

CCM Working Group on the Avogadro Constant

Horst Bettin Physikalisch-Technische Bundesanstalt Germany

> Bundesministerium für Wirtschaft und Technologie

WG on the Avogadro Constant

- Established in 1995 (ad hoc WGAC)
- Last meeting: 28 29 June 2012 in the USA
- Periodicity: Once a year
- Next meeting: probably September 2013 during the kg workshop of the EMRP project "kNOW" (Realisation of the awaited definition of the kilogram - resolving the discrepancies)



CCM WG on the Avogadro Constant: Members

Cooperation in the determination of molar mass, invited to become members

NIST NRC

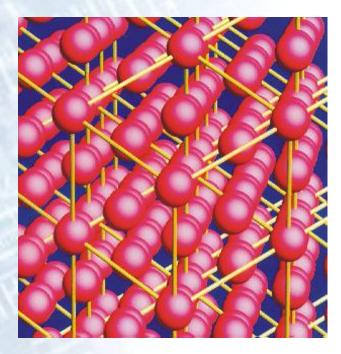
- 3 -

Terms of Reference

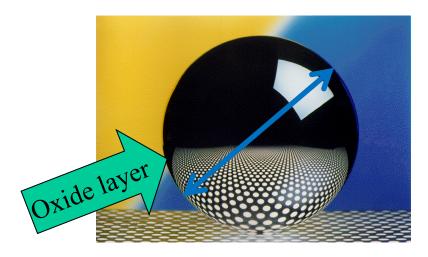
- Determination of the Avogadro constant (XRCD)
- International cooperation and comparisons
- Conferences, publications
- Cooperation with watt balance experiments
- Advise to CCM, mise en pratique
- Monitor the international prototype of the kilogram
- Help to realise and disseminate the new kilogram

Definition of Avogadro constant N_A

- Number of molecules per mol
- 6.022... x 10²³ mol⁻¹


Current definition of mol

- Number "entities" like ¹²C atoms in 12 g
- i. e. 6.022... x 10²³ ¹²C atoms have a mass of 12 g


: How to count 10²³ atoms?

With a crystal!

- 1. Volume a_0^3 of the unit cell
- 2. Volume of an atom: $a_0^3/8$
- 3. Volume *V* of a sphere
- 4. Number *n* of the atoms

$$N_{\rm A} = \frac{8 V}{a_0^3} \cdot \frac{M_{\rm mol}}{m_{\rm sphere}}$$

CCM, Paris, 21-22 Feb. 2013

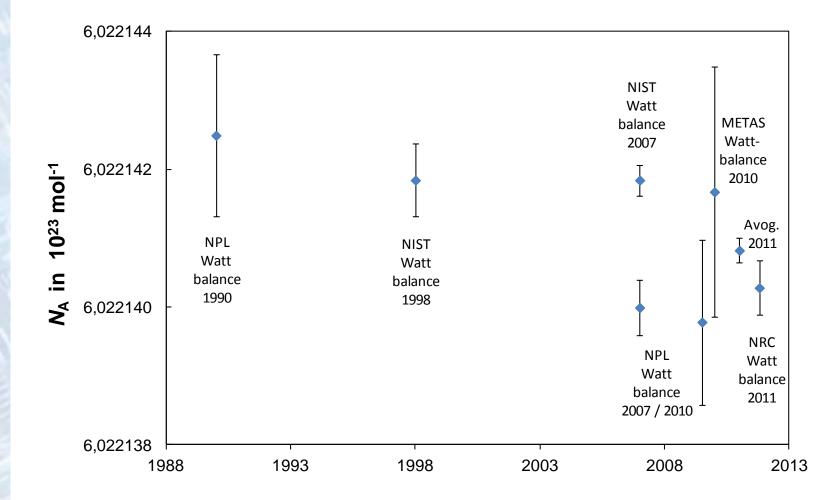
Avogadro constant · Planck constant

$$N_{\rm A}h = \frac{M(e)}{m(e)} \cdot h = \frac{M(e) \, c \, \alpha^2}{2 \, R_{\infty}}$$

CODATA 2010:

 $N_{\rm A} h = 3.990 \ 312 \ 7176(28) \times 10^{-10} \ \text{J s mol}^{-1}$ Relative standard uncertainty: 7 × 10⁻¹⁰ !

: How many N_A determinations?


DR		
	Ρ	B

Part	ners	Latt param Abs.		Sphere volume	Sphere mass	Molar mass	Crystal perfection	Surface	Sphere fabrication
BIPM	BIPM				х			H ₂ O	
	INRIM	x					х		
•	METAS							XPS	
*:	NIM			2013?	?	2014?		2013?	
	NIST					х			
* *	NMI-A			Х				Ellips.	х
	NMIJ		x	x	х	2014?	х	х	
*	NRC					х			
	РТВ	2015		х	х	х	x	x	x

Most of the quantities are measured by 3 or more institutes!

: Avogadro constant values

Memorandum of Understanding

- Special Issue of Metrologia "International determination of the Avogadro constant"
- **Relative standard uncertainty 3 x 10⁻⁸**
- EMRP Project "Realisation of the awaited definition of the kilogram resolving the discrepancies" started September 2012

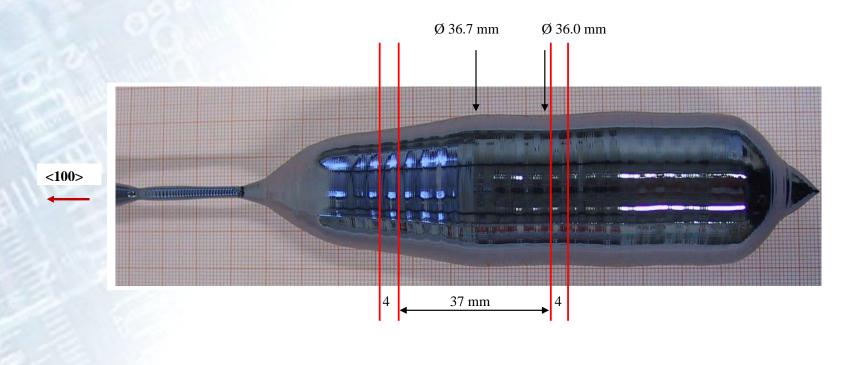
Re-start of the international Avogadro coordination

Reduction of uncertainty

- Spheres with unroundness below 20 nm
- Improved volume measurements
- Improved surface characterisation
- Improved lattice parameter measurements
- Improved molar mass measurements
- New traceability to the IPK

Target: relative uncertainty 1.5 x 10⁻⁸ until 2015

Confirmation of results


- Independent lattice parameter measurement (PTB)
- Impurity concentrations: more chemical elements by nuclear activation analysis (INRIM)
- More ²⁸Si crystals

A second (small) ²⁸Si crystal already exists

Si28-10Pr10CzFzCzFzFz V3213 <100> ²⁸ (gezüchtet aus Si28-10Pr10CzFzCzFz V3195 und Si-474) (rest von Av

<100> ²⁸Si (rest von Avogadro, "Tanne")

PTB is purchasing 11.4 kg of new ²⁸Si

- 2 different single crystals of 5 kg each
- 2 spheres (1000 g) from each crystal
- First 2 spheres will be ready for measurements in mid 2014
- Second 2 spheres will be available in 2015
- More crystals can be grown in the future

Resolving discrepancies

- Resolving the discrepancy in molar mass
- Cooperation with watt balance projects, in particular to resolve discrepancies (if necessary)

Measurements for the realisation of the new kg

- Molar Mass (isotopic composition)
- Crystal perfection (impurity contents)
- Lattice parameter

Duration of all values for one crystal: about 6 months. Have to be measured only once!

Measurements for the realisation of the new kg

- Volume of the sphere: Duration about 1 month.
 Has to be repeated only every few years
- Surface layers (oxide etc.): Duration about 1 week.
 Should be repeated for each realisation

Thus, realisation of the new kg by the XRCD method usually takes about 1 week.

Monitoring the IPK with Si spheres

- Repeated measurements of the surface layers yield the mass change of the sphere
- Uncertainty now about 3 µg
- Natural Si can be used

Technological trends in the XRCD method

- Higher accuracy
- Concentration of some measurements in one apparatus
- Simplification of apparatuses or method, e. g. for calibration laboratories

Working Group on the Realisation of the Kilogram

- Merging of WGAC and WG on the Changes to the SI kilogram (WGSI-kg)
- New memberships
- New terms of reference

۲

: WGSI-kg

WG on the Changes to the SI kilogram

- Established in 2006
- Last meetings: 10 May 2011, 19 February 2013
- Next meeting: 2014?
- Members: BIPM, DFM, INRIM, KRISS, LNE, METAS, MSL, NIST, NMIJ, NRC, PTB
- Only personal members

Terms of Reference

- Advise the CCM on the redefinition of the kg
- Check the impact on mass metrology by the new kg
- Monitor the results of relevant experiments
- Solicit and collate comments from a wider scientific community on the wording of the future definition and on the *mise en pratique*
- Coordinate and assist the work of the WGM Task Groups, within and between the regions.

Progress in the last two years

- Workshop on the *mise en pratique* Nov. 2012
- Draft 7.0 of the mise en pratique
- IPK support group

Aims for the next 5 years

- Final version of the *mise en pratique*
- Organise link to the IPK
- Organise key comparison before redefinition
- Organise CMCs for primary realisation of the kg
- Criteria for new experiments to realize the kg

Working Group on the Realisation of the Kilogram

- Members: all members of WGAC and WGSI-kg, all watt balance institutes
- First meeting: September 2013 during the kg workshop of the EMRP project "kNOW" ?
- Discussion of the terms of reference
- Additional separate technical meetings for watt balance and Avogadro projects?

Thank you very much for your attention!

Questions?

Comments?