
  CCQM/11-18 

 

 
 Use of an ‘excess-variance’ approach for the 
estimation of a key comparison reference value, 
associated standard uncertainty and degrees of 
equivalence for CCQM key comparison data 

 
Maurice Cox, Peter Harris 

National Physical Laboratory, UK 

Steve Ellison 
LGC Ltd, UK 

 

Executive summary 

This document illustrates the use of an ‘excess-variance’ approach for the 
statistical analysis of CCQM key comparison data that makes allowance for 
unexplained laboratory effects.   

In ‘excess-variance’ approaches, the variances (squared standard uncertainties) 
provided by participating laboratories are augmented by an additional variance, 
common to all laboratories, which is regarded as characterizing unexplained 
laboratory effects. The reported variances are combined with an estimate of the 
excess variance to provide weights that are used to estimate the key 
comparison reference value (KCRV).  

The uncertainty associated with this estimate takes account of both the 
laboratory uncertainties and the estimated excess variance. For mutually 
consistent data the approach reduces to the classical weighted mean. 

Degrees of equivalence are determined accordingly. 

The present document demonstrates the general approach by reference to a 
particular implementation, the DerSimonian-Laird method, applied to some 
illustrative examples of CCQM key comparisons.   

Supporting software can be made available to carry out the calculations should 
CCQM agree with the content of this document. 
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1 Introduction 

This document is concerned with a CCQM key comparison in which each laboratory 
independently provides a measured value and an associated standard uncertainty for one or 
more measurands. Technical review of the data by the relevant working group identifies 
those laboratory data that are considered appropriate for use in estimating the KCRV. For 
many studies, this review results in a set of values and uncertainties that include no serious 
outlying values, but that may show a dispersion of data that cannot be fully explained by 
the reported uncertainties. While a variety of methods can be applied to estimate a KCRV 
and its associated standard uncertainty in these circumstances, one class of estimators that 
appears promising is a class referred to in this document as ‘excess-variance’ approaches.  

Since the situation described—excess dispersion with no evidence of serious outlying 
values—is one of the general scenarios identified in draft guidance document 
CCQM-10-03 [2], the present document can be considered a specialized case within 
CCQM-10-03. Document CCQM-10-03 remains applicable as a background document to 
be used for those sets of key comparison data for which it is judged inappropriate to apply 
the approach here. 

In ‘excess-variance’ approaches, the variances (squared standard uncertainties) provided 
by participating laboratories are augmented by an additional variance, assumed to be 
common to all laboratories, which is regarded as characterizing unexplained laboratory 
effects. The reported variances are combined with the estimated excess variance to provide 
weights used to estimate the KCRV. The standard uncertainty associated with the KCRV 
takes account of both the laboratory variances and the estimated excess variance. For 
mutually consistent data the approach reduces to the classical weighted mean.  

The present document uses a particular estimator in this class, the DerSimonian-Laird 
estimator, to illustrate the use of such an estimator.  The approach draws on principles 
given in document CCQM-09-03 [1].   Due account is taken of the GUM [7].   

Though the approach illustrated here is straightforward, it is not intended to replace critical 
evaluation of the data and appropriate use of measurement and statistical expertise, nor 
should it be regarded as prescriptive.  However, the general approach is likely to be 
applicable to data for many CCQM key comparisons. Such an approach would be 
compatible with the remit of the CCQM KCRV WG in attempting to harmonize as much 
as possible the calculation of the KCRV and its associated uncertainty 

Section 2 gives the suggested approach and Section 3 provides supporting technical 
information. The strengths and weaknesses of the approach based on the 
DerSimonian-Laird estimator compared to the use of some other estimators are considered 
in Section 4.  Section 5 makes concluding remarks.  Annexes contain the rationale for the 
choice of estimator and illustrative examples.  

 

2 Model approach 

The suggested approach is based on the use of weighted means with an appropriate choice 
of weights.  An interlaboratory variance is estimated, which is used to augment the above 
laboratory variances and hence adjust the weights.  This additional variance term is chosen 
so that the combination of reported standard uncertainties and estimated additional 
variance is sufficient to account for the observed dispersion of values.  

The appropriate weighted mean is taken as the KCRV, the standard uncertainty associated 
with the KCRV is evaluated, and DoEs accordingly determined.  The approach is 
described below as a sequence of steps in which the measured values and associated 
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standard uncertainties provided by the participating laboratories are denoted by xi and ui, 
respectively.  Cited equations and formulae are given in Table 1. 

The steps involved are as follows: 

1. For purposes of the calculation (but not for reporting), replace the ui by the original ui 
augmented in quadrature by standard uncertainties relating to any well-quantified 
inhomogeneity or instability effects.   

2. Carefully examine the participants’ data, making use of graphical tools and any 
statistical tests (including, as appropriate, tests for inconsistency and outlying values), 
as an aid to identifying possible anomalies. The working group may exclude 
anomalous data from the calculation of the KCRV on technical grounds. (For a more 
detailed discussion see CCQM-10-03 [2].) 

3. For the remaining data (xi, ui), i = 1, …, p, use formulae (1) to (3) to determine a 
value λ for the interlaboratory variance and the DerSimonian-Laird (DL) mean xDL.  
Evaluate the standard uncertainty u(xDL) associated with xDL using formula (4). 

4. Take xDL and u(xDL) as the KCRV and its associated standard uncertainty. 

5. Form the DoEs for the laboratories, using formula (5) or (6), as appropriate.  

Note: The same general formulae apply to some other excess-variance estimators 

Table 1. Formulae used in suggested approach 
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For laboratory data used for KCRV calculation, 
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DoEs (di, 2u(di)) 
For data not used for KCRV calculation,
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3 Supporting technical information 

The technical information here applies generally to excess-variance estimators and in 
particular to the step-by-step approach in Section 2. 
 
1. In Step 1, samples measured by the laboratories correspond to different measurands. 

Heterogeneity or instability causes differences between a common measurand and the 
measurands corresponding to the samples.  The augmented uncertainties take into 
account the need to relate the measured values to a common measurand. 

2. Although ideally interlaboratory effects should have a scientific explanation 
(heterogeneity or instability of samples, for instance), such an explanation is often not 
forthcoming.  Another possible cause of inconsistency may be under-stated 
uncertainties ui for some or all comparison participants. 

3. For a mutually consistent data set, the interlaboratory variance λ is taken as zero.  In a 
case of inconsistency, as λ is increased, the influence of those laboratories that provide 
the smallest uncertainties is reduced.  For extremely inconsistent data sets, λ becomes 
very large compared with the ui

2 in order to achieve consistency, and the DL mean will 
approach the arithmetic mean.  There is a smooth transition from the classical 
weighted mean to the arithmetic mean as the data inconsistency increases. 

4. The standard uncertainty u(xDL) associated with xDL, determined in Step 4, is 
compatible with the augmented standard uncertainties (ui

2 + λ)1/2 associated with the 
measured values xi.  These standard uncertainties can be interpreted as posterior 
standard uncertainties associated with the xi.  These posterior standard uncertainties are 
necessary to overcome inconsistency in the data set (xi, ui), i = 1, …, p [14]. 

5. The DoE for the ith laboratory (Steps 5) consists of a value component di and an 
uncertainty component U(di) (at the 95 % level of confidence).  The uncertainty 
component is expressed as U(di) = 2u(di), where u(di) is the standard uncertainty 
associated with di, under a normality assumption.  

6. Formulae (5) and (6), used for calculating DoE uncertainties, are compatible with the 
posterior uncertainties associated with the xi.  In particular, u(di) obtained from 
formula (5) does not reflect only the measurement uncertainty stated by laboratory i.  
Formula (5) is chosen to be fully consistent with the formal definition of the DoE 
given in the Technical Annexe to the CIPM MRA — that is, it is the standard 
uncertainty associated with the difference between the reported measured value and 
the KCRV after taking account of all terms in the statistical model underpinning 
the KCRV.  

 

4 Advantages and disadvantages of excess-variance estimators 

Detailed rationale for choosing the DerSimonian-Laird estimator for this illustration is 
given in Annex A.  Other excess-variance estimators have, however, been proposed for the 
same general problem, in particular the Mandel-Paule estimate and variations on maximum 
likelihood estimation. Some of the practical advantages and disadvantages are listed below. 

1. The DerSimonian-Laird approach has the advantage that it can be implemented in a 
single simple calculation and does not require iterative solution. The principal 
disadvantage is that it is a poorer approximation than those provided by more 
sophisticated iterative methods. It does not take account of finite degrees of freedom in 
the individual reported uncertainties, and because it is equivalent to the Graybill-Deal 
estimator (the classical weighted mean) [5] when the dispersion is fully accounted for 
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by the reported uncertainties, may substantially understate the uncertainty associated 
with the KCRV when degrees of freedom are not very large. 

2. The Mandel-Paule approach has the advantage of modest complexity and consistency 
under normality assumptions, resulting in a better estimate of the excess variance than 
the DerSimonian-Laird approach when all degrees of freedom are large and normality 
can be assumed. The disadvantages include a need for iterative solution, and, like the 
DerSimonian-Laird method, lack of treatment of degrees of freedom in the individual 
uncertainties and the same estimate as the Graybill-Deal mean for apparently 
consistent data.  

3. Maximum likelihood estimation is capable of taking account of finite degrees of 
freedom in reported uncertainties and restricted maximum likelihood estimation 
provides minimally biased variance estimates. The principal disadvantage is 
comparative complexity in implementation, resulting in few currently available 
software implementations. 

In practice, however, all three often produce very similar estimates for a given data set (as 
is the case for the examples here).  

An apparent disadvantage of all excess-variance approaches is the drastic effect at times on 
degrees of equivalence. Because the same estimate of excess variance is used for all 
laboratories, laboratories with smaller reported uncertainties will generally be 
allocated DoE uncertainties that are much larger than their reported uncertainty. This 
statement is a consequence of a) the need to incorporate an additional variance to provide 
sensible estimates of KCRV and its associated uncertainty when the reported uncertainties 
do not account for the observed dispersion, and b) a strict interpretation of the definition of 
the degree of equivalence given in the MRA.  One of the examples here shows DoEs 
formed with and without this interlaboratory variance.   

 

5 Concluding remarks 

An approach for the statistical analysis of CCQM key comparison data that makes 
allowance for an unexplained interlaboratory effect is suggested for providing a KCRV, its 
associated standard uncertainty and DoEs. It applies when the measured values provided 
by the participants in the key comparison are mutually independent.   

Such an approach offers a reasonable compromise when the data taken as a whole cannot 
be explained by the standard uncertainties provided by the comparison participants. The 
specific approach suggested is based on the DerSimonian-Laird mean [9][10]. 

Implementation details of the approach are provided and supporting software can be made 
available.  Illustrative examples of CCQM key comparisons are given. 

The approach responds to the remit of the CCQM KCRV WG for greater harmonization in 
key comparison data analysis.  It is suggested that CCQM WGs test this approach 
alongside their ongoing customized data analysis.  Some members of CCQM prefer to treat 
each key comparison on an individual basis rather than use some prescriptive approach.  
With adequate access to professional statistical advice, that attitude is commendable.   

The introduction of a variance relating to interlaboratory effects assures consistency 
of the key comparison data with the KCRV, but with current interpretation of the 
CIPM MRA has the consequence that all laboratories have DoE uncertainties that 
guarantee mutual consistency and that may be considerably larger than reported 
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uncertainties.  It is not yet clear whether alternative calculations of u(di) are 
defensible given the applicable assumptions. 

 

Annex A.  Rationale for the choice of estimator  

When key comparison data are mutually inconsistent, there is a need to force consistency 
in order to provide a) a meaningful KCRV and value components of the DoEs, and b) 
credible uncertainties associated with these values.  A considerable number of relevant 
papers in the statistical and metrological literature exist that concentrate on excess-variance 
estimators for this purpose [3][4][8][9][10][12][13][15]. Also see CCQM-10-03 [2].   

Weighted mean statistics (where the location estimate is expressed as a linear combination 
of the xi) are mainly used for this purpose.  See the review by Rukhin [11].  Such 
estimators include Mandel and Paule (MP), Vangel and Rukhin (VR), DerSimonian and 
Laird (DL) and the maximum-likelihood estimate (MLE).   

Rukhin [11] gives results of simulations that indicate that MP consistently 
outperforms MLE and its variants.  Moreover, an MLE solution is governed by a 
non-linear algebraic equation, which generally involves a non-monotonic 
function [13][15], for which there is a possibility of a non-unique solution.  MP is also 
given by the solution of a non-linear algebraic equation.  However, the function involved is 
monotonic and convex [6], with the result that a unique solution always exists.  This 
solution can straightforwardly be determined by an algorithm with guaranteed 
convergence [8][15].  Approximations to MP exist [3][4][8][11][12][13], with several, 
particularly DL [4], being effective.  Rukhin’s simulations [11] demonstrate that DL 
performs almost as well as MP.   

DL has the advantage that it is a direct method, requiring implementation of only a small 
number of formulae.  There could conceivably be cases, not covered by Rukhin’s 
simulations [11], where DL does not perform so well.  As mentioned, software for an 
implementation of DL can be made available.  

 

Annex C.  Illustrative examples  
 
Presented for each of three examples of CCQM key comparisons is (a) a graph of the data 
(for each laboratory the measured value and ±1 standard uncertainty associated with that 
value, with a green bar if used in obtaining the KCRV and red otherwise), the KCRV given 
by the MP estimate (black horizontal line) and ±1 standard uncertainties (blue horizontal 
lines) associated with that estimate, (b) a table giving the MLE, MP and DL estimates and 
the associated standard uncertainties, and the excess standard uncertainty in each case, and 
(c) a graph of the DoEs.  The third example show the DoEs computed with and without the 
estimated interlaboratory variance. 
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 K61 Plasmid DNA in solution (fg μl–1) 

 

Figure 1.  Laboratory data and KCRV (DL) for K61 Plasmid DNA in solution 

 

Table 2.  MLE, MP and DL estimates, standard uncertainties and excess standard uncertainty for K61 

Estimator Estimate Std unc Excess std unc 
MLE 20.68 0.70 1.86 
MP 20.69 0.70 1.86 
DL 20.68 0.75 2.04 

 
 

Figure 2.  DoEs for K61.
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K5 pp'-DDE in fish oil (μg/g) 

 

Figure 3.  Laboratory data and KCRV (DL) for K5 pp'-DDE in fish oil 

 

Table 3.  MLE, MP and DL estimates, standard uncertainties and excess standard uncertainty for K5 

Estimator Estimate Std unc Excess std unc 
MLE 5.97       0.05      0.13 
MP 5.97       0.05      0.13 
DL 5.97       0.05      0.18 

 

 

Figure 4.  DoEs for K5. 
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 K25 PCB170 in Sediment (ng g–1) 

 

Figure 5.  Laboratory data and KCRV (DL) for K25 PCB170 in Sediment 

 

Table 4.  MLE, MP and DL estimates, standard uncertainties  
and excess standard uncertainty for K25 PCB170 in Sediment 

Estimator Estimate Std unc Excess std unc 
MLE 8.95      0.09      0.17 
MP 8.95       0.09      0.15 
DL 8.95       0.10      0.18 

 

 

Figure 6.   DoEs for K25 PCB170 in Sediment, including interlaboratory variance. 
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Figure 7.  DoEs for K25 PCB170 in Sediment, excluding interlaboratory variance. 
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