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Background 
 
Impurities in the sample of material in a fixed-point cell are a significant source of 
error and uncertainty in the realisation of melting and freezing points [1]. The 
temperature may be depressed or elevated and, due to segregation of the impurities, 
the melting or freezing plateau will not be entirely flat. In principle, a correction 
should be made to obtain the desired ideal transition temperature, T0, but this strictly 
requires a complete analysis of the material and a knowledge of the relevant 
cryoscopic constants. This note describes an empirical method of establishing the 
correction for the impurity effect, which may be applied at any point on the plateau, 
using the gradient of the plateau at that point. 
 
The method is an implementation of the ‘Gulliver-Scheil’ [2-4] model for a slow-
freeze, which has been used by Hunt [5] to provide an estimate of the ideal freezing 
temperature independent of a detailed impurity analysis. It requires only an estimate 
of the (effective) equilibrium distribution coefficient k = CS/CL, where CS and CL are 
the solid and liquid impurity concentrations, respectively. 
 
The Scheil model 
 
The key assumptions of the model are that the freeze is slow enough that mixing in 
the liquid phase is complete, and that there is no diffusion in the solid phase. Under 
those conditions, the solute rejected into the liquid during an incremental change in 
liquid fraction, δgL, is equal to the change in liquid composition at that point in the 
freeze, gLδCL. Thus 
  LLLLS CggCC   , or  

   1///  kCCgg LLLL  .             …(1) 

On integrating along the freeze, this gives the Scheil equation     ...(2)   1 k
LOL gCC

 
At any particular time the departure from the pure material freezing point, ΔT, is 
given by multiplying the liquid impurity concentration by the slope of the liquidus 
curve, m = dΔT/dCL, which is linear at least in the dilute limit. Thus: 

 1 k
LOL gmCmCT  . 

The gradient on the freezing or melting curve is 
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Thus at any point on the freeze, the departure from the ideal temperature can be 
estimated from the slope  at the liquid fraction gL, and a value for k. LdgTd /
 
 
Implementation 
 
The method is illustrated in Figure 1, which shows a Scheil freeze, and the 
constructions at solid fractions of 0.2, 0.5 and 0.8, each giving an estimate of T0. The 
beauty of the method is that we can consider the freeze to start at any point, i.e. treat 
the rest of the freeze (the remaining liquid) as a new sample. Thus gL at any point is 
taken to be 1, and the tangent is extrapolated from that point to gL = 0 (solid fraction = 
1). From Equation 3, the freezing point depression is simply given by the drop in 
temperature along the tangent, divided by (k - 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Scheil freeze, illustrating the constructions to correct for impurities. The 
curve is derived for an initial slope of 1 mK over the complete freeze, and k = 0.3. 

Correcting a Scheil freeze for impurities
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The corrected temperatures in Figure 1 accord well with the ideal freezing point (zero 
depression), but this is of course to be expected, as the model has been used both to 
derive the freezing curve and to make the corrections. The purpose of the figure is 
therefore only to show the constructions to be used, and the question is to what extent 
a real freeze follows the Scheil model. Real examples are given later. 
 



Assumptions and requirements 
 
The key assumption, that the solute is fully mixed in the liquid phase, is less reliable 
in the initial stages (for practical reasons the freezing curve is anyway not well 
established until a significant fraction of solid has formed, but the exact amount is not 
important in this analysis). The criterion is that the distance left to freeze (thickness of 
the liquid sample) is smaller than D/V, where D is the diffusion coefficient and V is 
the velocity of the interface. If the freezing rate is 1 mm/hr, then V ~3 x 10-7 m s-1, and 
for D = 3 x 10-9 m2 s-1, the relevant distance is ~10 mm. At that rate mixing is near 
complete when ~5 mm is left and a reasonable answer might be achieved before that 
[5]. Clearly for a slower freeze a larger fraction would behave as Scheil, but some 
uncertainty from this source will remain.  
 
In the later stages it becomes more important to identify the point of 100% frozen 
correctly. One can see from Figure 1 that the uncertainty in the end-point of the 
extrapolated the tangent becomes more significant, but in the early stages, where the 
curve is less steep, this is not a problem. In practice one would look for consistency 
among corrected values taken at several points on the freeze, and expect the errors 
and uncertainties to increase as the solidus point is approached.  
 
In a real case where many different solutes are present, each should behave in a Scheil 
manner so we have 
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The largest effects will occur for k = 0 (Raoult’s law, complete rejection of the 
impurity into the liquid), because then the liquidus slope is large and negative and the 
depression is also large. Conversely, when k > 1 the liquidus slope is always small 
and positive and the error is small.  
 
In fact, the biggest effect on the corrections calculated using Equation 3 is in the value 
of the slope, which is measured, rather than in the value of k, which is assumed. 
Clearly, to avoid the singularity one should not take k ~ 1, but for a sample in this 
regime the plateau would anyway be rather flat and the corrections correspondingly 
small. Since impurities with low values of k create the largest effects, the choice of 
the effective distribution coefficient is biased toward . In most cases it is 
realistic to choose a low value, and the exact value is not critical.  

0k

 
The remaining proviso is that the freeze must be regular: effects due to fluctuating 
furnace temperatures (irregular heat flows) must be small, and the freezing interface 
should follow a cylindrical profile in the ingot. Imperfections in the thermal 
conditions have a greater effect on the quality of the plateau as the solidus point is 
approached, and corrections based on earlier stages of the freeze are likely to be more 
reliable.   
 
While it is clear that the errors and uncertainties are greater for poorer samples and 
conditions, the method offers useful advantages in all cases, from the point where the 
freeze becomes firmly established until the limitations of the practical realisation 
become apparent. One further assumption in a practical implementation is that the 
time axis is well correlated with the solid fraction. 
 



 
Examples of the corrections for real freezing curves 

o test the model and its application, several freeze curves have been examined. In all 

 
 

e first apply the method to a tin cell which was degraded and no longer in use. It 
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he next example is for two freezes of an indium cell which show a modest slope on 

 

he third example is of freezes for two tin cells, Figures 7 and 8. In the first, the 

ll is 

hese examples show the advantages of the method for both good and degraded cells. 

 
T
cases the data were logged continuously, with readings every 12 s or 17 s, and the 
total freeze times (> 10 hr, and typically ~20 hr) were large enough for the model to
be applied. The traces were plotted, with no averaging, and the plateaux were divided
into five or more segments from which the slopes were derived from linear fits. The 
corrections were then calculated to estimate the ideal freeze values. 
 
W
was measured as found, and then after doping with 5.5 ppm and 7.4 ppm of cobalt [
The freezes are shown in Figures 2-4. Corrections were calculated with k = 0 and with 
estimated solidus points at 18, 53 and 20 hours from the start, respectively. The 
corrected values are plotted, and are seen to be relatively constant over half or m
the freezes: the mean corrected temperatures for the first four points were 
231.9274 °C, 231.9284 °C and 231.9278 °C, for the three freezes, respectiv
Considering the magnitude of the corrections, the consistency obtained is encour
and indicates the potential of the method, even though irregularities are found in the 
second half of the freezes. (Note that although in this example the bridge readings 
have been converted to temperatures, this should not be taken to mean that that the 
‘correct’ value should be 231.928 °C as in the ITS-90.) 
 
T
the plateau, see Figures 5 and 6. The first freeze was comparatively short at 11 hr, but 
produces corrections which are small and consistent within 0.05 mK. The second (17 
hr) freeze was less regular, but the first four corrections are consistent within 0.24 mK
and the average corrected value agrees within 0.03 mK with the average for the first 
freeze.  
 
T
plateau is quite flat, and the corrections are small. Although there is a downward 
trend, the first four corrected values are within 0.05 mK. The freeze for second ce
more sloped, but the first four corrected values are within 0.16 mK. 
 
T
Worthwhile corrections can be applied whether they are large or small, and in many 
cases the uncertainties may be in the region of 10 to 20%, based on corrections from 
50% or more of the freeze. 
 
 



Summary of advantages and disadvantages 
 
In conclusion, the advantages of the method are: 
 It is based on experimental freezes rather than extensive, but incomplete and 

uncertain, analyses of the materials 
 Corrections are simply obtained from experimentally-determined slopes of the 

freezing plateaux, assuming only a value for the effective distribution 
coefficient, keff 

 Realistic values of keff are likely to be small, in which case the results are not 
sensitive to the exact value adopted 

 Consistent corrected freezing point temperatures can be achieved over more 
than half of the freeze, with uncertainties in the region of 10-20%.  

 The initiation process is not important, provided that it produces at least one 
quasi-cylindrical solid-liquid interface 

 There is no requirement to estimate the solid fraction at the start of the plateau. 
At any point, it is only the remainder of the freeze which is important 

 The method can be applied to good and degraded cells 
 It can be used to re-validate a cell which may have become contaminated after a 

period of use. 
 
Some disadvantages or conditions are: 
 The freeze must be slow enough that the impurities are effectively diffused in 

the liquid 
 The end point of the freeze must be estimated, though uncertainties in this are 

less important early in the freeze 
 The thermal conditions must be controlled well enough that the freeze follows 

the Scheil model. Departures form this condition will show up as inconsistent or 
divergent corrected values, especially in the second half of the freeze. 

 
A fuller exposition of the Scheil model and its application, including the possibility of 
executing best-fits to all or part of the freeze to deduce T0, keff, etc, is to be published 
[7]. 
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Figure 2

Petchpong tin cell undoped
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Figure 3 

Petchpong tin cell with 5.5 ppm Co
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Figure 4 

Petchpong tin cell with 7.4 ppm Co
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Figure 5
Indium In 9/08 Freeze No 2 (4 November 2009)
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Figure 6

Indium In 9/08 Freeze No3 (6 November 2009)
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Figure 7 
Sn-A Freeze No 1 (8 May 2008)
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Sn 184 Freeze 2 (3 May 2006)
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Figure 8 
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