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ABSTRACT
 The paper discussed a classification of the inter-comparisons that is relevant to identify the proper statistical
method to combine the data provided for each participant to the inter-comparison.
 The proposed approach for Class 2 IC�s constructs a single probabilistic model for the reference distribution
probability function, based on the use of the mixture density model. This approach allows the estimate of the
reference value simply as the expected value of the mixture density function. The method does not require
strong assumptions �as N large� or limitations on the local probability distributions, such as the Normality
density in each participant laboratory. It is particularly valuable for inter-comparisons of physical-state
realisations, e.g., for temperature standards, where the population associated to an IC can be viewed as a
super-population. However, Class 2 inter-comparisons probably include a wider range of IC�s, such as the
ones where a single standard is circulated and measured. The paper also compared the main features of the
statistical treatments suitable for the IC outcomes in both cases of Class 1 and Class 2. Some aspects of the
treated problems, especially the meaning of uncertainty in Class 2 IC�s and the consequent approach, still
deserve a deeper subsequent insight.

1. INTRODUCTION
Inter-laboratory comparisons (inter-comparisons, IC�s) are an essential excercise for

evaluating the international equivalence between the National Metrology Institutes (NMI�s).
There are some basic questions that should find the correct answers before the exercises take place,
which often remain hidden in the Protocols, such as:

1. Does every type of inter-comparisons require the same type of statistical treatment;
2. Can the data from each participant always be considered as sampled from a separate

stochastic variable, or are there cases where they are samples from a single population
(single stochastic variable);

3. When should the data from each participant to an inter-comparison be treated as pooled and
when as hierarchical data;

4. Which is the minimum information supplied for each participant that should be considered
sufficient for the subsequent statistical treatment;

5. Can a Reference Value always accurately summarise the inter-comparison results;
6. Is the choice of attributing or not an uncertainty to the Reference Value a free one, i.e., can

it sometimes be correctly considered as a deterministic parameter
7. Which is the best method for evaluating the inter-comparison uncertainty.

 Other peculiarities in most inter-comparisons, such as the small size of the samples to be analysed,
which corresponds to the number of participants, or the attitude to include every participant results,
should be taken into account in determining the procedures to adopt in the IC computations. Recent
papers [1�5] introduced first attempts to provide tools for some of the answers. In particular the use
in IC�s of the mixture probability distribution was first proposed in [4].
 This paper focuses on a discussion about the need to adapt the statistical treatment of the inter-
comparison data to the characteristics of different inter-comparisons, starting from the definition of
a classification of the IC�s first suggested in [5]. Several consequences for the different treatments
that can be applied will be also underlined.
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 The paper discusses the previous issues with the aim to interpret in an appropriate statistical
framework the assumptions underlying the analysis of the key comparison data, when no
correlation exists between participants. The paper concentrates on the case of temperature
standards, as an example of a peculiar class of inter-comparisons.
 
 
 2. CLASSES OF INTERCOMPARISONS

 Most inter-comparisons concern standards consisting of local artefacts. Each artefact carries
its own value of the relevant quantity, which can be estimated only by calculation or/and through
comparison with other standards of similar type. In other words, normally, there is not a «natural»
value available to characterise these standards. Examples are the standards for mass or for length
(gauge blocks). For these inter-comparisons, as discussed in [5], the input data to the IC for each
participant to the inter-comparison should be suitably combined to output a single value and treated
as hierarchical data.
 However, there is another type of inter-comparisons, whose aim is to compare independent local
realisations of a given physical state1. Can they be included in the previous class ?
 Let us take, as a study case, the standards based on temperature fixed-points as defined by the ITS-
90: values of the electrical resistance of each participant thermometer (a pure-platinum wire,
SPRT), are experimentally determined at the temperature of each of a number of physical states.
The realisation of each physical state does not depend, for the triple points, from any other
thermodynamic quantity, nor depends on the temperature value assigned to the state. A fixed point
of this kind is a purely thermodynamic experiment (phase transition, whose temperature value T is
unique in Nature), whose practical implementation is performed according to the state-of-the-art
practice, thus providing an experimental approximation of the «natural» temperature value T.
 Figure 1 [3] shows the meaning of the implementation in each NMI.
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 Fig.1. Laboratory independent realisations of the physical quantity Q (fixed point).
 Each n-th Laboratory assigns to its realisation the same temperature value θn ⇒ Θ, the one defined
by the ITS-90, to which corresponds the value Rn of its SPRT thermometer.
 

                                                
1 The physical-state definition is assumed to be unambiguous, at least to such a level that no significant
contribution to the total uncertainty of the standards arises.
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 The n-th participant can obtain evidence that the measured Rn corresponds to the correct
temperature of the given phase transition (the physical state in question, Q) by comparing its own
realisation with different realisations and different practical implementations of the same physical
state provided by other Laboratories, through the thermometers �i.e., through the Rj values.
 
 The inter-comparison shows (Fig. 2 [3]) that, in fact, the θn in Fig.1 are different each other, i.e.,
that most ∆θ0n ≠ 0. Consequently, only one �or, most probably, none� of the Laboratories realises
Θ exactly (in fact within the Laboratory uncertainty) 2: the differences between θn and Θ remain un-
revealed by the inter-comparison. One of the consequences is that it is not possible to model the
individual biases with respect to �. In the following, the idea is not to identify a statistical
procedure able to compensate for these possible biases, but, instead, to consider them as
peculiarities of the given IC that must be taken into account in a single statistical model.
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 Fig.2. Inter-comparison of independent Laboratory realisations at the same physical state Q. Thermometer-response
differences ∆Rjk are measured: they can be transformed in ∆θ jk values simply through the known sensitivity dR/dT of
each thermometer.

 
 In any instance, by no way these possible biases between Laboratory realisations, i.e. the fact that
different estimates of the temperature value of the physical state can be different, affects the fact

                                                
2 The temperature differences in Fig.2 can be transformed in temperature differences only by arbitrarily
assuming one Laboratory as the «reference» one (e.g., Lab 0), and assigning the ITS-90 temperature value Θ
to its realisation (θ0 ≡ Θ): then the θk values for each k-th Laboratory come. From the set {θk} one can define
a single summary value θr = f(θk) representing the comparison «reference value». The difference of θr from
Θ (or T) remains unknown, not being an IC outcome.
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that the inter-comparison measurand is a single physical state and that the latter carries a unique T
value 3.
 
 Each Laboratory aims at realising the true physical state, not using a «reference material» or an
artefact. Consequently, all practical devices for realising each fixed point should be considered as
sampling from the same population, being all experimental realisations of the same physical state
[3]. The previous considerations are equivalent to assess that the inter-comparison data have a
homogeneous nature in some sense.
 
 In conclusion, the Laboratory samples can be viewed as a population pertaining to the super-
population represented by the inter-comparison. In this case, the statistical analysis should apply to
a super-population formed by the union of the individual Laboratory populations [5]. In other
words, the total sample of the inter-comparison can be viewed as the one obtained by pooling the
samples of the participants
 
 Consequently, two main types of inter-comparisons (and of standards) pertaining to two distinct
classes can be defined: 1) artefact inter-comparisons, 2) physical-state realisation inter-
comparisons. The measurand for the two classes has a different statistical meaning and deserve the
choice of a different statistical treatment.
 
 
 3. THE INTERCOMPARISON DATA FOR EACH PARTICIPANT

 The probabilistic model of the IC data for each of N participants is normally summarised by
three items, representing the statistical properties of the local standard:

1. ± U, the extended point uncertainty, generally set at a 95% confidence level;
2. Y, the value assigned to the local standard and, in a probabilistic sense, the location

parameter of the local population;
3. F, the statistical distribution, associated to the local standard to identify the population,

which GUM also requires to be supplied.
 Thus, the IC data in the following form is supposed to completely represent the probabilistic and
metrological information concerning every j-th participant Laboratory:
 

  [(Yj ± Uj), Fj] j=1,�, N (1)
 
It assumes that the underlying density distribution function is symmetric and that is centred on the
location parameter. 4

3.1 Data of Artefact Inter-comparisons (Class 1)
 
 Each artefact �i.e., each local standard� is a distinct individual, which can be stochastically
modelled. Hence, the sample (xj1,�, xjHj

) of the j-th participant5, pertain to a distinct random
variable, Xj

 xji ~ Xj  j = 1,..., N . (2)
 
 In this case, the items of the probabilistic model (1) have the following meaning:

                                                
3 Scale-related non-uniqueness is a matter of different origin and nature and is irrelevant to the contents of
this paper.
4 It must be noted that in temperature metrology skewed densities can occur.
5 The local samples most often are not made available to the inter-comparison.
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• Yj: Yj = S(Xj) , obtained by choosing a suitable statistics S, whose estimate yj = S(xj1 ,�, xjHj
)

aims to approximate the expected value E(Xj ) with respect to the local pdf; 6

• Uj: is the extended uncertainty associated to S(Xj), the summary value;
• Fj: actually, Yj depends on the local distribution Fj , i.e., Yj = S(Xj, Fj).

 
 Usually the sizes Hj of the local samples are not provided. It must be reminded that a small size of
the samples may not provide credible estimates from the participant. In this Class of IC�s it must be
noted that, the homogeneity in the data (1) may be not verified. Moreover, the statistical inference
on the IC data concerns the analysis of the IC sample (y1, � , yN) in the frequency approach and the
items yj have a hierarchical nature, actually yj is obtained by estimating a summary statistics for the
corresponding local sample (xj1,�, xjHj).
 
 3.2 Data of Physical-state Realisation Inter-comparisons (Class 2)
 
 Each participant aims at locally approximating the very same physical state Q �e.g., the fixed-point
temperature in the example of Section 2. The IC measurand is the physical state, as shown in Fig. 1,
and all values measured from independent experimental realisation of that physical state should be
considered as sampling from a single pdf, i.e., from a single stochastic variable, say Q, i.e. from a
single pdf. Hence, for the samples (xj1,�, xjh, �, xjHj

) of the j-th participant 4

 
 xjh ~ Q  ∀ j . (3)

 
 Often the size of the sample, Hi, acquired in some Laboratories to infer the required statistical
information Yj and Uj is very small from a statistical point of view, mainly due to the high cost of
the experiments.
 Here the items in (1) have the following meaning:

• Fj: is the local probability distribution of the j-th local population. At least a general class of
models for it should be provided (for example, the normal, the uniform and the triangular
are classes of distribution functions discussed in [4] for cases in thermal metrology).

• Yj, and Uj: the definition of a new stochastic variable Yj that combines the local sample to
estimate a location parameter and its associated uncertainty �i.e., the local summary
parameters� should be avoided, since all local datasets (xj1,�, xjHj

) pertain to the same
population, being samples from the same stochastic variable Q . Often, the provided Uj
actually has the broader meaning of representing the whole a priori information contained
in the Laboratory uncertainty budget, especially when type-B errors are dominant.7

 
 In this framework, the overall data are considered as a homogeneous population. So doing, if all the
local pdf�s were identical, the output pdf would be exactly the same too. Hence, it can be
appropriate to pool the local samples into a single sample (of total size N⋅∑(Hj)) and to estimate the
mean value from it. This is equivalent to assume that a single distribution function, called the
compound distribution, stochastically describing the variability of the pooled sample is the correct
probabilistic model for data that do not have a hierarchical nature. Summary operations performed
in each Laboratory should be avoided, since they could introduce an improper hierarchical
variability and the statistical treatment should not concern the framework of repeated measurements
analysis.
 

                                                
6 The expected value of the RV, X, or the mean value m = ∫ x f(x) dx, which can be different from the estimate yj .
7 This meaning of Uj often also apply to Class 1 IC�s.
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 4. INTERCOMPARISON OUTCOMES: PAIR DEGREE OF EQUIVALENCE
 The Pair Degree of Equivalence (PDE), defined as the difference between the measurand
values of every pair of participant Laboratories is the direct IC outcome, which does not need to
resort to a Reference Value. It can directly be obtained from the IC results.
 Let us consider the pair of the n-th and the m-th participant, with n, m = 1...N , ∀ n ≠ m.
 
 4.1 PDE for Artefact Inter-comparisons

The pair degree of equivalence, Yn,m , is a new stochastic variable, of second-rank hierarchical
level:

Yn,m = Yn � Ym (4a)
Fn,m = Fn * Fm (4b)
un,m = u(yn,m) (4c)

 The resulting pdf is the convolution of Fn and Fm. When Yn and Ym are independent random
variables having distributions Fn = N(µn, σn

2) and Fm= N(µm, σm
2), then the distribution of the

combination (5a) is Fn,m = N(µn � µm, σn
2 + σm

2).
 
 Most often, the IC protocol does not specify all details for the local statistical treatments: for
example, the minimum size of the local samples that has to be statistically analysed in the sense of
the repeated measures is not provided. In addition, the treatment performed to estimate yn and ym
could be different from participant to participant, bringing into yn,m possible biases. Should it
happen that the m-th participant chooses the median as the summary statistics, while the n-th
participant chooses the mean, should be taken into account when computing (4).
 
 4.2 PDE for Physical-state Realisation Inter-comparisons
 
 Two different statistical treatments are possible, depending on the type of information available for
each participant Laboratory.
 
 a) The original samples from each j-th population (random variable) are provided:
 

 {xni} and {xmh} , i = 1,�Hn ,  h = 1,�Hm, ∀ n ≠ m , (5)
 
 where every x� is a sample of size Hn or Hm , respectively, from the same stochastic variable Q. In
order to avoid the use of summary variables and the sampling theory when the size of the local
sample is too small, the most straightforward way to estimate the difference of the two populations
seems, in this case, the use of a resampling method, for example the bootstrap [2, 6], which
estimates the difference of means only on the basis of the two given samples. Simulated differences
are obtained by choosing at random one item, say xnk, from the first sample {xni}, and by defining
x�ni = xnk ; by repeating Hn times to simulate a bootstrap sample {x�ni} of size Hn (the same
procedure is applied to the second sample to generate {x�mh }); by computing the means of the

simulated samples and their difference y�n,m= x
_
�n � x

_
�m,. This operation is repeated B times (with B

large), the simulated differences are used to approximate the sampling distribution of Yn,m , and the
histogram is built via the B replications y�n,m,b . Then the bootstrap estimate of the expected value
and the related bootstrap interval at 95% of confidence level can be computed by applying the
bootstrap estimates (4) to identify the pair degree of equivalence.
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 b) The original samples of each population are not provided:
 
  Fn and Fm are only available.
 
 In this case, one should resort to the density functions fn and fm of the two participants and
compute from them in terms of the difference of their expected values, say dn,m. Then, the value of
the PDE is defined to be:
 
 dn,m = E(Fn) � E(Fm) , (6)
 
 where dn,m is not a random variable but a numerical value. It cannot be interpreted as an estimate or
an approximation of some unknown value. The computation in (6) can be performed in closed form;
however, a Monte Carlo technique can be used as an alternative approach [6�8], if some density
functions are not available in analytical form.
 
 
 5. A STATISTICAL MODEL FOR CLASS 2 INTERCOMPARISONS

 Summarising, for Class 2 inter-comparisons the following description of the IC data applies:
• All samples {xji}j=1,�, N are samples from Q
• Q is distributed according to a single (compound) distribution F, while each Fj represents

the stochastic variability of the j-th local population.

In [4] a suitable probability model, able to represent the stochastic variability of composite
populations, has been introduced. It is the combination of several density functions, or mixture
density model [9]. It is adopted, for example, to model the distribution of quality data in industrial
productions as a super-population: a stockpile of items made up of two components with two
different lifetimes is identified by a mixture of two exponential distributions. Mixture distributions
are also used to model important experimental situations in non-normal cases. Mixtures of normal
densities, also known as "contaminated" normal family, are used to model a population, which
follows a normal distribution except in those occasions where a peculiar observation is recorded.
These peculiar observations are not viewed as outliers, but as the effects of an admissible variability
in the IC measurements.

The mixture density function has the following general mathematical form:

  f(x, Λ) = ∑
j=1

N
 πj fj(x; Λ j) , (7a)

 
 where fj(x;Λ j) is the density function of the distribution function Fj.
 The mixture function depends on the parameter vector Λ = (π; Λ1 ,..., ΛN  and πj ≥ 0 are proportion
parameters,
 

  ∑
j=1

N
 πj = 1, j =1,�, N . (7b)

 
 This finite mixture density function is a linear superposition of the N local densities, where each
function fj(x, Λj) is the local density associated to each Laboratory. Let F(x,Λj) be the so-called
compound distribution corresponding to the mixture density in (7a). Under this probability model
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each observation xi is viewed as arising from a super-population that is a mixture of N populations
in some proportion. It directly describes the total variability of the super-population (in IC literature
also called pooled population [10]), as a whole. In this respect, the mixture function describes the
variability of the super-population of the IC, as it could happen for the population related to a
«super-laboratory».  By assuming 1/πj = 1/N for each j, it is supposed that each participant
contributes to the IC in the same proportion, or, equivalently, with a same fraction of local data to
form the pooled sample (x1, � xN∑Hj), where they are realised values independently and identically
distributed with common distribution F(x, Λ) .
 
 In Figs.3 and 4 two examples of mixture density distributions with equal proportions are reported,
which have been generated assuming a specific Normal density for each Laboratory to construct the
histogram related to the key comparisons CCT K2 (N = 7) and CCT K3 (N = 13), respectively [11�
12].
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 Fig.3. Mixture distributions for the results of CCT key comparisons: K2, triple point of argon (B = 5500).
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 Fig.4. Mixture distributions for the results of CCT key comparisons: K3, melting point of indium (B = 8000).
 



Preprint from: "PTB-Bericht",  Series IT (Information Technology),
2003-02-10
PTB Workshop on uncertainty, December 2002

9/

 
 6. INTERCOMPARISON OUTCOMES: THE REFERENCE VALUE 8

 From the above discussion, the need of different statistical treatments for the two classes of
IC�s arises, to identify the suitable procedure to obtain a proper estimate of the Reference Value
(RV) and its uncertainty accordingly to the definition of the involved random variables or
quantities.
 
 6.1 RV for Artefact Inter-comparisons
 
 The Reference Value, Yr , which is a new stochastic variable of a second-rank hierarchical level
that combines the N local summary values. The computation of the RV is commonly performed
through the weighted mean. [8]
 In the j-th participant laboratory, a summary statistics Sj is adopted to combine the values (xj1,�,
xjHij

) and to estimate the local mean. This estimation corresponds to the first-rank hierarchy in the
computational treatment of the IC data (repeated measurement approach). The decisions taken to
process the samples of each Laboratory include also the choice of the summary statistics, among the
many available (mean, weighted mean, median, �)9 that are commonly used to identify the
location parameter of the underlying local probability distribution. Usually, the decision is driven
mainly by the consideration of being the best suited for the specific experimental case in a
Laboratory. Hence, different participants may choose different statistics, causing Sj to have a
different statistical probability distribution.10 To predict accurate estimates, several sources of
variations within and between the populations have to be taken into account.
 
 In the literature on IC studies, the computation of yr and ur based on the weighted mean estimator,
does not generally take into account the effect of several factors on the quality of the estimates:
small size of the IC sample, N (usually < 20), and the peculiarities of Fr and insufficient credibility
of some uncertainty estimates. A possible drawback is that the above approach would generally
prevent from taking into account a possible bimodal density fr , even should a visual inspection of
the data have suggested that: it should be stressed that, if a density probability function is multi-
modal, the choice of a single location (or summary) parameter, yr, could not be sufficient in
representing the specific data variability of the IC. In general, in some conditions the classical
approach based on the sampling theory, i.e., on N large, may give a misleading result.
 
 6.2 RV for Physical-state Realisation Inter-comparisons
 

                                                
8 The Reference Value can sometimes be defined as a deterministic parameter (DRV), i.e., as a numerical
value, r. A DRV has been preferred, for example, for the temperature key comparisons (KC�s) CCT K2 and
CCT K4 [11,13]. The DRV value, irrespective to the method used to obtain it, is purely a stipulated one, as
opposite to a statistically-generated one, and its purpose is limited to the computation of the absolute degree
of equivalence �generally required by the MRA� discussed in Section 7, where it determines the offset of the
measurand value of every participant.
This kind of RV definition is not in contrast with the MRA requirements («the key comparison reference
value with its associated uncertainty», which can be zero) and can have the advantage to avoid the
consequences of a critical choice of the summary stochastic variable, when its meaning or use is not essential
to the use of the IC results. In addition, it avoids the problems arising from the correlation of the RV with the
participant values, as no uncertainty is associated to the DRV.
9 The median can be the preferred choice for the sake of robustness, since it is known that outliers will not
heavily affect the accuracy of the uncertainty estimates.
10 As an example, the choice of the median as summary statistics involves a discrete sampling distribution
function, which only asymptotically (for the sample size very large) can be assumed to be normal.
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 According to the approach of Section 5, the definition of the Reference Value is simply the
expected value, r, of the mixture density f that takes into account the local variability:
 
 r = EF(Λ)(X) or r = ∫ x f(x, Λ) dx (8)
 
 Equation (8) is the first moment of the mixture density. This implies that the RV is simply a
numerical value and not a random variable. In this definition, the RV cannot be viewed as an
estimation resulting from a complex measurement process. However, its definition does not appear
to be in contrast to the MRA being based on a sound probability model.

The probability distribution F directly represents the variability of the super-population of the IC
physical-state samples. See [14] for a complete discussion. No assumptions are required to define
F, except those that have been assumed in each Laboratory and are embedded in the local
distributions Fj provided to the IC. Therefore, the determination of a summary value from the
probability distribution can be done without undertaking any hierarchical step and by avoiding local
decision and statistical procedures that could introduce biases (i.e. in-homogeneities due to the
choice of different first-rank location parameters).

If the mixture density is completely known (all the Λ values are known) a numerical integration can
be performed to obtain the expected value of (8). However, the analytical computation with some
mixture density may require not simple mathematics, especially when N > 2, the Monte Carlo
approach is often applied to overcome these difficulties in the integration of (10). The mixture
model is suitable from a computational point of view and can be easily embedded in a Monte Carlo
algorithm. An algorithm is given in [4] that automatically generates values and simply computes the
output reference value. When some of the local Fj  are only partially available an approximation to
the local density can be obtained from the information in (1) as in [14].
 
 For the estimate of the uncertainty associated to the RV, being here a purely numerical value, it can
be avoided at all, as for the DRV in Note 5, or a suitable treatment should accordingly be identified.
In the latter case, for example, the second moment of the mixture probability distribution could be
computed to describe the variability of the probability mass with respect to the first moment �the
expected value r, however one may question if it should also be assumed to be a suitable parameter
to characterise the IC uncertainty suitable to metrological purposes, and then if is should be
associated to the degree of equivalence, as required by the MRA. Since this point requires a more
detailed analysis a specific work will be deserved to it.
 
 
 7. INTERCOMPARISON OUTCOMES: ABSOLUTE DEGREE OF EQUIVALENCE

 The Absolute Degree of Equivalence (ADE) is the difference between the measurand value
of each participant Laboratory and the Reference Value.
 
 7.1 ADE for Artefact Inter-comparisons
 
 The Absolute Degree of Equivalence of the j-th participant, Yjr, is a new stochastic variable,
combination of two variables of second-rank hierarchical level:
 

Yj,r = Yj � Yr (9a)
Fj,r = Fj * Fr (9b)
uj,r = u(yj,r) (9c)
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 Obviously to computation the uncertainty uj,r, one must take into account the correlation existing
between each the two variables. For example, in the case all the Fj are Normal (whence also Fr is
N), it comes σjr

2 = σr
2 � σj 2 [7].

In the case that a DRV is defined (a deterministic parameter r, Note 5), for the Absolute Degree of
Equivalence of the j-th participant, one can compute the difference between the value provided by
the j-participant, according to the simple calculations recalled in Section 3.1, and the consensus
value r:

yj,r = yj � r (10, a)

 However, in this case the stochastic variability can be described only by the local pdf, and then it
can be assumed the following:

Fj,r = Fj (10, b)
uj,r = u(yj) (10, c)

7.2 ADE for Physical-state Realisations Inter-comparisons

 The Absolute Degree of Equivalence of the j-th participant, is now the numerical value
 

aj,r ≡ E(Fj) � r . (11)
Also in this case the association of an uncertainty will be driven after a deeper discussion on the
general definition of «uncertainty» in IC framework, which it is still in progress in the metrological
community.
 

 8. CONCLUSIONS
 

 This paper discussed a classification of the inter-comparisons that is relevant to identify the
proper statistical method to combine the data provided for each participant to the inter-comparison.
 The proposed approach for Class 2 IC�s constructs a single probabilistic model for the reference
distribution probability function, based on the use of the mixture density model. This approach
allows the estimate of the reference value simply as the expected value of the mixture density
function. The method does not require strong assumptions �as N large� or limitations on the local
probability distributions, such as the Normality density in each participant laboratory. It is
particularly valuable for inter-comparisons of physical-state realisations, e.g., for temperature
standards, where the population associated to an IC can be viewed as a super-population. However,
Class 2 inter-comparisons probably include a wider range of IC�s, such as the ones where a single
standard is circulated and measured.
 The paper also compared the main features of the statistical treatments suitable for the IC outcomes
in both cases of Class 1 and Class 2.
 Some aspects of the treated problems, especially the meaning of uncertainty in Class 2 IC�s and the
consequent approach, still deserve a deeper subsequent insight.
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