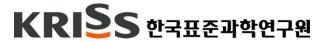
Recent Activities in AUV for KRISS


Hyu-sang Kwon

Submitted 25/09/2008

11 pages inclusive

Recent Activities in AUV for KRISS

Hyu-sang Kwon
Acoustics & Vibration Lab.
Physical Metrology Group
KRISS

Contents

- Acoustics
- Ultrasound
- Vibration

Acoustics

□ Contact Points:

Name: Dr. Sang Joon Suh

■ Email: sjs@kriss.re.kr

Name: Dr. Hyu Sang Kwon

Email: <u>hyusang@kriss.re.kr</u>

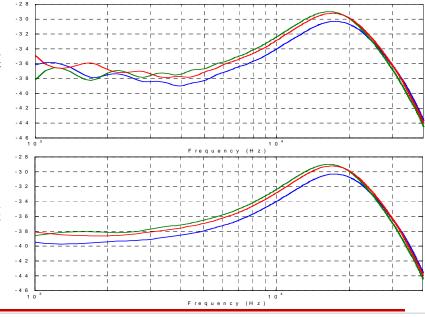
□ Free-field microphone sensitivity calibration

■ Frequency range: 1 ~ 20 kHz

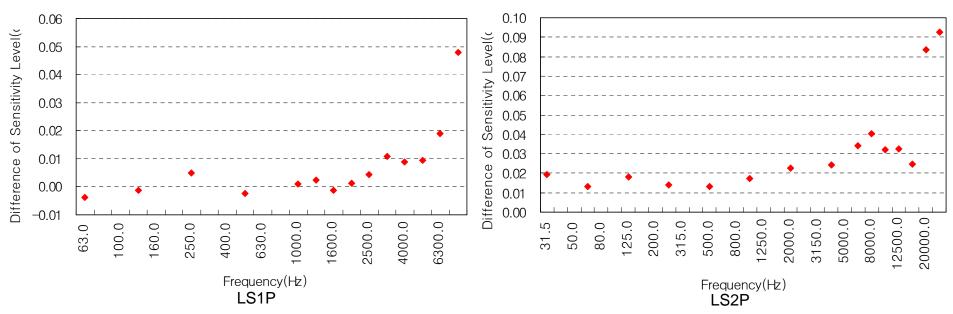
Uncertainty: 0.06 ~ 0.2 dB

Research under development

☐ Cross-talk cancellation


☐ Instrumentation

Project year: July-2006 ~ present


10 Countries

Draft B

Acoustics

- □ Bilateral Comparisons for LS1P and LS2P between Korea(KRISS) and Indonesia(KIM-LIPI)
 - APMP.AUV.A-K1.1 and APMP.AUV.A-K3.1 (Equivalent to CCAUV.A-K1 and CCAUV.A-K3)
 - □ LS1P microphone frequencies 63Hz ~ 8kHz
 LS2P microphone frequencies 31.5Hz ~ 25kHz
 - ☐ Measurements were completed, draft report A is under preparation

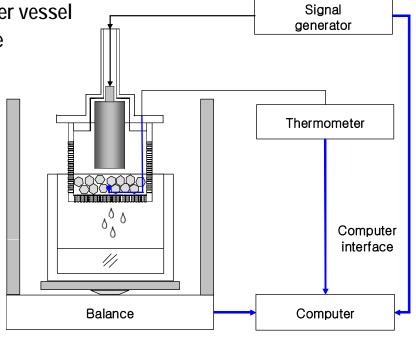
Sensitivity level difference between KRISS and KIM-LIPI

Ultrasound

Contact point:

Name: Dr. Yong Tae Kim

■ Email: <u>ytkim@kriss.re.kr</u>


☐ Developing a new ultrasonic power measurement technique

1. Move downward transducer and ice in a water vessel

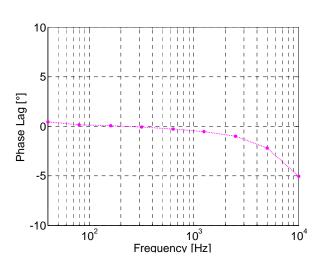
2. Generate the ultrasound in water-ice mixture

3. Ultrasound induces temperature rise

- 4. Ice is melted by the increased temperature
- 5. Move upward the transducer and ice left
- 6. Measuring weight of melted water
- 7. Multiply specific latent heat of ice
- Various corrections
- Determine the ultrasound power

Vibration: Linear Acceleration

□ Contact point:


Name: Dr. Yong Bong Lee

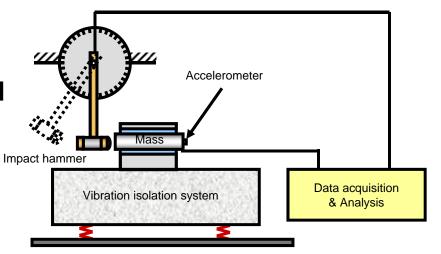
Email: <u>lyb@kriss.re.kr</u>

□ Estimation of phase lags of an accelerometer

- Frequency range : 40 Hz ~ 10 kHz
- Homodyne Michelson interferometer with a single photo-detector is used
- Fourier Transform of the interferometer signal
- Meas. Sci. Technol. 19(2008)
- Under study

Vibration: Linear Shock

Impact hammer calibration system


Project year: 2007 ~ 2008

■ Pulse width : 3 ms ~ 7 ms

■ Peak force : 300 N ~ 700 N

Uncertainty : 5 % (k = 2)

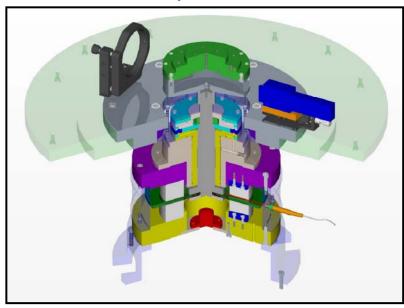
Under development

Tip	Force (N)	Duration (ms)	Sensitivity (measured)	Sensitivity (nominal value)
Super soft	300	7	0.245	0.23
Soft	420	4.7	0.256	
Medium	650	3	0.246	

Angular Vibration

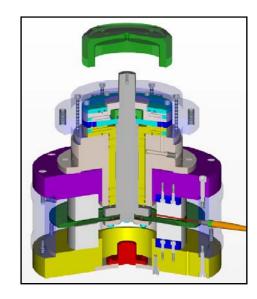
- Contact point:
 - Name: Dr. Wan-Sup Cheung
 - Email: <u>wansup@kriss.re.kr</u>

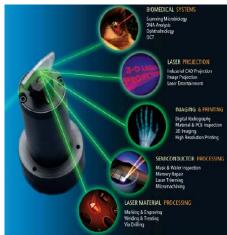
- Laser interferometer
 - ☐ Angular prism + DPMI
 - ☐ ZMI4004 measurement board
 - Uncertainty: 0.49 μ-radian (k = 2, \pm 30 °)
- Low frequency angular exciter
 - Direct driven rotary + Digital power amplifier
 - □ Characteristics:
 - 0.1 % ~ 1.0 % HDR for 0.1 Hz ~ 8 Hz
 - 2.0 % ~ 5.0 % HDR for 10 Hz ~ 160 Hz
- Transducer output measurement sub-system
 - ☐ Dual 7.5 digit DMM with 1.8 MS/s isolated digitizer
 - ☐ Voltage & current signals measurable
 - ☐ Full digital measurement using EASM (Equi-Angle Sampling Method)
 - Amplitude measurement uncertainty: 0.04% (k =2)
 - Phase delay measurement uncertainty: 0.05 degree (k = 2)



Angular Vibration

- $lue{}$ Measurement Range : \pm 360 $^\circ$
 - Uncertainty (95%): Amplitude ≤ 0.2 %, and Phase $\leq 0.2^{\circ}$)
- Bilateral Comparison with PTB (Planed in 2009~2010)
 - Protocol in preparation (Draft version by KRISS)
 - Reference angular accelerometer: Under construction by B&K


- Main Specifications:
 - Resolution: 2.5×10⁻⁶ °
 - Reference zero position
 - Unlimited measurement range
 - Applicable to 100 Hz



- Laser Interferometer System
 - Very compact optic components
 - Calibration exciter (made by KRISS)

Angular Vibration

- Development of Angular Vibration Exciters
 - Model for Primary / Comparison
 Calibration (90% progress):
 Commercialised in 2009
 - Model for Portable Angular Vibration Exciter (Under Design)
- □ Applications of Angular Vibration Exciter
 - Non-Rotation Balancing Machine (applied to patent)
 - Laser Beam Position Locator (like Galvanometer)

