

Determining the pressure sensitivity (and other parameters) of a microphone from measurements of the velocity of the membrane.

<u>Salvador Barrera-Figueroa</u>,^{a)} Finn Jacobsen,^{b)} and Knud Rasmussen^{a)}

^aDanish Primary Laboratory of Acoustics, Danish Fundamental Metrology Ltd., Matematiktorvet 307, 2800 Kgs. Lyngby, Denmark. ^bAcoustic Technology, Department of Electrical Engineering, Technical University of Denmark, Ørsted Plads, B352, DK-2800 Lyngby, Denmark.

Motivation

- Numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the membrane:
 - + Valid at frequencies below the resonance frequency.
 - Invalid at high frequencies due to heavily coupling with damping of film air between back plate and membrane, higher modes in the back cavity.

+ Possible Solution(s):

+Use a complete model of the microphone for predicting the movement of the membrane.

+To measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry, and use the measured velocity in the numerical calculations.

Hybrid method: Laser vibrometry + BEM

Laser vibrometer measurements

Results of the hybrid method: pressure sensitivity

• Sensitivity of a condenser microphone:

$$M_{\rm p} = \frac{u_{i=0}}{p} = -\frac{q_{p=0}}{i}$$

As a source:

Results of the hybrid method: pressure sensitivity

Results of the hybrid method : acoustic centre

Results of the hybrid method : free-field response

Results of the hybrid method : directivity index

 $D = 10 \log Q$.

Diffuse-field response (LS1)

Diffuse-field response (LS2)

Conclusions

 + Measurements using laser vibrometer → no general assumption can be made for the behavior of any given microphone.

+ Results of the hybrid method:

+pressure sensitivity,
+acoustic center
+free-field correction
+directivity index

In good agreement with the experimental results obtained by traditional methods.

+ The hybrid method can be used for validating new experimental setups.

+The hybrid method can be used in production environments to check the responses of a prototype microphone without the need of a complete calibration setup.

+The hybrid method is not a substitute of an individual calibration of a particular transducer.

Laser vibrometer measurements: other microphones & phase

