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Abstract 
Since the 1980s, we have seen a gradual shift in the uncertainty analyses recommended in the 

metrological literature, principally Metrologia, and in the BIPM’s guidance documents; the Guide to 

the Expression of Uncertainty in Measurement (GUM) and its two supplements. The shift has seen the 

BIPM’s recommendations change from a purely classical or frequentist analysis to a purely Bayesian 

analysis.  Despite this drift, most metrologists continue to use the predominantly frequentist approach 

of the GUM and wonder what the differences are, why there are such bitter disputes about the two 

approaches, and should I change?  The primary purpose of this note is to inform metrologists of the 

differences between the frequentist and Bayesian approaches and the consequences of those 

differences.   

 It is often claimed that a Bayesian approach is philosophically consistent and is able to tackle 

problems beyond the reach of classical statistics. However, while the philosophical consistency of the 

of Bayesian analyses may be more aesthetically pleasing, the value to science of any statistical analysis 

is in the long-term success rates and on this point, classical methods perform well and Bayesian 

analyses can perform poorly. Thus an important secondary purpose of this note is to highlight some of 

the weaknesses of the Bayesian approach.  We argue that moving away from well-established, easily-

taught frequentist methods that perform well, to computationally expensive and numerically inferior 

Bayesian analyses recommended by the GUM supplements is ill-advised. Further, we recommend that 

whatever methods are adopted, the metrology community should insist on proven long-term numerical 

performance. 

 

  

1. Introduction 

 
Since 1993, uncertainty analysis in metrology has been practised in accordance with the Guide to the 

Expression of Uncertainty in Measurement (GUM), which was originally published by the ISO (ISO 

1993, 1995) but is now managed and published by the BIPM (JCGM 2008a). The GUM has led a 

revolution in uncertainty analysis in metrology with increased emphasis now being placed on the 

specification of a measurement model and increased attention being paid to quantifying influence 

variables and sources of uncertainty. There seems to be little doubt that the greater attention given to 

these aspects of measurement has come about from the single approach and the common language for 

uncertainty analysis provided by the GUM.  

 For the most part, the GUM is fundamentally frequentist: the Type A assessment process, the 

combination of uncertainties using the Welch-Satterthwaite formula, and the expression of expanded 

uncertainties as confidence intervals are all demonstrably frequentist in origin and rationale. However, 

the Type B assessment process, with its allusion to the concepts of degrees of belief and distributed 

measurands, betrays a Bayesian thought process that is inconsistent with the philosophy of the 

remainder of the guide. There are also aspects of uncertainty analysis that are not treated well or at all. 

For example, the GUM fails to give satisfactory guidance on the handling of non-linearities, 

corrections of just resolvable (non-significant) systematic effects, products of errors distributed about 

zero, asymmetric error distributions, and multidimensional outputs such as for complex quantities. 

Thus, the GUM can be viewed as a successful but imperfect set of guidelines. 

 In recent years, some of the technical deficiencies in the GUM have been addressed by 

alternative methods, often supported by Monte Carlo analysis of the success rates of the method (e.g., 

Hall 2008, 2009, 2011, Wang and Iyer 2006, 2009). There has also been an increasing interest in 

Bayesian statistics, which also uses Monte Carlo techniques, but for numerical integration rather than 

evaluation of performance. The Bayesian approach is claimed by its practitioners to be more complete, 

more universally applicable, and more philosophically consistent than the classical approach. Most 
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importantly, the Bayesian approach requires a formal assessment of the prior knowledge of the 

measurand, which addresses concerns about the philosophy underlying the Type B assessment process 

of the GUM.  

 Within Bayesian statistics there are two main divisions or schools, sometimes described as 

‘subjective’ and ‘objective’. The principal criticism of subjective Bayesian statistics, as the name 

suggests, is the highly personal nature of the probabilities that are used to describe prior knowledge. 

The approach taken by the objective Bayesian school is to use ‘uninformative priors’ for their analyses 

(JCGM 2008b, 2011). As we shall see, the Type A methodology of the GUM Supplements is largely 

drawn from this objective school while the Type B methodology is drawn from the subjective Bayesian 

school. The GUM supplements are therefore fundamentally Bayesian documents and philosophically 

inconsistent with the GUM.  

 The change in recommended practice from classical (or frequentist) statistics to Bayesian 

statistics seems to have been occurring with little input from metrologists; those who actually use 

uncertainty analysis. Further, there is a degree to which history seems to be rewritten, with some 

authors claiming that the fundamental approach taken in GUM is one of describing measurands by 

distributions, as in a Bayesian analysis (e.g., Kacker et al 2007, Bich et al 2006). This paper 

summarises the concerns we have about these developments. Some of the concerns relate to a change 

in philosophy, which  implies changes in measurement practice and in how scientists represent the 

world. Other concerns are more practical: how do these changes impact the practical utility of 

uncertainty analysis, and are they improving the situation? We suggest that these changes are most 

definitely not trivial and we should be aware of their consequences. These issues have recently 

increased in importance because of the announcement of plans to revise the GUM and the intention that 

this revision will be along Bayesian lines (Bich et al 2006, Bich 2008, JCGM 2012) 

 Section 2 of this article discusses the rationale for uncertainty analysis. Section 3 is tutorial and 

describes the basic differences between the frequentist and Bayesian approaches. It also briefly 

describes the ‘fiducial’ view of data analysis, which is a view that some metrologists might hold 

without realising it. Section 4 discusses how these different approaches appear in the BIPM documents 

leading up to, including, and following on from the GUM of 1993/1995. Section 5 outlines various 

implications of accepting a Bayesian approach to uncertainty analysis, as advocated in Supplements 1 

and 2 to the GUM. Section 6 summarises and draws conclusions.  

 

2. The rationale for uncertainty analysis 
 

One of the characteristics of the debates between Bayesian and classical statisticians is a tendency to 

talk past each other.  The philosophies are so different that it seems impossible to find enough common 

ground and understanding to enable a proper debate to occur. It is appropriate, therefore, that we set the 

scene for the present debate about uncertainty analysis. 

 The rationale for uncertainty analysis does not seem to be well known or well understood by 

many users of the analysis, even some metrologists. Certainly the school-days explanation that 

“uncertainty is important because it measures the quality of the measurement”, is not especially helpful 

as it provides no guidance of what uncertainty means in practice or how to evaluate it.  Like many 

measurement practices, clarity can often be found by looking at how uncertainties are used.    

 Consider a biscuit manufacturer who states on the packets that the net weight of biscuits in the 

packets is 200 g. In New Zealand and many other countries, the practical meaning of such a statement 

is tied to consumer protection regulations and to the Average Quantity System (AQS), which requires 

the manufacturer to ensure that no packet is grossly under-filled and that the frequency of minor under-

fills is below some prescribed percentage. Ideally, the manufacturer understands that his measurements 

of gross and net weight are subject to error processes that lead to both variability and bias. To be sure 

of compliance with the AQS and to be confident that, say,  95% of the packets exceed the required net 

weight, the accept-reject criterion imposed on product leaving the production line is increased above 

200 g to account for the measurement errors. This situation is shown graphically in Figure 1 where we 

have characterised the measurement errors by a zero-mean (for simplicity) normal distribution. The 

shaded area represents the probability that a packet with a true net weight of 199 g would be measured 

to have a net weight exceeding 200 g and be accepted for sale. The addition of the guard band reduces 

the chance of accepting this underweight packet.  
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Figure 1: In order to avoid shipping underweight packets, the manufacturer includes a guard band to 

account for the errors in the calculated net weights. 

 

 When guard bands are used, there is often a compromise between two different risks or costs. In 

the case of the biscuits, the risk to the manufacturer is possible prosecution and bad publicity associated 

with selling underweight goods.  The cost is the small excess of product added to every packet to 

ensure compliance with the AQS.  The cost-risk compromise occurs with almost all measurement-

based decisions. Other examples include pasteurisation processes where microbial kill rate is traded for 

food quality, and petrochemical plants where productivity at high temperatures is traded against plant 

life and reliability.   

 Effective cost-risk compromises can only be reached if those making the decisions have realistic 

(i.e., not ‘optimistic’ or ‘conservative’) estimates of the uncertainties in the measurements on which the 

decisions are based. For example, a conservative uncertainty reported for the readings of the balance 

weighing the biscuit packets at the end of the production line would cause the manufacturer to 

unnecessarily increase the overfilling of the packets.  Similarly, an optimistic report of uncertainty 

would expose the manufacturer to prosecution.  

 In this example, and almost all other applications, uncertainty analysis is a tool for helping 

people manage the risks and costs associated with measurement-based decisions. To be useful and 

meaningful, the uncertainties reported on test reports and calibration certificates must accurately 

characterize real-world objects, processes and measuring instruments. That is, realistic estimates of 

uncertainty are the goal of uncertainty analysis, and our economies, our environment, and our lives 

depend on it. 

 

3. Different approaches to statistical inference 
 

There are two main statistical schools of thought, frequentist and Bayesian.  There is a third approach, 

fiducial inference, but it is generally not favoured in the statistical community. Loosely speaking, the 

Bayesian approach arose first, the fiducial approach was introduced in 1930 (Fisher, 1930) as a 

response to the Bayesian view, and the frequentist idea of a confidence interval was put forward in 

1937 (Neymann, 1937) as a response to the fiducial ideas. For many years, the only type of statistics 

taught at high-schools and university undergraduate level was frequentist. The Bayesian approach has 

enjoyed a revival in recent years, and so frequentist statistics is now often referred to as ‘classical 

statistics’. 

  Within the frequentist school there are those who favour (i) parametric methods, where the form 

of distribution of potential errors is specified and trusted, (ii) robust methods, where the form of 

distribution is specified but then methods of analysis that are relatively insensitive to errors in this form 

are sought, and (iii) non-parametric (or distribution-free) methods, where the form of the distribution 

need not be specified. Despite these different emphases, frequentist statistics can be seen as a single 

approach. The same cannot be said for Bayesian statistics, where there is a fundamental philosophical 

difference between subjective Bayesian statisticians who emphasise that ‘degree of belief’ is personal 

and subjective, and objective Bayesian statisticians who claim that an objective quantification of prior 

knowledge is possible. 

 The tools of frequentist and Bayesian statistics are mutually incompatible, and over the years 

there have been bitter disputes between their advocates. The basic difference in views relates to the 

scope of the idea of ‘probability’. A frequentist statistician uses the idea of probability only when 

considering the potential outcome of a hypothetically repeatable process, such as the tossing of a coin 

or the conduct of a measurement. In contrast, a Bayesian statistician is prepared to associate a 

probability with any hypothesis, the truth or falsehood of which is unknown to him. The frequentist 

argues that uncertainty arises from random events in the real world, and that probability relates to the 
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observed frequency of those events. The Bayesian argues that uncertainty arises because of the 

observer’s lack of knowledge about the world, and, therefore, uncertainty lies within the observer’s 

mind and probability measures a degree of belief. 

 To further elaborate on the differences, consider the idea that Barack Obama will be re-elected 

in the forthcoming US presidential election. A frequentist would be unwilling to attribute any 

numerical probability to this event because the election cannot be seen as a hypothetically repeatable 

process. However, a Bayesian statistician would consider it legitimate to attribute a probability to 

represent his strength of belief about the outcome. In the same way, a Bayesian would have no qualms 

attributing a probability to the hypothesis that Boltzmann’s constant, k, exceeds 1.38065  10


 J K


, 

but a frequentist would find no meaning in this idea. The relationship attributed a probability, 

k > 1.38065 10


 J K


, is a relationship between
 
two constants, one an unknown fundamental 

constant of nature, and the other an explicit real number. No hypothetically repeatable experiment can 

be envisaged when such a statement is made, so this is not a usage of probability that a frequentist 

would regard as scientific. (Note that colloquial usage of the term probability is often consistent with 

the Bayesian interpretation.) 

 The idea that probability means ‘degree of belief’ to a Bayesian but not to a frequentist is often 

said to be the difference between the two approaches. However, this distinction is not especially helpful 

or discerning. The probability a frequentist attributes to an event clearly describes his degree of belief 

about the next outcome of a repeatable process, so a frequentist probability is also interpretable as a 

degree of belief.  Thus, focusing on the nature of probability misses the point; instead the difference is 

found in the scope of probability.  Frequentists only attribute probabilities in situations where 

probability assignments are potentially testable by repetition. Bayesians do not require repeatability and 

testability.     

 

3.1 Frequentist statistics and confidence intervals 
 

For the frequentist, a numerical value of a probability is the limit of relative frequency in a large 

number of trials. In the scientific context, an experiment is considered to be one of an infinite sequence 

of possible repetitions of the same experiment. The experiment is understood to involve the drawing of 

observations (samples) from a distribution representing the population of potential observations. Before 

the sampling, a technique of analysis will have been found that, with respect to the randomness in this 

sampling, has a specified high probability of leading to a correct conclusion being drawn.  

 The basic tool of the frequentist statistician is the ‘confidence interval’, which is a random 

interval with a specified probability of covering the parameter being estimated. For example, if we 

employ a 95% confidence interval for the unknown mean of a population then there is a probability of 

0.95 that the sampling process will result in a statement “lower limit  unknown mean  upper limit” 

that is true. 

 

Example 1:  Frequentist measurement of Boltzmann’s constant 

Suppose we wish to measure Boltzmann’s constant, k, using an unbiased method that is known to 

generate normally distributed errors. So k is the unknown mean of the potential population of 

measurement results, and the task of the measurement is to estimate this mean. 

 The first step is to define the statistical model of the process and the analysis procedure. In this 

case, we will make n individual measurements of k and we assume that the n observations will be 

drawn independently from a normal (Gaussian) distribution with unknown mean k and unknown 

standard deviation We let X  denote the random variable for the sample mean, and S
 2 

 denote 

the random variable for sample variance.  In this case, the analysis tells us that the random 

interval, 

  0.975, 1 0.975, 1/ , /n nX t S n X t S n 
  
 

 (1)  

 

has probability 0.95 of containing k. Here t0.975,n1 is the 0.975 quantile of the t-distribution with 

n1 degrees of freedom.  This random interval (1) is called a 95% confidence interval for k.  

 The observations are now made, and we calculate the numerical values x  and s
2, 

which are the 

outcomes or realizations of the random variables
 
X  and  S

2
. The interval  

 

  
0.975, 1 0.975, 1/ , /n nx t s n x t s n 

  
 

 (2) 
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is also calculated. This numerical interval is the realization of the 95% confidence interval (1).  

Note the careful usage of the term probability in these statements. Before the measurements are 

taken, the random interval (1) has probability 0.95 of containing k. After the measurement and the 

computations have been completed, the results are all constants and no randomness or chance 

remains. Therefore, after the process, the frequentist statistician does not speak of probability, but 

says that we are 95% ‘confident’ that k lies in the constant numerical interval (2). □ 

 

 The merit of the frequentist approach is the fact that, subject to the adequacy of the statistical 

assumptions and models of a situation, the rigorous theory means that the long-term success rate of 

confidence intervals is as claimed. That is, 95% of all the realized 95% confidence intervals calculated 

in independent measurement problems will contain the actual values of the measurands.  Indeed, the 

basic frequentist philosophy is that of realizing confidence intervals that achieve a long-term success 

rate equal to the stated level of confidence.  

 

A point of language  

The random interval (1) is the 95% confidence interval for k. However, the known numerical interval 

(2) is also often referred to as a ‘confidence interval’. This is unhelpful, because the correct idea that 

before the measurement the random interval had probability 0.95 of covering k becomes confused with 

the notion that after the measurement the unknown quantity k has probability 0.95 of lying in the 

known numerical interval calculated. That notion is meaningless in frequentist statistics because a fixed 

but unknown quantity cannot be treated as a random variable. So it seems better to call (2) the realized 

confidence interval for k. 

 This kind of issue also leads to the mixing of the idea of a confidence interval and a prediction 

interval. A confidence interval is a random interval with a specified probability of covering a fixed 

quantity. A prediction interval (or, simply, probability interval) is a fixed interval within which a 

random variable has a specified chance of falling.      

 

3.2 Bayes’ theorem 

 

In its simplest form, Bayes’ theorem describes a relationship between conditional probabilities. 

Consider someone given a test for a disease known to occur in 1% of the population.  The test is 80% 

reliable for detecting those with the illness and 90% reliable for identifying those without the disease.   

If the person receives a positive test result, what is the chance that he has the disease? The problem is 

easily solved by considering frequencies.  If 10,000 people are tested, the test will correctly identify 

80% of the 100 people that have the disease. However the results are greatly complicated by the fact 

that the test will incorrectly identify 10% of the remaining 9,900 people as having the disease, these 

test results being ‘false positive’ results.  The probability that a person selected randomly from those 

who test positive actually has the disease is therefore 80/(80+990) =  7.5%.  Mathematically the result 

is expressed in terms of conditional probabilities using Bayes’ theorem: 

 

  
Pr( | ) Pr( )

Pr( | )
Pr( )

B A A
A B

B


 , (3) 

 

where A represents having the disease, B represents testing positive for the disease, and Pr(A|B) means 

the probability of having the disease on the condition that the test result is positive. The numerator of 

this expression can be written as  Pr A B  or Pr(A and B). In words, the expression then reads “the 

probability that a person who tested positive has the disease is equal to the probability of having the 

disease and testing positive, divided by the probability of testing positive with or without the disease. 

Expression (3) is evaluated as 

 

Pr( | ) ( )
Pr( | )

Pr( | ) ( ) Pr( | not ) Pr(not )

0.80 0.01
0.075.

0.80 0.01 0.1 0.99

B A P A
A B

B A P A B A A




  


 

  

 

 

 This computation is regarded as meaningful by all statisticians, but the interpretations of the 

situation differ. A frequentist sees the disease-status of a random person selected from the population 

as a random variable with the Bernoulli distribution with parameter 0.01 and sees the disease-status of 
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a random person drawn from those who test positive as a random variable with the Bernoulli 

distribution with parameter 0.075. In contrast, a Bayesian regards the disease-status of the particular 

person tested as a random variable with the Bernoulli distribution with parameter 0.01 before the test 

and with parameter 0.075 after a positive test.  The result would also be expressed in different ways. A 

frequentist would say ‘the probability that a random person selected from those who test positive has 

the disease is 7.5%’ but a Bayesian would say to the particular person ‘there is a 7.5% probability that 

you have the disease’. 

 So Bayes’ theorem in the form (3) is accepted by all statisticians. However, as we now describe, 

Bayesian statistics involves more than just the use of Bayes’ theorem. 

   

3.3 Bayesian statistics and credible intervals 
 

Although the field of Bayesian statistics has a number of different strands, there are two basic ideas 

common to all Bayesian approaches: 

 

 Bayes’ theorem is used systematically (Ledermann and Lloyd, 1984), and 

 all unknown quantities are treated as random variables (Marriott, 1990). 

 

A loose but helpful definition of a random variable is ‘anything that can be made the subject of a 

probability statement’. In Bayesian statistics such statements must be in the form of full probability 

distributions. Bayes’ theorem is reinterpreted or reformulated so that  

 

 Pr(A) is a distribution (the prior distribution) representing the ‘state of knowledge’ (or degree of 

belief) about parameter A before the measurements B are taken 

 Pr(B|A), which is called the likelihood function, indicates the probability of obtaining 

measurement results B with that value of parameter A, and   

 Pr(A|B) is the posterior distribution representing the state of knowledge about parameter A after 

the new information has been gained from the measurements.   

 

When the probability distributions involved are continuous, equation (3) is rewritten to better represent 

the operation as 

 

 
Pr( | )

Pr( | ) Pr( )
Pr( | ) Pr( )

B A
A B A

B A A dA



. (4) 

 

The denominator is simply a normalising factor, so operationally, (4) can be described as 

 

posterior probability   likelihood function  prior probability. 

 

 The evaluation of (4) can be computationally expensive. In general, it must be carried out 

numerically, especially when many measurements of different parameters are involved. However, there 

are also known families of ‘conjugate distributions’ for which the computations are simple with known 

relationships between the prior and posterior distributions. For example, if the prior distribution is 

normal and the likelihood function Pr(B|A) is normal, then the posterior distribution will also be normal 

(Ledermann and Lloyd, 1984). This case is illustrated in Example 2 below. 

 The Bayesian approach is controversial because of the difficulty in specifying prior distributions 

that are acceptable and meaningful to all those asked to accept the results of the analysis. In the medical 

example above, this was not a problem because the prevalence of the disease was known by all to be 

1%. The prior probability that anyone had the disease was taken to be 0.01, so the prior distribution for 

the disease-status of the person was the Bernoulli distribution with parameter 0.01. However, if the 

example had instead begun with ‘Consider a person who goes to a doctor complaining of symptoms of 

the disease’ then, because of the existence of symptoms, the Bayesians’ probability prior to the test that 

that person had the disease should be higher than the known level of prevalence. The result will be that 

the posterior probability that a Bayesian should calculate must be higher than 7.5%. But by how much 

should the prior probability be increased, and on whose judgement should the increase be based, and 

how much does it depend on the severity of the symptoms? This simple change in wording shows the 

kind of difficulty that must be tackled in a Bayesian analysis. 
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Example 2: Bayesian measurement of Boltzmann’s constant 

Consider the measurement of Boltzmann’s constant k in the case where  is known. Again, there 

are n observations with sample-mean random variable X  and observed sample mean x . Equation 

(4) can be written as  

 

  
 
 

prior

post

prior

| ( )
( )

| ( )

p X x k z p k z
p k z

p X x k z p k z dz

  
 

  
 

 

where p( X = x  |k = z), the likelihood function, is the probability density that the random variable 

X would take the observed value x on the condition that k  is equal to the dummy variable z, and 

where pprior(k = z) and ppost(k = z) are the prior and posterior probability densities attributed to the 

idea that k = z . 

 The sampling model assumes that X is normal with unknown mean k and variance 2
/n. 

The prior density function pprior(k = z) expresses the experimenter’s belief or knowledge about k 

prior to the measurement. If this prior density function is normal with mean xprior and variance 



prior then it turns out that the posterior distribution of k is also normal with mean and variance   

 

 

2 2

prior prior

post 2 2

prior

x nx
x

n

 

 





           and          

2 2

2

post 2 2

prior

priorn

 


 



, 

 

respectively. So the posterior mean is a weighted mean of the prior mean and the sample mean. 

Note too that the posterior variance is smaller than the classical variance, 2
/n, because of the 

additional prior knowledge incorporated into the problem.  This is also an example of the 

application of conjugate distributions, where there are simple formulae relating the parameters of 

the prior and posterior distributions.  

 So, after the measurement, the Bayesian considers there to be probability 95 % that k lies in the 

interval post post post post1.96 , 1.96x x     . Such an interval is called a 95% credible interval for k.  

 Note that the wording and interpretation for the credible interval are different from those for the 

realized confidence interval. After the measurement, the Bayesian says `I now consider it 95\% 

probable that k lies in the interval post post post post1.96 , 1.96x x     ’. □ 

  

 Example 2 has been written with the prior distribution for k reflecting the experimenter’s actual 

prior belief about k, and is an example of a subjective Bayesian analysis. The results of the analysis 

will be meaningful to that experimenter but not necessarily to anyone else. Indeed, we should expect 

every scientist to have slightly different prior beliefs and therefore to have slightly different posterior 

beliefs, even after viewing the same experimental data. Such subjectivity in science is usually 

discouraged, and so an objective Bayesian analysis might be more appealing. 

 

3.4 Objective Bayesian Statistics 
 

In a Bayesian analysis, a full prior distribution must be specified for each unknown parameter. One of 

the biggest objections to the subjective Bayesian approach is the high degree of subjectivity associated 

with the selection of these distributions. For example, in an international comparison, each 

participating laboratory would be at liberty to choose the type of distribution that describes their state 

of knowledge of the travelling artefact, and this highly personal and subjective estimate would have an 

impact on the posterior distribution, and hence also on the value and uncertainty assigned to the 

measured artefact. 

 Different approaches to the subjectivity problem are (i) to assume no prior knowledge of the 

parameter value or (ii) to use formal rules to construct a prior distribution from any information that 

might be available, e.g., a pair of bounds, or (iii) to make a choice that will have minimal effect on the 

posterior distribution. These approaches belong to the field of objective Bayesian statistics. Probability 

retains its interpretation as a degree of belief, but the idea that this is any single person’s real belief is 

not apparent. Indeed, critics of the objective Bayesian approach question the meaning of the posterior 

distribution derived from such an analysis. 
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 One popular way of choosing a prior distribution in objective Bayesian statistics involves 

Jeffreys’ principle of invariance (Jeffreys 1961). Different Jeffreys’ priors are used according to the 

different assumptions about the distributions of measurement results. Typically, these are improper 

distributions in that they do not integrate to unity, so no statements of actual prior probability can be 

made from them. However, it turns out that the posterior distributions obtained using these priors are 

often proper. 

 

Example 3: Objective Bayesian measurement of Boltzmann’s constant 

In most practical measurements, both the mean and the standard deviation of the population of 

potential results are unknown, in which case there are two unknown parameters and the Bayesian 

analysis involves integration in two dimensions. So now we return to the formulation of 

Example 1, where  is unknown. The individual prior distributions advocated by Jeffreys in this 

situation are the improper density functions 

 

pprior(k  = z) = constant, 

 

for the mean, so that every value between  and + is deemed equally likely a priori, and  

 

pprior(  = z)   1/z, 

 

which is equivalent to pprior(log   = z) = constant, so that every value of log   is deemed equally 

likely a priori. In this situation, Jeffreys apparently favoured the use of these distributions 

independently (even though his general principle suggests otherwise).  

 As before, let x  and s be the observed numerical values of the sample mean and sample 

standard deviation from the sample of size n.  With the prior distributions held independently, the 

posterior distribution of k turns out to be the distribution of x + (s/√n)T where T is a variable with 

the t-distribution with n1 degrees of freedom. The credible interval containing the central 95% of 

this distribution is 

 

0.975, 1 0.975, 1/ , /n nx t s n x t s n 
  
 

 

 

which is the same as the realized confidence interval of the frequentist analysis of Example 1. □ 

  

 Thus, when n measurements are drawn from a normal distribution centred on the actual value of 

the measurand, and when the prior distributions recommended by Jeffreys for the unknown mean and 

variance of this distribution are used, the posterior distribution for the actual value of the measurand is 

a shifted and scaled version of the t-distribution with n1 degrees of freedom: the same distribution as 

used classically to construct confidence intervals for the value of the measurand. 

 The equivalence of the numerical intervals obtained in the classical and Bayesian analyses has 

an aesthetic appeal, but the results do not have the same interpretation.  For the frequentist, the realized 

confidence interval is the output of a procedure that, before the measurements were made, had a 

frequentist probability of 95% of generating an interval containing the value of the measurand. To the 

Bayesian, after the measurement there is 95% degree of belief that the measurand lies within the 

credible interval. 

   

3.5 Fiducial statistics and fiducial intervals 
 

The concept of ‘fiducial probability’ is due to Sir Ronald Fisher, the giant of 20
th

 century statistics 

(Fisher 1930). He wanted to develop an approach in which a probability distribution could be attributed 

to an unknown fixed quantity using only the data and the sampling model, e.g., normal. This would 

avoid the controversial Bayesian step of having to specify a prior probability distribution. 

 

Example 4: Fiducial measurement of Boltzmann’s constant 

Suppose, for simplicity, we measure Boltzmann’s constant k using an unbiased technique with a 

normally distributed error having known standard deviation . Let X denote the random variable 

for the measurement result. Then X has the normal distribution with mean k and standard deviation 

. Let x be the numerical measurement result, (so x is the realization of X). Then, according to the 

fiducial idea, after the measurement we can consider k to have the normal distribution with mean x 

and standard deviation . This would be called the ‘fiducial distribution’ of k. So the subject of the 
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probability statement is changed from the random variable X to the unknown parameter k. (A 

reflection of the form of the distribution is involved, but in this example this reflection is not 

obvious because the normal distribution is symmetrical.) □ 

 

The fiducial way of thinking might be unwittingly adopted by many scientists, especially in 

the way they speak of probability. Although historically significant as a precursor to frequentist 

statistics, it is now accepted that the fiducial argument may only be valid in a limited range of 

problems. Difficulties exist with generalising the fiducial argument to problems with more than one 

parameter, and it was described in a review article of 1978 as ‘‘essentially dead’’ (Pedersen, 1978). In 

fact, Fisher only presented it for use in a subset of problems (Edwards, 1976).  

These comments notwithstanding, Wang and Iyer (of NIST and the University of Colorado 

Boulder, USA) and their colleagues have presented a number of accurate and well-argued papers 

involving fiducial probability (e.g., Wang and Iyer 2006, 2009). In these papers, the authors usually 

evaluate their methods by examining success rates at fixed values of the unknown parameters. So, in 

accordance with frequentist thinking, the fiducial approach is being put forward as a means of 

achieving an appropriate success rate rather than as a philosophy of inference.  

 

4. The GUM documents 
 

Now that we have described the differences between the different statistical paradigms, we can 

properly consider the ancestry and philosophy of the GUM.  

 

4.1 History and initial comment 

 

Prior to 1980, there was no universally accepted approach to uncertainty analysis. Instead, ‘error 

analysis’ was based on a variety of approaches, typically with separate treatments of ‘random’ and 

‘systematic’ errors. Usually, random errors were added in quadrature and systematic errors were added 

linearly.  In many industries, particularly in military, aircraft, and automotive industries, there were 

codes of practice based on this approach.  However, there were difficulties. There were definitional 

problems; e.g., the term ‘error’ applied to the specific numerical error occurring in a measurement and 

also to the standard deviation (standard error) used to characterise a distribution of random numerical 

errors.  Similarly, the term systematic had meanings ranging from any observed bias to an error for 

which there was possibly an explanation. Perhaps the biggest problems arose when combining the two 

types of error assessments when determining the tolerance and guard bands for manufacturing and 

quality control processes. 

 In 1980, a working group of experts convened by the BIPM suggested a new unified uncertainty 

analysis. This is described in the report of the group (Kaarls, 1980), which we discuss in Section 4.2, 

and an accompanying recommendation, Recommendation INC-1 (1980), which is addressed in Section 

4.3. This recommendation was published in Metrologia (Giacomo, 1981), approved by the CIPM in 

1981 (Giacomo, 1982) and reaffirmed in 1986 (Giacomo, 1987). In the new approach, all measurement 

errors would be characterised by a single parameter, a standard deviation, now termed the standard 

uncertainty. Errors would still be classified as random or systematic, but the focus of the analysis 

would be on the processes by which the contribution of each source of error would be assessed and not 

on the nature of the errors. Thus, Type A uncertainties were derived from the statistical sampling of the 

errors occurring in a measurement, whereas Type B uncertainties were derived from assessment 

processes other than sampling (e.g., theory, historical reports, subsidiary measurements, guesswork). 

As will be seen, the wording of the report shows that the driving philosophy for a Type B assessment 

was one of regarding the corresponding standard deviation as a property of a distribution of potential 

estimates centred on the unknown value of the measurand. This is entirely consistent with the 

frequentist view of statistics. 

 Over the next 10 years or so, Technical Advisory Group 4 (TAG4) of the ISO prepared the 

document eventually approved and published as the GUM. The GUM states (Section E.3.5) 

“Recommendation INC-1 (1980) upon which this Guide rests…”, so we can interpret the GUM as 

claiming consistency with and authority from Recommendation INC-1.  However, as will be seen in 

Section 4.4, while still fundamentally frequentist, the GUM in its description of the Type B assessment 

process hints at the idea that the measurand is considered to have a probability distribution centred on 

the measurement result. This idea is, in effect, Bayesian, and is inconsistent with the predominantly 

frequentist nature of the rest of the GUM.  

 In 1995, Kacker and Jones (1995) published a paper pointing out this inconsistency and 

recommended that Type A evaluation be brought in line with Type B evaluation by adopting a 
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Bayesian understanding for the whole of the GUM. The basic suggestion of Kacker and Jones has been 

adopted in the first two supplements to the GUM (JCGM 2008b, 2011). These supplements are 

Bayesian, though, as we shall see in Section 4.5, they appear confused in respect to subjective and 

objective Bayesian principles.  

 

4.2 Report of the Working Group of 1980 

 

The Working Group discussed the basic problem of combining uncertainties due to the two types of 

errors. The body of the report issued by the Working Group (Kaarls 1980) makes clear that there was to 

be a shared treatment of errors associated with random observations (category A) and all other errors 

(category B). This is summarized in the statement (Kaarls, 1980, p.7) 

 
The only viable solution to this problem, it seems, is to follow the prescription contained in the well-known 

general law of “error propagation”. The essential quantities appearing in this law are the variances (and 

covariances) of the variables (measurements) involved. This then indicates that, if we look for  “useful” 

measures of uncertainty which can be readily applied to the usual formalism, we have to choose something 

which can be considered as the best available approximation to the corresponding “standard deviations”. 

 

The variances described are variances of measurements. Consequently they are to be understood as the 

variances of the errors in the measurement results, not as variances attributable to measurands. The 

working group also writes (Kaarls, 1980, p.6): 

 
The traditional distinction between “random” and “systematic” uncertainties (or “errors”, as they were often 

called previously) is purposely avoided here, ... 

 

and (Kaarls, 1980, Abstract) 

 
The new approach, which abandons the traditional distinction between “random” and “systematic” 

uncertainties, recommends instead the direct estimation of quantities which can be considered as valid 

approximations to the variances and covariances needed in the general law of  “error propagation”. 

 

and (Kaarls, 1980, p.8) 

 
In these approaches it is necessary to make (at least implicitly) some assumption about the underlying 

population. It is left to the personal preference of the experimenter whether this is supposed to be for instance 

Gaussian or rectangular.  
 

So a systematic error is seen as being drawn from some population of errors with a distribution 

specified by the experimenter. This approach enables a harmonized treatment of systematic and 

random errors consistent with frequentist statistics. 

 

4.3 Recommendation INC-1 

 

The report of the Working Group contained Recommendation INC-1, (which can be read in Clause 0.7 

of the GUM). Regrettably, this recommendation is not as clear as the body of the original report. The 

relevant clauses in this recommendation are: 

 
2. The components in category A are characterized by the estimated variances, s i

2, (or the estimated “standard 

deviations” s i) and the number of degrees of freedom, i. Where appropriate, the estimated covariances should 

be given. 

 
3. The components in category B should be characterized by quantities u j

2, which may be considered as 

approximations to the corresponding variances, the existence of which is assumed.  The quantities uj
2 may be 

treated like variances and the quantities uj like standard deviations. Where appropriate, the covariances should 

be treated in a similar way. 

 
4. The combined uncertainty should be characterized by the numerical value obtained by applying the usual 

method for the combination of variances. The combined uncertainty and its components should be expressed in 

the form of “standard deviations”. 

 

These statements do not make clear the intended idea that the variances are properties of 

measurements, i.e., properties of the measurement results, and not properties of measurands. The 
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recommendation does not clearly indicate that the quantities given variances are errors. A person who 

reads the recommendation but does not read the report itself is left in some doubt (especially with 

regard to Type B evaluation) about what entities are to be considered random and, therefore, what 

entities are to be attributed standard deviations. 

 

4.4 The GUM 
Over the next 10 years or so, Technical Advisory Group 4 (TAG4) of the ISO prepared the document 

eventually approved and published as the GUM. Perhaps as a consequence of the unintentional 

omission just described in Recommendation INC-1, the GUM contains incompatible statistical ideas.  

 

 Type A evaluation is undeniably frequentist. The only distributions involved are the distributions 

of potential measurement results or errors. Clause 4.2, Example H.3 and Example H.5 of the 

GUM give classical analyses of data and make no mention of any other approach being taken. 

Also Annex C, which is entitled ‘Basic statistical terms and concepts’, is completely classical. 

 

 However, the nature of the Type B evaluation seems Bayesian or fiducial in nature, where a 

distribution for an unknown non-random quantity is constructed around its estimate xi. For 

example, Clause 4.3.5 describes an input quantity X i as having probability 0.5 of lying in an 

interval between known limits and that ‘the best estimate x i of X i can be taken to be the midpoint 

of this interval’. This suggests that a probability distribution is being assigned to a fixed unknown 

quantity, as in the fiducial or Bayesian approaches. But neither of those approaches is 

acknowledged anywhere in the GUM, and there is no mention of the concept of a prior 

distribution. 

 

 The combination of results from Type A and Type B evaluations is frequentist. Annex G describes 

a way of calculating an effective number of degrees of freedom in a way conforming to a 

frequentist understanding. This involves the use of the Welch-Satterthwaite formula, which is an 

approximation derived under the frequentist view. The corresponding formula in a Bayesian 

analysis would be different (Willink, 2003, Appendix B). 

 

So Type A evaluations and combined uncertainties are demonstrably frequentist, while the Type B 

evaluations seem Bayesian.   

 We can gain further insight into the intention of the GUM by noting that many of the clauses in 

which the GUM appeals to the idea of degree of belief are stated in terms of an ‘event’. (See clauses 

2.3.5, E.3.5 and E.4.4.) For example, clause 3.3.5 says  

 
.… a Type B standard uncertainty is obtained from an assumed probability density function based on the 

degree of belief that an event will occur … 

 

A difficulty is caused when ‘an event’ is understood to be ‘the value of the measurand falling in a 

known interval’ (making Type B evaluation incompatible with Type A evaluation) instead of ‘the 

corresponding measurement error falling in a known interval’ (which would make Type B evaluation 

compatible with Type A evaluation). So, arguably, a lack of clarity about what constitutes an ‘event’ 

has contributed to this inconsistency. 

 

4.5 GUM Supplements 
 

The inconsistency between the bases of Type A and Type B evaluation was noted by Kacker and Jones 

(1995) who described a Bayesian modification to Type A evaluation to make the GUM internally 

consistent. The suggestion of Kacker and Jones has been taken up by JCGM Working Group 1 in the 

production of Supplements 1 and 2 to the GUM (JCGM 2008b, 2011). These supplements describe 

approaches that correspond, broadly speaking, to Bayesian statistics. The approach adopted can be 

understood as follows.  

 Clause 1 of Supplement 1 says: 

 
As in the GUM, this Supplement is primarily concerned with the expression of uncertainty in the measurement 

of a well-defined physical quantity – the measurand – that can be characterized by an essentially unique value.  

 

So the quantity being studied is fixed but unknown. Also, Clause 5.1.1 (a) says 

 
1) define the output quantity Y, the quantity intended to be measured (the measurand); 
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2) determine the input quantities  X = (X1,…,XN)T upon which Y depends; 
 

and Clauses 5.11.4 (a), (c) and (d) say,  

 
[In this Supplement] PDFs are explicitly assigned to all input quantities Xi… 

 

and   

 
a numerical representation of the distribution function for Y is obtained … 

 

and   

 
since the PDF for Y is not in general symmetric, a coverage interval for Y is not necessarily centred on the 

estimate of Y. 

 

(The acronym PDF stands for probability density function.) Also, for example, Clause 6.1.1 says 

 
This clause gives guidance on the assignment … of PDFs to the input quantities Xi …Such an assignment can 

be based on Bayes’ theorem or the principle of maximum entropy. 

  

So Supplement 1 is adopting the idea that fixed unknown quantities can be described by probability 

distributions. This is the fundamental step that is incompatible with classical statistics. This step is 

either fiducial or Bayesian. 

 Therefore the Supplements are not in keeping with the intentions of the original working group 

of 1980 – which must also be intentions of those who wrote the GUM.  However, there seems to be 

little recognition of this fact. Likewise the supplements are inconsistent with the views held by other 

groups around the world who use the GUM (see section 5.4). 

 

5. Issues and implications  

 

The review of the GUM-related documents shows that there has been a gradual shift in philosophy in 

the BIPM’s recommendations for uncertainty analysis from purely frequentist in the late 1970s with the    

report of the BIPM working group, through the predominantly frequentist but mixed approach of the 

GUM of the 1990’s, to a purely Bayesian approach in the 2000’s with the publication of the GUM 

supplements.  The indications are that we should expect the forthcoming review of the GUM to result 

in a major change from frequentist to Bayesian in both philosophy and the mathematical machinery of 

uncertainty analysis (Bich et al 2006, Bich 2008, JCGM 2012). But will this be good for metrology?   

 In this section we explore some of the consequences of a shift to Bayesian statistics; in 

particular, we consider the Bayesian approach as portrayed in the GUM supplements. The issues raised 

can be categorised roughly as philosophical, computational, performance-related, and ‘other’. 

 

 

5.1 Philosophical Issues  

 

The Nature of Probability and the Measurand 

For the Bayesian, uncertainty lies in the experimenter’s mind and probability measures the degree of 

belief about a hypothesis. One of the major consequences of this view is that a measurand is no longer 

represented in the analysis as if it had a single well-defined value. Instead, the incomplete state of 

knowledge about a measurand leads to the representation of the measurand by a probability 

distribution. Note that the distribution relates to the experimenter’s state of knowledge of the 

measurand and not to the errors in the measurements of the measurand.  Similarly, where a measurand 

is a known function of measurable components, e.g., density = mass / volume, each unknown 

component is also represented by a probability distribution. This approach might be useful in some 

areas of science where measurands such as the efficacy of drugs or competition between species, can 

be difficult to define in any empirical sense. However, much of modern physics is based around the 

idea that the quantities we measure do have single but unknown values. This is the case for the 

fundamental physical constants and many of our physical standards. This view is also reflected in some 

of our terminology [VIM, e.g., 2.11, 2.13, 2.14, 2.16, 2.17]. 

 One of the less desirable consequences of the change in mind-set is that we will be less inclined 

to think about errors and the distributions of errors in measurements. Instead, we focus on distributed 
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influence variables and the non-trivial computation of the posterior distributions.  Note too that the 

computations required for the objective Bayesian analysis recommended by the Supplements are purely 

numerical, and therefore obscure underlying physical relationships.  We may no longer recognise zeros 

or particular functional forms in uncertainty expressions because the algebraic uncertainty expressions 

will not exist.  The insights available from algebraic expressions will instead be obscured by an 

unwieldy multivariate numerical computation with a single numerical result. In fact, the computational 

difficulties and lack of transparency associated with the Bayesian approach (especially objective) have 

been blamed for excessive effort being spent on understanding the computation and less effort being 

spent on model validation.  

 

Philosophical Consistency of the Supplements 

We have observed that the GUM is not philosophically consistent, and we suggest that this has opened 

the door for the GUM Supplements to claim a Bayesian precedent in the GUM. A similar objection can 

be raised against the supplements themselves. In the supplements, Type B assessments are made 

according to the subjective Bayesian approach, where the experimenter chooses the distribution he 

thinks best describes his state of knowledge, but Type A assessments are made according to objective 

Bayesian practice, where the experimenter is, in effect, required to use the priors advocated by Jeffreys. 

As we have sought to show, objective and subjective Bayesian statistics correspond to two different 

philosophies. 

 

Objective versus Subjective  

As we observed in Example 2, the Jeffreys’ prior for the expected value extends from – to +. The 

Supplements are implying that this distribution represents our initial state of knowledge about all 

variables assessed by Type A methods.  However, a large number of the quantities of interest to us 

such as mass, temperature, and electrical resistance are demonstrably positive; negative values are 

usually impossible. In many cases, especially with our physical standards and fundamental constants, 

the values are known to rather high precision; standard resistors for example are routinely 

manufactured to tolerances of 0.002%. One of the supposed benefits of the Bayesian approach is the 

ability to incorporate prior knowledge, but the Supplements’ recommendation of the Jeffreys’ prior 

betrays that ideal. Indeed, most subjective Bayesians would argue that the objective Bayesian approach 

is fundamentally at odds with this basic premise of Bayesian statistics.   

 

 

5.2 Computational Issues 

 

Non-existent moments 

In Bayesian analysis, the equivalent of uncertainty propagation is carried out by propagation of 

distributions (which is convolution in the linear case). We have seen, in Example 3, how the Type A 

assessment recommended by Supplement 1 leads to t-distributions for the posterior distributions of the 

values of measured quantities. The t-distribution for 1 degree of freedom is a Cauchy (or Lorentz) 

distribution, which has neither mean nor standard deviation. This lack of a mean and standard deviation 

persists through convolution. So, for example, if a minor influence variable is sampled with two 

measurements, the resulting posterior distribution for the main measurand also has no mean or standard 

deviation, no matter how insignificant the influence variable. But according to Supplement 1, the best 

estimate and standard uncertainty are to be the mean and standard deviation of the posterior distribution 

of the measurand. So what figures should be assigned to the best estimate and standard uncertainty in 

this situation, and what will these figures actually mean? 

 This problem occurs often. If the sample size is n then the r
th

 moment of the posterior 

distribution is finite only for r < n 1. Thus, the posterior distribution for polynomial functions of the 

measurand may or may not have a mean and standard deviation depending on how many samples are 

taken.  This is not just an issue with small sample sizes. For the non-linear quantity Y = exp(X), which 

is given by the infinite series 

 
2 3

1 ...
2! 3!

X X
Y X     , 

 

the expected values of Y and Y
 2
 can only exist when an infinite number of measurements are made (see 

Willink (2010)). Thus, for many measurements, the idea that the best estimate and standard uncertainty 

can be equated to the mean and standard deviation is problematic. 
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Non-linear functions 

The previous paragraphs highlight just one aspect of the problems encountered with non-linear 

functions in objective Bayesian analysis. Analysis of a non-linear measurement model, say f(X), can be 

difficult at the best of times simply because E{f(X)}≠f (E{X}), and this affects any method of 

uncertainty analysis, including the procedures of the GUM. However, the objective Bayesian approach 

adds yet another twist. Consider the reading of an electronic resistance thermometer using a non-linear 

sensor such as a thermistor. Which is the measurand, the temperature or the thermistor resistance, and 

to which is the uniform prior distribution attributed? The two analyses will not give the same result and 

there is nothing to suggest which is correct.  

 

Computational inconsistencies 

There are inconsistencies amongst the various evaluations of Type A uncertainty in the different GUM 

documents. To illustrate this problem, consider an average of n measurements of the same quantity, 

with a sample variance, s
2
. In the GUM, the standard uncertainty is the familiar figure s/√n, but in 

Supplement 1 (Clause 6.4.9.4) the standard uncertainty is taken to be  

 

  
1

( 3)

n
s

n n




.  

 

The root cause of this change is that the meaning of the standard uncertainty has changed. In the GUM, 

it is the square root of the unbiased estimate of the variance in the mean of the measurements. In 

Supplement 1 it is the standard deviation of the state-of-knowledge (i.e., posterior) distribution used to 

describe the value of the measured quantity. For large numbers of samples the differences will not be 

great, but for small numbers, the Bayesian standard uncertainty could be 70% larger than the classical 

figure. 

 There is a similar inconsistency between the Type A evaluations in Supplement 1 and in 

Supplement 2, which deals with multi-output quantities. Suppose n measurements are made of voltage 

V and current I simultaneously, and the uncertainty analysis is carried out using Supplement 2.  Once 

again, s
2
 is the sample variance for the n recorded voltages. The standard uncertainty calculated for V is 

the standard deviation of the marginal distribution for V derived from the joint posterior distribution of 

V and I. The standard uncertainty in this case is (Clause 9.4.2.5) 

 

  
1

( 4)

n
s

n n




, 

 

which is not the same the figure  ( 1) / ( 3)s n n n   promoted in Supplement 1 (and could be as 

much as twice the classical result). The mere fact that we have measured the current at the same time 

has changed the standard uncertainty in our estimate of voltage!  Moreover, if n measurements of phase 

were also measured at the same time, as in Example 9.4 of Supplement 2, then the standard uncertainty 

is  ( 1) / ( 5)s n n n  . Example 9.4 involves a sample of size n = 6, so the standard uncertainty 

calculated for V using the method of Supplement 2 is √5 times the figure calculated using the GUM. 

The expanded uncertainties will differ similarly.  

 

 

5.3 Performance issues 

 

Definition of good performance  

Although most people might accept that the frequentist and Bayesian views of probability differ, most 

people would also require the two meanings of probability, as applied in resolving real life decisions, to 

have the same practical outcome. This was the principle we supported in Section 2 when discussing the 

rationale for uncertainty analysis. The practical outcome of a method of uncertainty analysis must be 

that 

 

i. the resulting statements made about the value of the measurand are correct (i.e., the interval 

contains the value of the measurand) on at least the implied proportion of occasions, e.g. 95%,  

ii. the statements are as informative as possible (i.e., the interval is narrow).  
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Satisfying the second requirement while honouring the first requirement means that the proportion of 

intervals containing the values of the measurands will not exceed the stated level. In this context, 

Stevens (1950) gives a useful quotation. He writes (with his italics) 

 
it is a statistician’s duty to be wrong the stated proportion of times, and failure to reach this proportion is 

equivalent to using an inefficient in place of an efficient method of estimation.  

 

For the frequentist, capturing the ideal of the correct success rate is straightforward. Indeed, 

notwithstanding the approximate nature of statistical models and equations such as the Welch-

Satterthwaite formula, the machinery of the frequentist approach achieves the goal of realising 

confidence intervals that contain measurands with the claimed frequency exactly. However, for the 

Bayesian this is not the case. While there are classes of problems for which the frequentist and 

Bayesian approaches do give the same outcomes, as we have seen in the examples, confidence intervals 

and credible intervals are often different. Since the frequentist confidence-interval procedures are exact 

in terms of success rate, this means that the Bayesian credible intervals often fail to reflect the real-

world behaviour of production lines, petrochemical plants, and dairy factories. Wasserman (2008) 

notes “Frequentist methods have coverage guarantees; Bayesian methods don’t. In science, coverage 

matters”, and “Excepting for a few special cases, frequency guarantees are essential even for Bayesian 

methods.”  Hall (2008, 2011) and Wang and Iyer (2006, 2009) describe how to design numerical 

experiments enabling uncertainty analysts to evaluate the long-term success rates of confidence and 

credible intervals. It is notable that there are “empirical Bayesian” approaches that require the 

evaluation of success rates. However, such approaches are generally not regarded as Bayesian 

(Bernardo 2008).  

 

Performance with non-linear functions 

One of the claims of Supplement 1 is that its approach copes well with non-linear measurement 

equations, but this does not seem to be the case. The inadequacy of the particular type of Monte Carlo 

method advocated in Supplement 1 is caused by the fact that the Monte Carlo distributions are 

evaluated around the observation point (x1,…,xm), not about the unknown point of actual values 

(X1,…,Xm). Disregarding this is similar to assuming that the derivatives of the function do not change 

between the two points, which is applicable with a linear function. So, when applied with non-linear 

functions, we might expect the performance of the procedure to suffer. 

 For example, consider the measurement of Y=X1
2
+X2

2
 when both X1 and X2 are measured with a 

normal error having a known standard deviation. Straightforward application of the procedure 

advocated in Supplement 1 would involve assigning the quantities X1 and X2 normal distributions with 

means equal to the estimates and with the same standard deviation. Propagating these distributions 

leads to a state-of-knowledge distribution for Y from which we take the central 95% as the uncertainty 

interval for Y.  Easy simulation shows, for example, that when the standard deviation is 3 and when the 

actual values of X1 and X2 are both 10 this assessment procedure leads to an interval containing the 

value of Y on less that 90% of occasions (Willink, 2012).   

 

Measurands close to a physical limit 

The effect described in the previous sub-section can be dramatic when the measurand is close to a 

physical limit. Hall (2008, 2009) shows that when the real and imaginary components of a complex 

quantity are measured in order to estimate the magnitude of this quantity then, when both components 

are actually close to zero, the 95% interval of measurement uncertainty calculated according to 

Supplement 1 fails to generate an interval containing the true magnitude every time! The measurement 

function in this case is  
1/2

2 2

1 2Y X X  .  This particular example occurs frequently in the radio-

frequency standards area where manufacturers aim to produce components having a reflection 

coefficient as close as practical to zero.   

 

Efficiency with small samples 

When Type A uncertainties dominate, the analysis advocated in the Supplements results in intervals 

that are wider than those obtained using the GUM (Tanaka and Ehara 2009).  To see how this occurs, 

consider the linear measurement model  

1

( )
m

i i i

i

Y y c X x


   , 
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where each ci is the known sensitivity coefficient for the respective ‘input quantity’. Suppose now that 

Xi is estimated from ni observations with sample mean xi and sample standard deviation si.. If m is large 

then the central limit theorem shows that the resulting distribution is almost normal, so in a frequentist 

analysis, the 95% confidence interval has limits 

 

2 2

1.96 i i

i

c s
y

n
   . 

 

However, according to the ideas of Supplement 1, each Xi can be attributed the posterior distribution of 

xi+ (si/√ni)Ti where Ti is a variable with the t-distribution with ni 1 degrees of freedom. The variance 

of the t-distribution with  degrees of freedom is /(2), so Y has the variance  

 
2 2 ( 1)

( 3)

i i i

i i

c s n

n n




 . 

 

If m is large then, by the central limit theorem, the distribution attributed to Y is approximately normal, 

and the 95% credible interval for Y will have the limits 

 

2 2 ( 1)
1.96

( 3)

i i i

i i

c s n
y

n n


 


  

 

which is wider than the corresponding confidence interval, with the discrepancy being greater for small 

samples. For example, when ni =…= nm = 4, the ratio of widths of the two distributions is 

approximately 1.7. Yet the classical interval is generated by a procedure that is known to get it right 

95% of the time.  

 

5.4 Other issues 

 

Pedagogical difficulties 

Bayesian statistics are generally only taught to non-mathematicians at graduate level, it is considered 

too complex and conceptually difficult for undergraduates. Given this level of difficulty, how do we 

explain these methods to staff in second-tier calibration and test laboratories, who already have 

difficulty with the simplest of classical statistics?  

 The teaching of Bayesian statistics is complicated further by the fact that, despite the claimed 

coherence of the approach, there is not one Bayesian approach. Amongst objective Bayesian methods 

for example, there are three distinct principles for the selection of uninformed priors (maximum 

entropy, scale invariance, and reference analysis), which may give different results and none of which 

work in all cases.  

 It is important to note here that the concepts underlying classical statistics are also difficult. 

Indeed, the common understanding of confidence intervals and the statements we report on calibration 

certificates probably lies, incorrectly, closer to the Bayesian interpretation than the correct frequentist 

interpretation.   

   

International harmony 

The Bayesian ideas hinted at in the GUM and made explicit many years later in the supplements do not 

accord with the way the GUM is viewed by other parties. Wherever the GUM is referred to outside the 

BIPM community, the understanding of the GUM seems to be in accordance with the frequentist view 

of probability.  For example, Coleman and Steele, (1999, pp.14, 39) who helped develop standards for 

the American Society of Mechanical Engineers and the American Institute of Aeronautics and 

Astronautics write in their book Experimentation and Uncertainty Analysis for Engineers: 
 

The methodology (but not the complete terminology) of the …[GUM]… has been adopted in standards issued 

by the American Society of Mechanical Engineers ... and the American Institute of Aeronautics and 

Astronautics ... and is that presented in this book. 

 

They proceed to describe a treatment involving the concepts of distributed estimates and distributed 

errors, but not the Bayesian idea that the measurand is considered to have a probability distribution. 

They write: 
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A useful approach to estimating the magnitude of a systematic error is to assume that the systematic error for a 

given case is a single realization drawn from some statistical parent distribution of possible systematic 

errors,… 

 

This statement is frequentist and is in accordance with the intention of the Working Group of 1980 (as 

described in Sec. 4.2). See also the student-oriented book of Dunn (2005) and the book of Dieck 

(2007), who states that all the material in his book ‘‘is in full harmony with’’ the GUM.  

 

 

6. Conclusions 
 

The GUM has been extraordinarily successful, contributing to major improvements in measurement 

practice through its harmonisation of the language and practice of uncertainty analysis. There are, of 

course, gaps in the GUM’s guidance. However, the most important perceived weakness of the GUM is 

that it mixes frequentist and Bayesian approaches, and this seems to have opened the door to the 

replacement of the GUM by the Supplements and, possibly, a revision of the GUM, based entirely on 

Bayesian statistics.   

 The consequences of a change to a purely Bayesian approach are not trivial. The philosophical 

consequences include: measurands no longer being represented in the uncertainty analysis by a single 

true value; uncertainties characterising an experimenter’s ‘state of knowledge’ rather than the real 

behaviour of measuring instruments and objects; and uncertainty statements being far more subjective 

and variable.    

 The choice of a Bayesian approach, subjective or objective, is also an issue. The 

recommendations of the GUM supplements are, in fact, no more philosophically consistent than the 

GUM.  In the Supplements, the Type A process, which recommends uninformative priors, belongs to 

the objective Bayesian school while the Type B process, which allows any distribution, belongs to the 

subjective school. The two schools are considered incompatible by most statisticians. 

 Perhaps the biggest problem with a Bayesian analysis is that in many cases of practical interest, 

the analysis yields credible intervals that are demonstrably wrong in the sense that they do not reflect 

the real-world behaviour of measuring instruments or measured objects. This is in contrast with a 

frequentist analysis that, subject to the correctness of the statistical models (which is a major concern 

with any analysis), guarantees the long-term success rates of reported confidence intervals and 

uncertainties. The use of Bayesian statistics in place of frequentist statistics can be expected to have a 

negative effect on the quality of decisions based on measurement, and hence, for example, on the 

reliability of manufacturing plant, the quality of manufactured goods, and ultimately on our health, 

safety and environment.   

 For those of us involved with measurement education, the thought of teaching Bayesian 

statistics to second-tier calibration and industrial test laboratories is frightening.  Many of the staff 

working in these laboratories have rudimentary mathematics skills and struggle with adding in 

quadrature, let alone obscure and improper prior distributions and numerical integrations. Indeed, it has 

been suggested that ‘recommending that scientists use Bayes’ theorem is like giving the neighborhood 

kids the key to your F-16’ (Gelman 2008). 

 Additionally, there are computational problems with the Bayesian approach as recommended by 

the Supplements. Firstly, the Supplements argue that the Bayesian approach has greater breadth of 

applicability, especially for non-linear measurement problems. However, numerical experiments 

suggest otherwise; in many situations the uncertainties yielded by the analysis are larger and have 

lower success rates than the corresponding frequentist (GUM) estimates. Secondly, many of the output 

distributions derived from the objective analyses are without a mean or standard deviation: what is the 

meaning of the measurement estimate and standard uncertainty in these cases? The problem of non-

existent moments is particularly prevalent in thermometry where exponentiation arises because of the 

nature of thermal physics. Thirdly, the computations required for the objective Bayesian analysis 

recommended by the Supplements are purely numerical, and therefore obscure underlying physical 

relationships. The insights available from algebraic expressions will instead be obscured by an 

unwieldy multivariate numerical computation and a single numerical result. The first two of these 

problems are a direct consequence of the objective Bayesian philosophy and the use of uninformative 

prior distributions, which, in any case, do not reflect our actual knowledge of the behaviour of high-

quality instruments and artefacts. One interpretation is that “the pure subjective Bayesian approach is 

difficult to implement and the mongrel surrogate used in practice [referring to the objective Bayesian 

approach of Jeffreys] has many weaknesses” (Senn 2008). 
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 Given that the purpose of an uncertainty analysis is to characterise the behaviour of real world 

events, including the error processes in our measurements, it seems ill-advised to forgo the use of 

frequentist statistics where its methods are proven.  It is our view that the GUM should be revised, but 

not according to the Bayesian philosophy. Instead, it should be revised according to the original 

intentions of the BIPM working group as described clearly in the main body of its report (Kaarls, 

1980). The GUM Supplements should, as intended, add to the GUM and enable metrologists to tackle 

problems not amenable to GUM methods. However, like any experimental process, recommended 

methods should be validated, ideally with the analysts reporting or citing the outcome of numerical 

experiments demonstrating the long-term success rates of the analyses.   
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