# IGS Clock Products Working Group Report



#### Ken Senior

Naval Center for Space Technology U.S. Naval Research Laboratory Washington, D.C. USA

18<sup>th</sup> Meeting of the Consultative Committee for Time and Frequency (CCTF)

4-5 June 2009

## Outline

- IGS Product Status
  - Ultra-Rapid/Rapid/Final Products
  - New Real-Time Products
- Analysis of Subdaily GPS Satellite Clock Variations
- Day Boundary Monitoring & Antenna Installations
- New IGS Timescale Schedule

# IGS High Performance Clocks

| IGS Site<br>@ Labs | Time<br>Lab | Freq. Std. |
|--------------------|-------------|------------|
| AMC2               | AMC         | H-Maser    |
| BOR1               | AOS         | Cesium     |
| BRUS               | ORB         | H-Maser    |
| IENG               | IEN         | H-Maser    |
| KGN0               | CRL         | Cesium     |
| MDVJ               | VNIIM       | H-Maser    |
| MIZU               | NAO         | Cesium     |
| NISU/T             | NIST        | H-Maser    |
| NPLD               | NPL         | H-Maser    |
| NRC1/2             | NRC         | H-Maser    |
| NRL1               | NRL         | H-Maser    |
| OBE2               | DLR         | Rubidium   |
| OPMT               | OP          | H-Maser    |
| PENC               | SGO         | crystal    |
| PTBB               | PTB         | Cesium     |
| SFER               | ROA         | H-Maser    |
| SPT0               | SP          | H-Maser    |
| SYDN               | NMI         | Cesium     |
| TLSE               | CNES        | Cesium     |
| TWTF               | TL          | H-Maser    |
| USNO/1             | USNO        | H-Maser    |
| WAB2               | СН          | H-Maser    |
| WTZA               | IFAG        | Cesium     |
| WTZR               | IFAG        | H-Maser    |



+ GPS space clocks ...

| SUMMARY OF IGS CORE PRODUCTS |        |                 |            |                |             |                   |  |  |
|------------------------------|--------|-----------------|------------|----------------|-------------|-------------------|--|--|
| PRODUCT                      | #      | CURRENT         | LATENCY    | UPDATES        | SAMPLE      | QUALITY           |  |  |
| SUITES                       | ACs    | ACCURACY        |            |                | INTERVAL    | ASSESSMENT        |  |  |
| Ultra-Rapid                  |        |                 | real time  | 03, 09, 15, 21 |             |                   |  |  |
| (predicted)                  |        |                 |            | UTC            |             |                   |  |  |
| • orbits                     | 7 (2)* | < 5 cm          |            |                | 15 min      | marginally robust |  |  |
| • SV clocks                  | 4      | ~5 ns           |            |                | 15 min      | extremely poor    |  |  |
| • ERPs                       | 7 (2)* | < ~1 mas        |            |                | 6 hr        | very weak         |  |  |
| Ultra-Rapid                  |        |                 | 3 - 9 hr   | 03, 09, 15, 21 |             |                   |  |  |
| (observed)                   |        |                 |            | UTC            |             |                   |  |  |
| • orbits                     | 7 (2)* | ~3 cm           |            |                | 15 min      | fairly robust     |  |  |
| • SV clocks                  | 4      | ~0.2 ns         |            |                | 15 min      | weak              |  |  |
| • ERPs                       | 7 (2)* | ~0.1 mas        |            |                | 6 hr        | fairly robust     |  |  |
| Rapid                        |        |                 | 17 - 41 hr | daily          |             |                   |  |  |
| • orbits                     | 8      | ~2.5 cm         |            |                | 15 min      | robust            |  |  |
| • SV, stn clocks             | 5      | ~0.1 ns         |            |                | 5 min       | marginally robust |  |  |
| • ERPs                       | 8      | ~0.06 mas       |            |                | daily       | robust            |  |  |
| Final                        |        |                 | 13 - 20 d  | weekly         |             |                   |  |  |
| • orbits                     | 8      | ~2.5 cm         |            |                | 15 min      | robust            |  |  |
| • GLO orbits                 | 4      | < ~10 cm ?      |            |                | 15 min      | not robust        |  |  |
| • SV, stn clocks             | 6      | ~0.1 ns         |            |                | 5 min, 30 s | robust for 5 min  |  |  |
| • ERPs                       | 8      | ~0.03 mas       |            |                | daily       | robust            |  |  |
| • terr frame                 | 8      | 3 (h), 6 (v) mm |            |                | weekly      | robust            |  |  |

International GNSS Service

\* indicates AC contributions that are weaker than others 4

# IGS Real Time (IGS RT) Pilot Project

- Pilot began in 2008
- Goal: produce near-real time products with very frequent update
- 1 Hz data from ~60 global IGS real-time tracking stations
- 5 RT ACs participating in product generation
- Essentially utilizes IGU orbit predictions
- Expected update interval for clocks ~few seconds (not yet determined)
- Not yet available to the public, but soon ....

| Sample orbit+clock | results | for | Week | 1534, | Day | <b>7</b> 0 | (31 | May | 2009) | l. |
|--------------------|---------|-----|------|-------|-----|------------|-----|-----|-------|----|
|--------------------|---------|-----|------|-------|-----|------------|-----|-----|-------|----|

| Summary Tab | le    |            |         |       |            |            |
|-------------|-------|------------|---------|-------|------------|------------|
| AC          | nSats | OrbRMS(mm) | nSatClk | nUsed | SatRMS(ns) | SatSig(ns) |
| comb        | 30    | 0.0        | 8639    | 8430  | 0.26       | 0.15       |
| bkg         | 30    | 66.9       | 8637    | 8428  | 0.76       | 0.15       |
| bkg2        | 46    | 130.7      | 8616    | 8407  | 0.96       | 0.35       |
| dlr         | 30    | 73.7       | 8640    | 8431  | 0.81       | 0.16       |
| esoc        | 30    | 60.9       | 8640    | 8431  | 0.22       | 0.19       |
| esoc2       | 30    | 63.7       | 8622    | 8413  | 0.23       | 0.19       |
| nrc         | 30    | 46.2       | 8397    | 8192  | 0.27       | 0.18       |
| gmv         | 30    | 64.0       | 8640    | 8431  | 0.86       | 0.84       |

#### Sub-daily Characteristics of GPS Clocks



#### IIA cesiums

- poorest overall stability
- behave mostly as random walk phase noise
- MDEV power-law slope -1/2
- excess deviations near 13,600 s

#### • IIA rubidiums

- similar to Cs clocks but much more stable
- flicker phase component for intervals < 100 s</li>
- also with excess near 13,600 s

#### • IIR & IIR-M rubidiums

- newer generation clocks less stable than IIA Rb up to 1000 s
- complex high-frequency behavior due to onboard Time Keeping System (TKS)
- some excess near 13,600 s

#### 12-hr Harmonics Pervasive in GPS Constellation



### **Temporal Variation of GPS Spectral Peaks**



International GNSS Service

# Summary of GPS Clock Variations

- IIA Cs clocks closely follow random walk behavior with poorest stability
- IIA Rb clocks similar but have much better stability plus highfrequency flicker phase component
- Newest IIR/IIR-M Rb clocks less stable than IIA Rb over intervals <1000 s but better for longer times</li>
- GPS clocks show periodics at N x (2.0029 ± 0.0005) cpd or periods of (11.9826 ± 0.0030) / N hr for N = 1,2,3,4

—must be related to orbital dynamics but periods differ by  $60 \pm 11$  s

- Prediction errors >100 ps (IGS accuracy) @ 40-50 s for IIA Cs & IIR Rb
- Prediction errors >100 ps (IGS accuracy) @  $\sim$ 200 s for IIA Rb
- Latency for real-time clock service should be <50 s for errors <~100 ps

#### Examples of IGS estimated clocks w.r.t. IGST

- Day-boundary clock discontinuities studied for all IGS H-maser sites
- Provide estimate of time transfer accuracy
- Clock bias accuracy is determined by mean code noise per arc
- For 24-hr arc with code σ = 1 m, clock accuracy should be ~120 ps
- Actual variances are highly sitedependent
- Some sites have seasonal variations
- Presumably caused by variable local code multipath conditions
- Long-wavelength (*near-field*) code multipath most important
- Performance depends on overall station data quality, esp cables & receivers & antenna installations
- Best sites have no discontinuities







#### Day Boundary Discontinuities at ONSA



#### Day Boundary Discontinuities at BRUS

## **Near-field Multipath Hypothesis**

- <u>Hypothesis</u>: (J. Ray, 2005) Near-field standingwave back reflection a likely cause of dayboundary discontinuities at many sites
- Expect longest-period MP errors when H (phase center to back surface) is smallest [Elósegui et al., 1995]
- Choke-ring design especially sensitive to L2 reflections from below [Byun et al. 2002]
- Most IGS RF stations use antenna mount over surface!
- Antenna installations should follow examples of best timing labs, such as BRFT, WAB2, ONSA & BRUS





## Poor Antenna Mounts



## Good Antenna Mounts





choke-ring rests in a matrix of microwave absorbing material

#### **Other Hardware Choices Also Important**



receiver health, firmware, antenna model, & cables also affect day-boundary clock jumps (J. Ray, EGU 2008)

# New Timescale - Tie to UTC

- Current version relies on GPS Time as sole reference to UTC
- Multiple stations colocated at timing labs will provide a better quality & robust link to UTC; relatively calibrated to UTC using CircularT
- Stability of the average of these clocks suggests that a steering time constant of about 70 days will be appropriate.



# New Timescale Schedule

- Re-processing effort within the IGS still underway
  - Re-analysis of all GPS data back to 1994
  - First combined product results expected in late FY09/FY10
- New IGS timescale will be used in the reprocessed products, provided enough ACs contribute clocks
- IGS will eventually transition to new products as the official operational ones
- Paper on new timescale expected FY09/FY10

# THANK YOU

# BACKUPS

### New Timescale Model – 8 states per clock



additional states to model two harmonics (e.g., 6- & 12-hour)

## **Timescale Constraints**

• Observability problem

Stein, '94

- Only clock (phase) *differences* are measured.
- 4 independent excitations per clock implies 4 new constraints necessary to isolate *individual* clock excitations:



# New Timescale Results



Averaging Interval  $\tau$ 

# Multiple Per Clock Weighting

- New multiple weighting per clock allows a timescale which is optimized over a wide range of intervals:
  - e.g., ~ 1 day, ~ 10 days, & ~ months)
- $a_i \sim \text{inverse WH ph level for clock } i$  $b_i \sim \text{inverse RW ph level for clock } i$  $c_i \sim \text{inverse RW fr level for clock } i$  $d_i \sim \text{inverse RW dr level for clock } i$



# 4 cpd Peak – Neglected Relativistic J<sub>2</sub> Effect

- GPS clock frequencies aligned approximately to Terrestrial Time (IS-GPS-200), for convenience
- Users should account for effect of orbit eccentricity using  $-2(\mathbf{r}\cdot\mathbf{v})/c^2$  correction
- Unmodeled J<sub>2</sub> (oblateness) effect is ~70 ps variation with 6hr period (+ longer-period effects) – J. Kouba (2004)

Approximate (~90%) correction can be made  
using:  
$$\Delta t^{\text{rel}} = \left[ 446.47 \times 10^{-12} + \delta \Delta t_{\text{con}}(a_0) \right] t - 2(\mathbf{r} \cdot \mathbf{v}) / c^2 + \delta \Delta t^{\text{per}}$$
$$\delta \Delta t^{\text{per}} = -\frac{a_E^2}{2a^2c^2} J_2 \left[ 3\sqrt{GMa} \sin^2(i) \sin(2u) - 7\frac{GM}{a} \left(1 - \frac{3}{2} \sin^2 i\right) t \right]$$

*a* semi-major axis *u* argument of latitude *i* inclination  $J_2 = 1.083 \times 10^{-3}$ 



# **Correlated Clock & Position Effects:**

Day-boundary Clock Discontinuities at ALGO

Weekly IGS Residuals for ALGO



 ALGO day-boundary clock jumps increase in winters

- every winter ALGO also has large position anomalies
  - IGS deletes outliers >5 σ
- implies common near-field multipath effect is likely (phase & code)
  J. Ray, EGU 2008

