CCPR Report to the CCU

24th Meeting of the CCU

Bureau
International des
Poids et
Mesures

What is new - cd

- Introduction of defining constant for photometry, K_{cd} *luminous* efficacy of monochromatic radiation of frequency 540×10^{12} Hz
- **Reformulation** of definition of the candela
 - (not a redefinition), to bring it in **explicit constant** form:

THE CANDELA

The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540×10^{12} Hz, K_{cd} , to be 683 when expressed in the unit lm W⁻¹, which is equal to cd sr W⁻¹, or cd sr kg⁻¹ m⁻² s³, where the kilogram, metre and second are defined in terms of h, c and ΔV_{Cs} .

What is new - cd

• K_{cd} makes a direct link between photometric and radiometric quantities for monochromatic radiation of frequency 540 THz

flux	illuminance	intensity	luminance
$Im \leftrightarrow W$	$lx \leftrightarrow W \cdot m^{-2}$	$cd \leftrightarrow W \cdot sr^{-1}$	$cd \cdot m^{-2} \leftrightarrow W \cdot sr^{-1} \cdot m^{-2}$
K_{cd}	K_{cd}	$K_{\sf cd}$	\mathcal{K}_cd

- Mise en pratique for the definition of the candela in the SI (20 May 2019)
- BIPM report 05/2019: <u>Principles governing photometry</u> (20 May 2019)
- Appendix 3 Units for photochemical and photobiological quantities (20 May 2019)

What is new

New agreed human visual response function (mesopic and 10°)

Radiometric (W) and photon flux based system (s⁻¹)

revised SI: Impact on cd (and Im and Ix)

Impact of 4 redefinitions on the candela (1)

cd is linked to kg

What one would expect:

$$\left| \frac{kg_h - kg_{IPK}}{kg_{IPK}} \right| \le 2 \times 10^{-8}$$

$$\left| \frac{cd_{new} - cd_{old}}{cd_{old}} \right| \le 2 \times 10^{-8}$$

c.f. 10⁻⁴ uncertainty in realization of candela:

Redefinitions: No significant impact on the candela

Impact of 4 redefinitions on the candela (2)

Today, many NMIs realize the candela by radiometric methods

- ◆ The primary realization of radiometric quantities (i.e. kryogenic radiometer) is based on a electrical substitution method. The revised SI has changed the practical realization of the electrical power (W) by 2·10⁻⁷, and the electrical current by 9·10⁻⁸.
- ◆ Best uncertainties in radiometric measurements: 10⁻⁵
- ◆ <u>Conclusion</u>: **No detectable effect** on radiometric measurements

But this is not all...

Impact on CIE standard Illuminant A

- All photometric devices are calibrated referring to CIE standard illuminant
 A, realized by designed incandescent lamps.
- CIE standard illuminant A is defined in 1924 through an ideal blackbody radiator with a distribution temperature of T_A = 2848 K
- The relative spectral distribution $S(\lambda)$ of a blackbody radiator, given by Planck's law, includes h, c, and k

$$S(\lambda) \propto \frac{1}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT_A}} - 1}$$

Impact on CIE standard Illuminant A (2)

- to keep the spectral distribution unchanged the distribution temperature has to be changed each time the values of h, c, and k change
- ◆ last value based on ITS-90: T_A = 2855.542 K that was typically rounded to 2856 K
- Revised SI changed the value by -46 mK: T_A = 2855.496 K which should be rounded to 2855 K
- Uncertainty of distribution temperature measurements is about 5 K to 10 K
- CIE recommends now the "definitive" value of 2855.5 K for the practical realization of standard illuminant A

Revised SI: potentially new routes of traceability

• Link optical power directly to kilogram (photon momentum: $p = h / \lambda$)

BeamBox (next generation of RPPM) "calibrated source"

12

Thank you

Bureau
International des
Poids et
Mesures

