

Lorsque les niveaux de mercure sont mesurés au cathétomètre par un repère et son image sur la surface mercurielle, l'objectif du viseur n'est éclairé que sur sa moitié supérieure, et le faisceau lumineux n'est pas symétrique par rapport à l'axe optique, d'où des erreurs de pointé en présence d'aberrations ou d'un défaut de mise au point. Ce risque n'existe pas dans notre projet.

Un autre avantage est qu'on évite la manœuvre assez longue destinée à soulever le mercure à un niveau déterminé, près d'un repère optique ou d'une électrode de condensateur; nos interférences sont en effet insensibles à un déplacement vertical simultané des deux surfaces.

Nous espérons que ce baromètre à lecture optique, sans électronique, sera précis, rapide et sans erreur systématique.

(15 avril 1958)

Note ajoulée aux épreuves. — Après les essais préliminaires effectués avec ce montage expérimental, nous avons mis au point un autre projet de baromètre interférentiel dont le principe est décrit dans *Revue d'Optique*, 38, 1959, p. 34.

(1) Comples Rendus Acad. Sc., 125, 1897, p. 760; 136, 1903, p. 990.

ANNEXE T 26

Central Inspection Institute of Weights and Measures (Japon)

BAROMÈTRE ÉTALON INTERFÉRENTIEL

Par I. OYAMA, K. KOIZUMI et R. KANEDA

(Traduction)

Au Central Inspection Institute of Weights and Measures, on étudie un baromètre étalon interférentiel depuis mai 1956; un prototype expérimental vient d'être achevé après diverses études préalables.

Le principe, la construction et le mode d'utilisation de ce baromètre, qui peut également servir de manomètre de précision, sont brièvement décrits dans cette Note.

Principe et construction. — Le but essentiel de ce baromètre est la mesure des pressions avec une précision de $\pm 1 \mu$ Hg, sur tout le domaine de o à 840 mm Hg. Il se compose essentiellement d'une combinaison de deux interféromètres de Michelson modifiés; le déplacement relatif des deux ménisques de mercure dans le tube en U est comparé au déplacement d'un chariot sur une glissière horizontale, grâce à un système optique convenable.

Le baromètre, schématisé à la figure (¹), se compose de deux ensembles de mesure 1 et 2 et d'un tube en U. L'ensemble 1 comprend une lame séparatrice S de grandes dimensions et deux lentilles collimatrices éclairées en lumière blanche par la source L. L'ensemble 2 comprend le dispositif de mesure : un bâti G portant une glissière rectifiée, un microscope à micromètre F fixé sur G, un ensemble de deux miroirs perpendiculaires C fixé également sur G, et un chariot D mobile sur G. Sur le chariot D est fixée une règle étalon E divisée sur 420 mm et deux miroirs A et B; A, orienté vers S, est solidaire de D et correspond au ménisque

^{(&}lt;sup>1</sup>) Le principe de ce baromètre a fait l'objet d'un brevet japonais du 2 novembre 1956.

supérieur du mercure; B, orienté vers C, peut se déplacer par rapport à D à l'aide de la vis micrométrique H.

Ainsi, quand on déplace D vers S, la distance AS diminue, alors que la distance BCS augmente de la même quantité.

Le tube en U, M, est en acier inoxydable et plonge dans un bain d'eau; il est placé sous S et ses extrémités sont fermées par des lames compensatrices plan-parallèles I_1 et I_2 . La surface

interne de M a été soigneusement travaillée de façon que son diamètre soit uniformément de 50 mm. Le robinet N relie U_1 et la pompe à vide, le robinet V, U_1 et U_2 , et le robinet P, U_2 et la pression à mesurer.

Les ensembles 1 et 2 et le tube en U sont montés sur des piliers massifs en béton.

Mode d'utilisation. — 1° N étant fermé et V et P étant ouverts, les deux ménisques U_1 et U_2 sont dans un même plan horizontal Z. On règle les inclinaisons de A et B, puis on déplace D jusqu'à ce que les franges en lumière blanche données par U_1 et A apparaissent; on déplace ensuite B en agissant sur H, jusqu'à ce que les franges données par U_2 , B et C apparaissent; on fait une lecture x_0 sur E à l'aide de F.

2° V étant fermé et N étant ouvert, la différence de niveau hentre les deux ménisques correspond à la pression atmosphérique. On déplace D vers S, d'abord rapidement d'un peu moins de h/2, puis lentement jusqu'à ce que des franges deviennent visibles. Le volume situé au-dessus du mercure dans U_1 n'étant vide d'air que dans la deuxième partie des mesures, et le diamètre intérieur de M n'étant pas rigoureusement uniforme, on ne peut s'attendre nécessairement à l'apparition simultanée des deux systèmes de franges en lumière blanche.

Supposons, par exemple, que les franges de U_1 deviennent visibles les premières et ensuite celles de U_2 ; soient x_1 et x_2 les lectures correspondantes effectuées sur E.

h est alors donné par la relation

$$h = (x_1 - x_0) + (x_2 - x_0) + \Delta x,$$

où Δx est la correction due au vide régnant au-dessus du ménisque supérieur.

Compte tenu des résultats expérimentaux obtenus sur cet appareil, un baromètre étalon interférentiel sera construit en 1959.

(Juin 1958)

ANNEXE T27

BIBLIOGRAPHIE RELATIVE A L'ÉCHELLE INTERNATIONALE DE TEMPÉRATURE (¹).

Physikalisch-Technische Bundesanstalt

- Moser (H.), High temperature gas thermometry, in Temperature, its measurement and control in science and industry, vol. 2, p. 103, Reinhold Publ. Corp., New York, 1955.
- MOSER (H.), OTTO (J.) et THOMAS (W.), Gasthermometrische Messungen bei hohen Temperaturen. I. Neue gasthermometrische Methode, Z. Phys., 147, 1957, p. 59; II. Bestimmung des Goldpunktes, Ibid., p. 76.
- THOMAS (W.), Die zweiten Virialkoeffizienten von Argon, Krypton, Xenon, Stickstoff und Kohlendioxyd im Temperaturbereich von o bis 1200° C, Z. Phys., 147, 1957, p. 92.
- MOSER (H.), STILLE (U.) et TINGWALDT (C.), Strahlungskonstanten, Strahlungsäquivalent und optische Temperaturskala, Optik, 14, 1957, p. 291.

Deutsches Amt für Mass und Gewicht

WAGENBRETH (H.), Ueber die schwarze Temperatur der Tauchstrahler beim Goldpunkt, *ce volume*, Annexe T 16, p. T 123.

National Bureau of Standards

STIMSON (H. F.), Heat units and temperature scales for calorimetry, Amer. J. Physics, 23, 1955, p. 614.

STIMSON (H. F.), Precision resistance thermometry and fixed points, in Temperature, its measurement and control in science and industry, vol. 2, p. 141, Reinhold Publ. Corp., New York, 1955.

National Research Council

DAUPHINEE (T. M.), An apparatus for comparison of thermocouples, Can. J. Physics, 33, 1955, p. 275.

(¹) Suite de la bibliographie publiée dans les Procès-Verbaux C. I. P. M., 24, 1954, p. T 190.

PRESTON-THOMAS (H.), The zinc point as a thermometric fixed point, in Temperature, its measurement and control in science and industry, vol. 2, p. 169, Reinhold, New York, 1955.

McLAREN (E. H.), The freezing points of high purity metals as precision temperature standards.

- I. Precision measurements with standard resistance thermometers, Can. J. Physics, 35, 1957, p. 78.
- II. An investigation of the freezing temperatures of zinc, cadmium and tin, *Ibid.*, p. 1086.
- III. Thermal analyses on eight grades of zinc with purities greater than 99,99 + %, Ibid., 36, 1958, p. 585.
- IV. Indium : Thermal analyses on three grades of cadmium, *Ibid.*, p. 1131.
- BERRY (R. J.), The preparation of pure sulphur for physical measurements, J. Sc. Instr., 35, 1958, p. 123.

BERRY (R. J.), The reproducibility of the steam point, Can. J. Physics, 36, 1958, p. 749.

Tokyo Institute of Technology

OISHI (J.), AWANO (M.) et MOCHIZUKI (T.), New determination of the temperature of gold and silver points on the thermodynamic temperature scale, J. Phys. Soc. Japan, 11, 1956, p. 311.

Central Inspection Institute of Weights and Measures

- TAKATA (S.) et ICHIKAWA (K.), On the methods of brightness matching, Report of the C. I. I. W. M., 5, nº 4, 1956, p. 362 (en japonais).
- TAKATA (S.) et NAGASE (Y.), An improvement of operating circuit of tungsten strip lamps for optical pyrometer standardization, *Ibid.*, 6, nº 2, 1957, p. 441 (en japonais).
- YONEDA (R.), NAKAYA (S.), UCHIYAMA (H.) et MIYASATO (M.), On making of triple point cell of water, *Bull. C. I. I. W. M.*, Series nº 2, july 1958, p. 17.

Electrotechnical Laboratory

OKADA (K.) et SATONE (H.), Annealing of standard thermocouple wires, Bull. E. T. L., 22, 1958, p. 531; ce volume, Annexe T 24, p. T 211.

Kamerlingh Onnes Laboratorium

- VAN DIJK (H.) et DURIEUX (M.), The temperature scale in the liquid helium region, *in* Progress in low temperature physics, vol. II, Edited by C. J. Gorter, North Holland Publ. Co., 1957, p. 431.
- Van DIJK (H.) et DUBIEUX (M.), Thermodynamic temperature scale (T_{L55}) in the liquid helium region, *Physica*, 24, 1958, p. 1; *Communic. Leiden*, Suppl. 113.

Van DIJK (H.) et DURIEUX (M.), On the temperature scale in the liquid 'He region (T_{35}) , *Physica*, 24, 1958 (sous presse).

Van DIJK (H.), Sur l'extension de l'Échelle Internationale de Température au-dessous du point d'ébullition de l'oxygène, Comm. Leiden, Suppl. 112.

- Van DIJK (H.), Sur l'emploi du thermomètre à résistance de platine pour la mesure des basses températures, *Comm. Leiden*, Suppl. 112.
- Van DIJK (H.), Techniques of magnetic thermometry, Comm. Leiden, Suppl. 112.

National Physical Laboratory

- HALL (J. A.), The International Temperature Scale, *in* Temperature, its measurement and control in science and industry, vol. 2, p. 115, Reinhold Publ. Corp., New York, 1955.
- BARBER (C. R.), GRIDLEY (A.) et HALL (J. A.), An improved construction of the Smith bridge, type 3, J. Sc. Instr., 32, 1955, p. 213.
- MOREAU (H.), HALL (J. A.) et LEAVER (V. M.), Mercury-in-quartz thermometers for very high accuracy, J. Sc. Instr., 34, 1957, p. 147.
- Van DIJK (Sj.), HALL (J. A.) et LEAVER (V. M.), The influence of rate of cooling on the zeros of mercury-in-glass thermometers, J. Sc. Instr. 35, 1958, p. 334.
- BARBER (C. R.) et HORSFORD (A.), The freezing point of zinc as a primary point of the International Temperature Scale, *Proc. Roy. Soc.*, A-247, 1958, p. 214.
- HALL (J. A.) et LEAVER (V. M.), The design of mercury thermometers for calorimetry, J. Sc. Instr., 36, 1959, p. 183.

Institut de Métrologie

- PILIPTCHOUK (B. I.), L'échelle de température de D. I. Mendéléev, Trud. Inst. Metrol. D. I. Mendeleev, nº 25 (85), 1955, p. 5.
- GORDOV (A. N.) et KIRENKOV (I. I.), Thermomètre à azote à volume constant, *Ibid.*, p. 20.
- GORDOV (A. N.) et KIRENKOV (I. I.), Détermination du coefficient de pression de l'azote, *Ibid.*, p. 31.
- ALIEVA (Ph. Z.), Emploi des thermomètres à résistance pour la reproduction de l'Échelle Internationale de Température dans le domaine 630°-1063° C, *Ibid.*, p. 35.
- ALIEVA (Ph. Z.), Choix de la formule d'interpolation et du système des repères pour la reproduction de l'Échelle Internationale de Température dans l'intervalle de 400 à 1063° C, *Ibid.*, p. 44.
- LAPINA (E. A.), Reproduction de l'Échelle Internationale de Température à l'aide du pyromètre spectral, *Ibid.*, p. 54.
- LAPINA (E. A.), Mesure de la température de couleur à l'aide du pyromètre spectral, *Ibid.*, p. 66.
- GORDOV (A. N.), KIRENKOV (I. I.) et LAPINA (E. A.), Une nouvelle méthode de vérification des pyromètres optiques, *Ibid.*, p. 70.
- KIRENKOV (I. I.), Schéma du pyromètre photoélectrique de couleur à lampe à incandescence, *Ibid.*, p. 75.
- GORDOV (A. N.), Emploi de la théorie de l'échange de chaleur pour l'étude de l'expérience calorimétrique, *Ibid.*, p. 88.
- PILIPTCHOUK (B. I.), Échelle des thermomètres à résistance de platine d'après le rapport des intervalles, *Ibid.*, p. 103.

- PILIPTCHOUK (B.I.), Tableaux auxiliaires pour les thermomètres à résistance de platine, *Ibid.*, p. 111.
- ALIEVA (Ph. Z.), Réalisation du point triple de l'eau et étude de sa reproductibilité, Trud. Inst. Metrol. D. I. Mendeleev, nº 35 (95), 1958, p. 5.
- OLEINIK (B. N.), Le point triple de l'acide benzoïque comme repère secondaire de l'échelle de température, *Ibid.*, p. 11.
- ALIEVA (Ph. Z.), Recherche sur la reproductibilité de la température de solidification du zinc, *Ibid.*, p. 16.
- GORDOV (A. N.), KIRENKOV (I. I.) et LAPINA (E. A.), Comparaison de lampes en température de couleur par la méthode photoélectrique, *Ibid.*, p. 27.
- PHINKELSTEIN (V. E.), Sur la construction de l'échelle du pyromètre optique dans le domaine des hautes températures, *Ibid.*, p. 36.
- PHINKELSTEIN (V. E.), Méthode de mesure de l'affaiblissement pyrométrique de l'absorbeur utilisé pour l'extension de l'échelle du pyromètre optique dans le domaine des très hautes températures, *Ibid.*, p. 44.
- LAPINA (E. A.), Emploi du radiateur à arc pour la vérification des pyromètres optiques aux températures supérieures à 2 000° C, *Ibid.*, p. 70.
- ERGARDT (N. N.), Quelques résultats sur la stabilité des thermocouples de platine rhodié, *Ibid.*, p. 87.
- KIRENKOV (I. I.), Méthode de réalisation de l'échelle de température de couleur, *Ibid.*, p. 118.
- PROSTIAKOV (V. P.), ALIEVA (Ph. Z.), OLEINIK (B. N.) et DOLGUII (N. Z.), Construction et étalonnage des thermomètres à mercure en verre à graduation équidistante, *Izmeritelnaia Tekhnika*, 1957, nº 2, p. 31.
- ALIEVA (Ph. Z.); Température de solidification de l'alliage eutectique argent-cuivre comme point repère de l'échelle de température, *Ibid.*, 1956, nº 2, p. 23.
- ERGARDT (N. N.), Étude des thermocouples platine-platine rhodié fabriqués avec des matériaux de grande pureté, *Ibid.*, 1956, nº 2, p. 20.

TABLE DES MATIÈRES.

COMITÉ CONSULTATIF DE THERMOMÉTRIE

5° Session (1958)

Liste des Membres	Pages. T 3
	10
Ordre du Jour	6
Procès-verbal de la première séance, vendredi 20 juin 1958	7
Comparaison internationale de thermomètres à résistance de platine (Résultats de l'étalonnage à 0 et 100°C de trois thermomètres dans dix Laboratoires)	7
Échelle du thermomètre à résistance de platine au-dessous de -182,970 °C (Possibilité de repérer les températures entre 20 et 90 °K au moyen d'un thermomètre à résistance de platine étalonné aux points d'ébullition de O_s , H_s et au point triple de l'oxygène. Attribution de la valeur 20,38 °K au point d'ébullition de H_s . Nécessité d'une comparaison internationale de thermomètres à résistance dans le domaine 20-90 °K et de nouvelles mesures au thermomètre à gaz au point triple de l'oxygène	
en vue d'une extension de l'Échelle Internationale de Température) Mesures au thermomètre à gaz au-dessus de 444,6°C (Résultats obtenus à la P. T. B. pour la température thermodynamique des points de congélation de Au, Ag, Zn, Sb et du point d'ébullition du soufre; désaccord avec les mesures effectuées au Japon. Mesures en cours dans les autres	8
Laboratoires) Formule d'interpolation du thermocouple Pt/Pt-Rh (Insuffisance de la formule quadratique actuelle, ou de formules plus compliquées, pour raccorder les températures thermodynamiques déterminées au thermo- mètre à gaz. Intérêt du remplacement du thermocouple par le thermo-	10
mètre à résistance de platine) Point de congélation du zinc dans l'Échelle Internationale (Résultats obtenus dans divers Laboratoires; premier échange de vues sur le remplacement du point du soufre par le point du zinc pour la définition de l'Échelle Internationale de Température (voir écalement p. 7221)	12
	,
Proces-verbal de la deuxième séance, vendredi 20 juin 1958 Pyrométrie optique (Résultats de l'étalonnage au pyromètre visuel de deux lampes à ruban de tungstène dans einq Laboratoires nationaux; poursuite de cette comparaison internationale. Étude théorique du D. A. M. G. sur les corrections dues à l'ouverture d'un corps noir; études de pyrométrie	14
optique objective et subjective effectuées en U. R. S. S.)	14

-	T	228	-

	Pazes.
Échelle du thermomètre à tension de vapeur de l'hélium (Tables déjà proposées pour la relation entre la température et la tension de vapeur de l'hélium; présentation et adoption d'une nouvelle table)	T 15
Recommandation relative à l'emploi de l' « Échelle 4He 1958 »	17
Désignation de l'Échelle Internationale de Température (Échange de vues au sujet du remplacement ou de la suppression du qualificatif	.7
Révision du texte de l'Échelle Internationale de Température :	17
Examen du projet établi par le N. B. S Chapitre I : Modifications apportées à l' « Introduction » Tableau de désignation et de définition des échelles. Proposition d'adopter des équations aux grandeurs à la place d'équations aux valeurs	18 18
numériques	20
Procès-verbal de la troisième séance samedi 21 inin 1058	16
Révision du texte de l'Échelle Internationale de Température (<i>suite</i>): <i>Chapitre II</i> : Tableau des points fixes de définition; remplacement du point de fusion de la glace par le point triple de l'eau (+ 0,010°C); partage de l'Échelle	21
Adoption de la valeur 419,505 °C (Int. 1948) pour la température du point de congélation du zine et discussion sur le remplacement du point d'ébullition du soufre par le point du zine comme point fixe de définition; maintien du point du soufre avec recommandation d'emploi du point du zine. Formule de Planck	22
 Chapitre III: Recuit des thermocouples. Atmosphère normale. Stabilité de la température dans les ampoules à point triple de l'eau. Critères de purcté de Ag et Au; contamination possible de Ag par la silice Chapitre IV: Tableau des repères secondaires (suppression du point de l'antimoine; remplacement de « température de solidification » par « température d'équilibre entre solide et liquide »; arrondissement des 	24
températures des repères secondaires au centième de degré (sauf pour l'eau et le zinc); intérêt d'avoir un repère secondaire vers — 120°C) Belation entre l'Échelle Internationale et l'échelle thermodynamique :	26
ajournement de la discussion de cette question	2 ² 7
Adoption du tableau de désignation des températures dans les échelles internationale et thermodynamique.	
Un second projet de texte de l'Échelle Internationale de Température sera établi par les soins du Bureau International et donnera licu	-/
à une discussion par correspondance	27
Cinquième Rapport du Comité Consultatif de Thermométrie au Comité International des Poids et Mesures; par J. A. Hall	29
Annexes des Procès-Verbaux du Comité Consultatif de Thermo- métrie	35
T 1. NATIONAL PHYSICAL LABORATORY (Royaume-Uni). — Résultats de la comparaison internationale des thermomètres à résistance de platine S 167, R 13 et nº 109 dans dix Laboratoires (Mesure de Pintervalle o-100°C de Péchelle	
Internationale de Température); par C. R. Barber et J. A. Hall.	35

	Pages
T 2. KAMERLINGH ONNES LABORATORIUM (Pays-Bas). — Sur la diffé rence entre résistance réelle et idéale du platine; pa H. Van Diik.	r T /2
	• • •
NATIONAL PHYSICAL LABORATORY (Royaume-Uni):	
T 3. La définition d'une échelle de température dans la domaine 20 à 90°K, en utilisant le thermomètre à résis tance de platine comme instrument d'interpolation; pa C. B. Barber.	e - r - 52
T & Remarques sur les propositions pour une échelle de tempé	
rature entre 20 et 90°K; par C. R. Barber	. 58
T 5. KAMERLINGH ONNES LABORATORIUM (Pays-Bas). — Nouveaux calculs des points fixes importants dans le domaine de	r s
basses temperatures; par H. van Dijk	. 01
6. PHYSIKALISCH-IECHNISCHE BUNDESANSTALT (Allemagne). — Ecar entre l'Échelle Internationale de Température et l'échell thermodynamique au-dessus du point d'ébullition du soufre, d'après les plus récentes mesures au thermomètre	t e u e
à gaz; par H. Moser, J. Otto et W. Thomas	. 67
T 7. TOKYO INSTITUTE OF TECHNOLOGY (Japon). — Note sur la réalisation du point de l'or; par J. Oishi et M. Awano	z . 75
T 8. PHYSIKALISCH-TECHNISCHE BUNDESANSTALT (Allemagne). — Lo thermocouple platine-platine rhodié dans l'Échelle Inter nationale de Température; par H. Moser et P. Rahlfs	e - - 78
T 9. CENTRAL INSPECTION INSTITUTE OF WEIGHTS AND MEASURES (Japon) — Sur la stabilité de thermomètres à résistance de platine portés à 1100°C; par R. Yoneda, S. Nakaya et H. Uchiyama	e 283
T 10. NATIONAL RESEARCH COUNCIL (Canada). — Nouvelle preuve de la stabilité du point du zinc et résultats de l'analyss thermique de huit échantillons de zinc de grande pureté par E. H. McLaren	9 9 ; . 84
T 11. NATIONAL PHYSICAL LABORATORY (Royaume-Uni). — Le point de solidification du zinc en tant que point fixe primaire de PÉrhelle Internetionale de Température	t e
T 12. INSTITUT DE MÉTROLOGIE D. I. MENDÉLÉEV (U. R. S. S.). – Recherches sur la reproductibilité de la température de	• 5)4 - 8
solidification du zinc de grande pureté; par Ph. Z. Alieva	. 102
T 13. NATIONAL RESEARCH COUNCIL (Canada). NATIONAL BUREAU OF STANDARDS (États-Unis d'Amérique). — Température du point du zinc et comparaison de deux déterminations du point du soufre dans un appareil fermé; par R. J. Berry	F 6 6
E. H. McLarcn et J. L. Riddle	
T 14. BUREAU INTERNATIONAL DES ÉTALONS PHYSICO-CHIMIQUES (Belgique). — Mémorandum concernant les repères de	3
température; par J. Timmermans	. 114
T 15. NATIONAL RESEARCH COUNCIL (Canada) Relation température	-

 T	230	_

temps dans la réalisation du point du soufre et du po triple de l'eau: par R.J. Berry	Dint Pages,
T 16. DEUTSCHES AMT FÜR MASS UND GEWICHT (Allemagne). — A la température de luminance monochromatique radiateur immergé au point de l'or; par H. Wagenbro	Sur du eth. 123
T 17. NATIONAL RESEARCH COUNCIL (CANAda). NATIONAL BUREAU STANDARDS (États-Unis d'Amérique). PHYSIKALISCH-TECHNIS BUNDESANSTALT (Allemagne). DEUTSCHES AMT FÜR MASS GEWICHT (Allemagne). — Rapport sur l'étalonnage deux lampes étalons secondaires à ruban de tungst par quatre Laboratoires nationaux; par D. R. Love (N. R. C.), H. J. Kostkowski (N. B. S.), H. Kunz (P. T. H. Wagenbreth (D. A. M. G.)	ог спе de ène ijoy B.), 133
INSTITUT DE MÉTROLOGIE D. I. MENDÉLÉEV (U. R. S. S.) :	
T 18. Nouvelle méthode pour l'étalonnage des pyromè optiques. Nouveau pyromètre optique de précision; V. E. Phinkelschtein et V. V. Kandiba	tres par 142
 T 19. L'emploi de la méthode photoélectrique pour les mesu précises dans le domaine de la pyrométrie optique; L. A. Bojarski, A. N. Gordov, G. L. Ioselson, V. V. Kand J. J. Kirenkov, V. A. Kovalevski, G. A. Krachmalnikov 	ures par iba, ova,
E. A. Lapina et K. G. Tarajanz T 20. KAMERLINGH ONNES LABORATORIUM (Pays-Bas). — L'échelle	151 e de
 T 21. U. S. NAVAL RESEARCH LABORATORY (États-Unis d'Amérique) — L'échelle de température 55 E à tension de vapeur l'hélium; par J. R. Clement. 	ue). • <i>de</i>
T 99 Dicholle de température à tension de varieur des	
domaine de l'hélium liquide	188
T 23. NATIONAL BUREAU OF STANDARDS (Élats-Unis d'Amérique) Note sur le projet de révision du texte de l'Éch	. — elle
Internationale de Température de 1948 Projet de révision du texte de l'Échelle Internation de Température de 1948	194 nale
	190
des thermocouples étalons; par K. Okada et H. Salone	<i>fils</i>
T 25. BUREAU INTERNATIONAL DES POIDS ET MESURES. — Projet d baromètre à mercure interférentiel; par J. Terrien	'un 217
T 26. CENTRAL INSPECTION INSTITUTE OF WEIGHTS AND MEASU (Japon). — Baromètre étalon interférentiel; par I. Oya	ma,
K. Kolzumi et R. Kaneda	220
T 27. Bibliographie relative à l'Echelle Internationale de T pérature	em- 223

PARIS. - IMPRIMERIE GAUTHIER - VILLARS

55, Quai des Grands-Augustins, 55.

154381+59

Dépôt légal, Imprimeur, 1959, nº 1325 Dépôt légal, Éditeur, 1959, nº 820 ACHEVÉ D'IMPRIMER, LE 1 JUIN 1959.

Imprimé en France.