MODERN MEASUREMENT TECHNIQUES IN THE RUSSIAN UNDERWATER ACOUSTICS STANDARDS

A.E. Isaev



**The State Metrological Institute of Underwater Acoustics Measurements (GMIGI)** is one of the major departments of the All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements (VNIIFTRI).

**The mainstream of scientific research in GMIGI** is metrological maintenance of underwater acoustical and hydrophysical measurements in Russia.

# Main tasks of GMIGI in the area of underwater acoustical measurements are:

- to create, maintain and improve the National primary and secondary standards of sound pressure unit in water;

- to create precise and stable instruments for underwater measurements and reference standards for their calibration;

- to disseminate the unit of sound pressure in water to working measurement instruments;

- to develop and improve the methods of precise measurements and traceability techniques in order to provide accuracy and uniformity of underwater measurements in Russia;

- to take part in the international and key comparisons of the primary standards of sound pressure unit in water.



## The measuring facility of primary standards features:

- the highest accuracy of reproduction and transfer of the sound pressure unit in water in the frequency range 0.01 Hz - 1.0 MHz ;

- uncertainty of hydrophone sensitivity measurements does not exceed 3 % - 7 % with confidence coefficient 0.95 (corresponds to the best world results achieved nowadays in this area of measurements).

- metrological characteristics of standards were repeatedly verified by the international comparisons:

International comparisons of IEC (1967), Bilateral Russian-Chinese comparisons (1998, 2004), CIPM Key comparisons of free-field hydrophone calibrations (CCAUV.W-K1, 2000 - 2004).

# Methods used in the secondary and working standards for hydrophone calibrations:

- method of comparison in a closed coupler (frequency range: 0.1 – 3.15×10<sup>3</sup> Hz)

 $(1.0 \times 10^3 - 2.0 \times 10^5 \text{ Hz})$ 

- free-field comparison method
- free-field reciprocity method



### ABSOLUTE METHOD FOR THE REPRODUCTION OF UNIT OF SOUND PRESSURE IN THE WATER

| <mark>לגפלחפטכא</mark><br>(אַר)                                                    | Method of reproduction                                                                                                       | Written<br>Standard,<br>author of the<br>method |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 0.01 – 1.0                                                                         | Method of hydrostatic exciter                                                                                                | A.N. Golenkov<br>VNIIFTRI, IEC                  |
| 0.8 – 4.0×10 <sup>3</sup>                                                          | Reciprocity technique in closed coupler with excess static pressure up to 50×10 <sup>6</sup> Pa                              | S.F. Nekhrich,<br>VNIIFTRI                      |
| 0.1 – 1.0×10 <sup>3</sup>                                                          | Method of piezoelectric compensation in a closed coupler                                                                     | L.E. Pavlov,<br>VNIIFTRI, IEC                   |
| $0.5 \times 10^{3} - 2.0 \times 10^{5}$<br>$2.0 \times 10^{5} - 1.0 \times 10^{6}$ | Free-field reciprocity method<br>in a water tank with the size 6.0×10.0×6.0 m<br>in a water tank with the size 1.0×1.5×1.0 m | IEC                                             |



## FACILITY OF PRIMARY STANDARDS FOR THE REPRODUCTION OF SOUND PRESSURE IN THE CLOSED COUPLER



Electromechanical hydrostatic exciter and closed coupler

## Frequency range 1.0×10<sup>-2</sup> - 1.0 Hz

- Method of the hydrostatic exciter
   pressure in the coupler is created by vertical oscillations of a vessel filled with water;
- oscillations created by the electromechanical hydrostatic exciter;
- frequency of vessel oscillations is synchronized by the quartz generator. Measurement Equation:

 $P(w) = \rho gh \times (1 + \frac{w^2}{w_0^2}) \times (1 - \frac{w^2 He}{g})$ 

- *P(w)* amplitude of pressure; *w* frequency of fluctuations; *w*<sub>0</sub> resonance frequency;
- ? density of water;
- g gravity acceleration;
- *h* amplitude of vessel fluctuations;*He* equivalent height of water level.







Electromechanical hydrostatic exciter and closed coupler for piezoelectric compensation

#### Frequency range 0.8 – 4.0×10<sup>3</sup> Hz

## Method of piezoelectric compensation in the closed coupler

- pressure in the closed coupler is created by piezoelectric projector

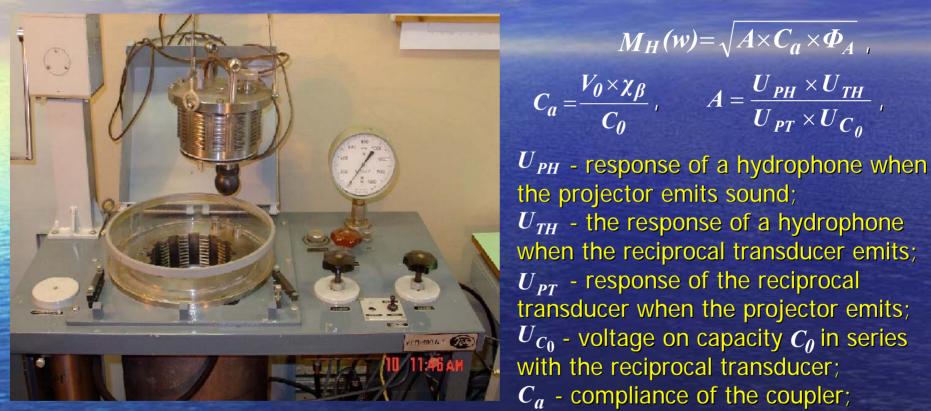
**Measurement Equation:** 

$$P(w) = \frac{\rho gh \times (1 - \frac{\tilde{w}^2 He}{g})}{U_c(\tilde{w})} \times U_c(w)$$

 $\tilde{w}$  - frequency of determination of piezocompensation coefficient of the coupler;

 $U_c(\widetilde{w})$ ,  $U_c(w)$  - voltage on compensator when the zero-indicator is completely blocked.




Variant of the reciprocity method in the coupler with excess static pressure up to 50×10<sup>6</sup> Pa **Measurement Equation:** 

 $V_0$  - volume of water in the coupler;

 $\chi_{\beta}$  - water compressibility factor;

 $\Phi_a$  - wave distribution factor.

 $M_H(w) = \sqrt{A \times C_a \times \Phi_A}$  ,



Pump station and coupler of the standard facility in frequency range 0.1 Hz - 1.0 kHz

#### STANDARD FREE-FIELD RECIPROCITY PROCEDURE



Facility of working standard for hydrophones calibration in water tank with the size  $3.0 \times 4.0 \times 3.0$  m, frequency range 2.5 - 200.0 kHz, uncertainty of measurements below 0,6 .. 1 dB. **Measurement Equation:** 

$$M_{H} = \sqrt{J_{sf} \frac{U_{PH} \times r_{PH} \times U_{TH} \times r_{TH}}{U_{PT} \times r_{PT} \times I_{R}}}$$

 $U_{PH}$ ,  $U_{TH}$ ,  $U_{PT}$  - output voltage of transducers;  $I_R$  - current in series with the reciprocal transducer;  $r_{TH}$ ,  $r_{PT}$ ,  $r_{PH}$  - distances between transducers;  $J_{sf}$  - reciprocity parameter.

#### Improvements:

- Optimized tone burst radiation and receiving technique;

- Extended low frequency range;
- Adaptive cancellation of random disturbances;

- "Sound streamline" design of underwater units;

- Reduction of "shadowing" by central transducer.





## A modified free-field reciprocity procedure

- in water tank with the size  $6.0 \times 10.0 \times 6.0$  m in the frequency range  $0.5 \times 10^3 - 2.0 \times 10^5$  Hz; - in water tank with the size  $1.0 \times 1.5 \times 1.0$  m in the frequency range  $2.0 \times 10^5 - 1.0 \times 10^6$  Hz.

#### **Measurement Equation:**

 $M_{H} = \sqrt{J_{sf} \times \frac{\langle Z_{PH,sf} \rangle \times \langle Z_{TH,sf} \rangle}{\langle Z_{PT,sf} \rangle}}$ 

Facility of the primary standard in the frequency range  $0.5 \times 10^3 - 2.0 \times 10^5$  Hz Coordinate framework for precise transducer positioning in the water tank with the size  $6.0 \times 10.0 \times 6.0$  m

 $\begin{array}{l} < Z_{PH,sf} > \\ < Z_{TH,sf} > \\ < Z_{PT,sf} > \end{array}$ 

estimations of free-field reduced transfer impedances (RTI) of transducers





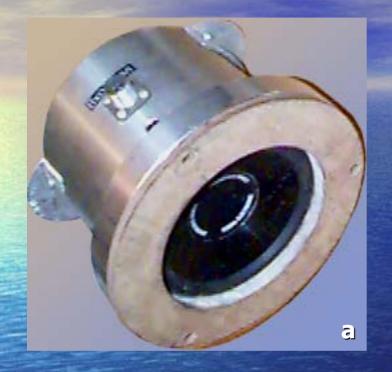
Facility of primary standard in frequency range  $2.0 \times 10^5 - 1.0 \times 10^6$  Hz. Coordinate framework for precise transducer positioning in the measurement water tank with the size  $1.0 \times 1.5 \times 1.0$  m

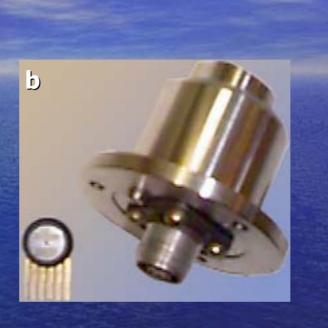


#### THE BASIC DIRECTIONS OF STANDARDS IMPROVEMENT:

- Increase of accuracy of reproduction and transfer of sound pressure unit in the water by means of:

- using new technologies for the development of instruments for precise measurement of sound pressure in closed couplers;
- using the information on acoustic field amplitude and phase distribution in free-field measurements;


 use of the continuous frequency band test signals for calibration of hydrophones and underwater measuring modules;

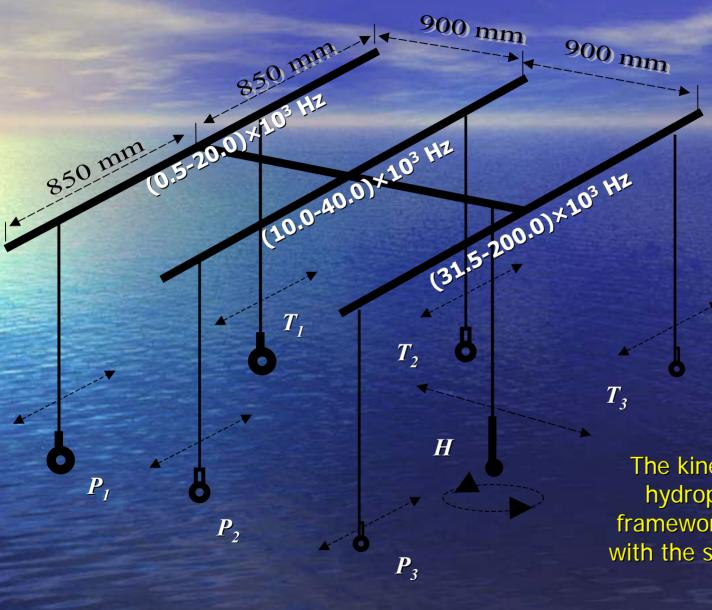

- use of the frequency band sensitivity applicable to random processes measured in natural conditions for characterization and calibration of hydrophones and underwater measuring modules;

 creation of reference facilities and primary standards for calibration of oscillation velocity measuring instruments used for measurements of vector parameters of sound fields in water.



# THE STANDARD MEASURING COUPLER AT FREQUENCIES $0.1 - 3.15 \times 10^3$ Hz BASED ON THE TENSOMETRIC SENSOR

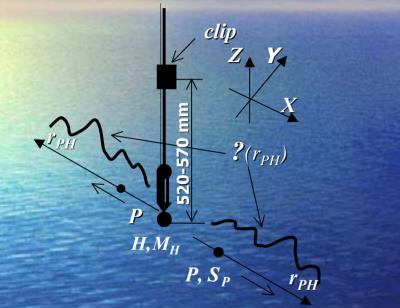





a – electrodynamic projector;
b – chip of tensometric sensor and acoustic pressure measuring instrument made on its basis;
c – the ready-mounted measuring coupler.






### **A FREE-FIELD MEASUREMENTS**



The kinematics scheme of hydrophone coordinate framework in the water tank with the size 6.0×10.0×6.0 m



#### **MODIFIED FREE-FIELD RECIPROCITY PROCEDURE**



Measurement of spatial dependence of a transfer impedance of the projector and the hydrophone to be calibrated Consequence of J. Babinet's principle for RTI in the sound field distorted by scattered wave:

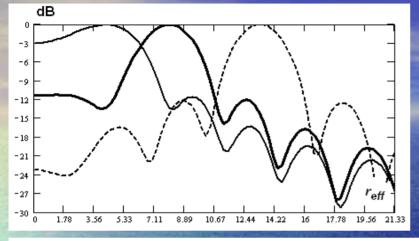
 $Z'_{PH,sf}(r_{PH}) = Z_{PH,sf}\sqrt{1+\aleph}(r_{PH})$ 

 $Z_{PH,sf} = M_H S_P$  - RTI in free-field;

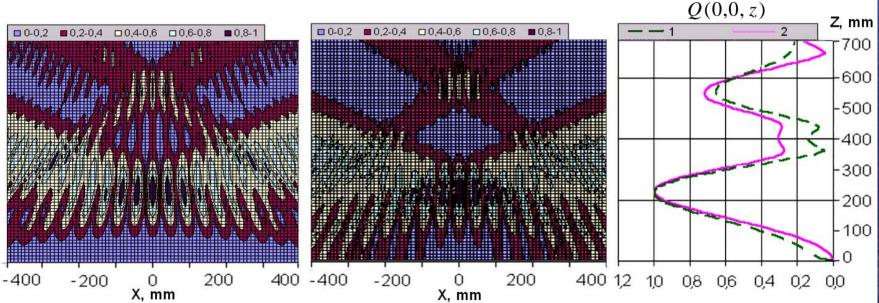
 $\aleph(r_{PH})$  - transfer function of scattered inhomogeneity (TFI).

Steps of modified procedure:

- 1 measurements of RTI spatial dependence;
- 2 selection of TFI;


3 - expansion of TFI in series of spherical source functions (reconstruction of scatterers spatial distribution);

4 - estimation of free-field RTI  $< Z_{PH,sf} >$  by least-squares method;


5 - insertion of RTI-s estimations to measurement equations.

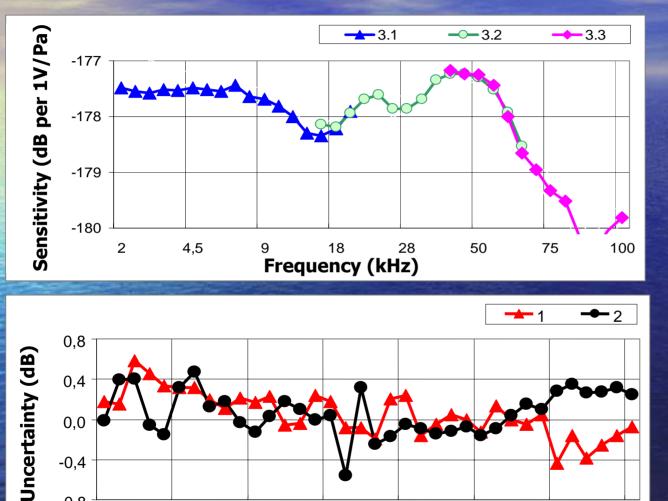


#### RECONSTRUCTION OF SCATTERERS DISTRIBUTION BY MATCHED SPATIAL FILTRATION (MSF)



Degradation of spatial resolution of MSF with decreasing distance between a scatterer and the hydrophone active element




Improvement of sound scatterer images on the surface of clip and at area closed to hydrophone body at frequency 60 kHz

### **INCREASE OF ACCURACY OF FREE-FIELD CALIBRATION**

75

50

100



18

Frequency (kHz)

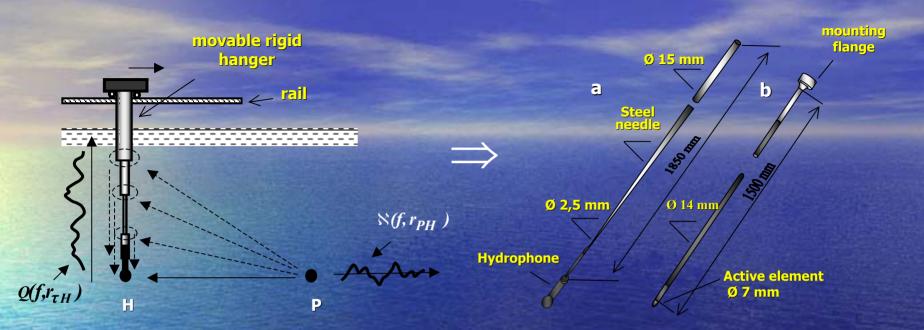
28

-0,4

-0,8

2

4.5


9

Frequency response of a hydrophone type H 52-50, calculated with modify free-field reciprocity procedure

Influence of scatterers on the increase of uncertainty of standard free-field reciprocity procedure



## **"SOUND STREAMLINE" UNDERWATER UNITS OF STANDARD**



Distribution of diffraction scatterers close to cross-section jumps of rigid hydrophones mount

**Response of MSF:** 

 $Q(f, r_{\tau H}) = \left| \frac{1}{\|V\|} \int_{V}^{\infty} (f, r_{PH}) \dot{\chi}_{\tau} (f, r_{PH}) dr_{PH} \right|$  $\dot{\chi}_{\tau} (f, r_{PH}) - \text{spatial pulse function of MSF};$ V - motion path.

"Sound streamline" design: a - needle-shaped rigid hydrophone mount; b - projector and reciprocal transducer in form of straight uniform rod.

#### Field distortion:

 $var(Z'_{PH,sf}(r_{PH})) \le 0,5 - 2,0 \%$  in frequency range 31,5 - 200 kHz



#### **CONTINUOUS FREQUENCY-BAND TEST SIGNALS AT WATER TANK HYDROPHONES CALIBRATION**

----

#### "Sound transparency" of measuring water tank:

RTI in water tank:

 $\dot{Z}'_{PH,sf}(f) = \dot{Z}_{PH,sf}(f) (1 +$ 

 $\dot{oldsymbol{arOmega}}_{W'}$ - transfer function of water tank.

$$\frac{1}{\Delta f_{WT}} \int \dot{\Omega}_{WT} (f) df \approx 0$$

 $\Delta f_{WT} = \frac{1}{\Delta \tau_{min}} - \frac{1}{2 \sigma_{min}} - \frac{1}{\sigma_{min}} - \frac{1}{\sigma_{min}}$ 

 $\dot{Z}_{PH,Sf}(f,\Delta f_{WT}) = \frac{1}{\Delta f_{WT}} \int \dot{Z}'_{PH,Sf}(f') \dot{\sigma}(f) df'$  $\dot{Z}_{PH,sf}(f, \Delta f_{WT})$  - free-field RTI, averaged in "frequency window";  $\dot{\sigma}(f)$  - pulse response of low-pass (or rejection) spatial filter.

Sensitivity to RMS-value of sound pressure in a frequency band:

$$M_{H}(f_{\theta},\Delta f) =$$

$$\frac{\int \lambda^{2} (f_{\theta}, f) G_{v}(f) df}{\int G_{p}(f) df}$$

$$f_{\theta}, \Delta f$$

 $G_p(f)$  - spectral density of sound pressure;  $G_{v}(f)$  - spectral density of hydrophone response;  $\lambda(f_0, f)$  - frequency response of band-pass filter.

**Applicable to random processes** measured in natural conditions. **Enables the decrease of:** 

- the effective sensitive area (  $a \leq \beta_{\varDelta f} \lambda_{f_{\theta}}$  ) the far-field distance at the
- calibration of underwater measuring module.



#### References

- Golenkov A. N.: Absolute calibration of infrasonic pressure detectors in an air and water resonator with hydrostatic excitation. *Measurement Techniques*, 8, 444, 1965.
- Golenkov A. N., Pavlov L. E.: Absolute calibration of measuring hydrophones in the audiofrequency range. *Measurement Techniques*, 10, 579, 1967.
- Nekrasov V. N. Nekrich S. F.: Modified reciprocity method for the calibration in small-volume chambers. *Measurement Techniques*, 31, 77, 1988.
- Isaev A. E. and others: Reduction of the Error of Hydrophone Calibration with respect to the Field in Hydroacoustic Tank by the Reciprocity Method, *Acoust. Phys.*, vol.50, No. 5, 2004
- Isaev A. E.: The sensitivity and effective size of the hydrophone with the reflections source in the frequency band, *Measurement Techniques*, 12, 2005 (in Russian).
- Peder C. Pedersen, Peter A. Lewin, Leif Bjorno: Application of time-delay spectrometry for calibration of ultrasonic transducers, *IEEE Trans. On Ultrasonics, ferroelectric and frequency control*, vol. 35, No. 2, 1988.
- Isaev A. E.: Transfer function of water tank and effective "frequency window" of free-field measurements, *Proc. of conf. "Metrological problems of hydrophysical measurements*", VNIIFTRI, P. 1, 2006 (in Russian)
- Isaev A. E.: About "sound streamline" design for underwater units of standard facility, *Proc. of conf. "Metrological problems of hydrophysical measurements*", VNIIFTRI, P. 1, 2006 (in Russian)