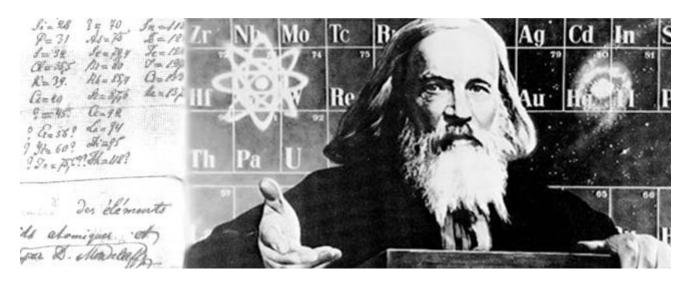
About National Scientific Centre "Institute of Metrology", Kharkov, Ukraine, for 24th meeting of CCU

Professor Pavel Neyezhmakov

General Director, CIPM Member, COOMET Vice-President



National Scientific Centre "Institute of Metrology" 42 Myronosytska str., Kharkiv, 61002, Ukraine

The history of National Scientific Centre "Institute of Metrology" began on 8 October, 1901, when at the initiative of an outstanding scientist Dmitry Ivanovich Mendeleyev the first Ukrainian verification chamber was established in Kharkiv with the functions of verification and stamping the trade weights and measures.

Metrology for society

Promoting the protection of the consumer rights, ensuring the high quality of life

- Development of measurement methods and instruments necessary for all spheres of human living and household activities
- Health and life protection
- Control of the environment and safety of working conditions
- Protection of consumers during trade operations and transactions
- Reliable measurements in the sphere of public utilities (electricity, gas and water supply)

International relations

Elimination of technical barriers in trade, unification of measurement system

- Cooperation with other National Metrology Institutes
- Harmonisation of normative documents and elimination of non-tariff barriers in trade
- Participation in international metrological organisations
- Promoting the international unification of metrology

Metrology for economy

Increasing the efficiency of economy, innovation, employment security

- Metrological certification, calibration and verification of measuring instuments
- Metrological review of technical documentation
- Development and certification of measurement techniques
- Development of the national measurement standards, including those harmonised with the international ones
- Certification of calibration laboratories

Fundamentals of metrology

Developments related to reproduction, maintenance and transfer of SI units

- Fundamental and applied scientific research
- Creation of scientific and technical base for metrological system that meets up-to-date requirements
- Scientific and methodological support of metrological activity
- Certification training of metrologists

These studies have formed the basis for laser range measurements

REVIEWS OF

Modern Physics

Volume 41, Number 3 July 1969

Determination of e/h, Using Macroscopic Quantum Phase Coherence in Superconductors: Implications for Quantum Electrodynamics and the Fundamental Physical Constants

B. N. TAYLOR

RCA Laboratoris, Princeton, New Jersey 08540

W. H. PARKER*
Department of Physics, University of California, Irains, California 92650

D. N. LANCENBERG†
Department of Physics and Laboratory for Research on the Structure of Matter,
University of Pennsylvania, Philadelphia, Pennsylvania 19104

The implications of the new determination of e/b using the ac Josephson effect in superconductors for both quantum electrodynamics (CBD) and our knowledge of the fundamental physical constants are analyzed in detail. The implications for QED are investigated by first deriving a value of the fine structure constant of from experimental input data which do not require the use of QED theory for their analysis. These include the Josephson-effect value of e/h, the Faraday constant, the gyromagnetic ratio of the proton, the magnetic moment of the proton in units of the nuclear magneton, the ratio of the amprea as maintained by the United States National Illurean of Standards to the absolute ampere, and certain accurately known auxiliary constants. This is done by critically reevaluating all of the experimental data presently incompatibility. The value of e so obtained is then used to evaluate the theoretical expressions for the Lamb shift and fine structure splitting in hydrogen, deuterium, and ionized helium, the hyperine splitting in hydrogen, muonium, and positronium, and and the anomalous magnetic moment of the electron and muon. These theoretical values are compared with critically reexamined experimental values, thus providing a test of QED in which e prior information from QED itself is not exential. The consequences of the new measurement of e^+/b for our present knowledge of the fundamental physical constants are demonstrated by deriving new "best" values for the fundamental constants from a critically tion on arcas in which there remain important questions which require calification. The experimental and theoretical work necessary for the resolution of these questions is discussed, with emphasis on ways in which the study of quantum phase coherence effects in low we temperature superfluid systems can make significant contributions.

CONTENTS Glossary of Symbols and Units. I. Introduction A. Importance of the Fundamental Physical Constants.	376 377	4. Treatment of Error	81 82
B. Justification for a New Least-Squares Adjustment	377	2. Velocity of Light, c	85
at This Time C. Significance of the Output Values of a Least-Squares Adjustment of the Constants	379		87 88
D. Outline of Paper	379	the Bohr Magneton, μ_e/μ_B	92
A. Introduction Auxiliary Constants, Stochastic Input Data, and Adjustable Constants	380 380	 Atomic Masses and Mass Ratios	93 96 96 99
* Alfred P. Sloan Foundation Fellow. † Supported by the National Science Foundation and Advanced Research Projects Agency.	the	 Josephson-Effect Value of e/k	00 101
	375	Tamperey at Tamper and Tamperey	

Copyright @ 1969 by the American Physical Society

Table IV. Summary of some velocity-of-light measurements made since 1948 (MWI, microwave interferometer; IRRS, infrared rotational spectrum; FLRC, fixed-length resonant cavity; VLRC, variable-length resonant cavity). (Probable errors have been converted to standard deviations by multiplying by 1.48.) The errors quoted for the Kolibayev and Grosse geodimeter measurements are statistical only.

	Year of publication	Author	Method	(km/sec)	
	1967	Simkin, Lukin, Sikora, and Strelenskii	MWI	299 792.56±0.11	
	1967	Grosse	Geodimeter	299 792.5±0.05	
	1965	Kolibayev	Geodimeter	299 792.6±0.06	
	1950–1962	McNish (1962) summary of data of Bergstrand, USCGS, and others	Geodimeter	299 792.6±0.25	
	1958	Froome	MWI	299 792,50±0.10	
-	1955	Florman*	RWI	299 795.1±1.5	
1	1955	Plyler, Blaine, and Connorb	IRRS	299 792±6	
1	1954	Froome [revised, Froome (1958)]	MWI	299 792.75±0.30	
	1952	Froome	MWI (first instrument)	299 792.6±0.7	
	1951	Aslakson ^a	Shoran	299 794.2±2.8	
	1950	Bol^d	FLRC	299 789.3±1.0	
	1950	Essen*	VLRC	299 792.5±1.5	
	1949	Aslakson ^e	Shoran	299 792.4±3.6	
	1948	Essen and Gordon-Smith	FLRC	299 792±4.5	

E. F. Florman, J. Res. Natl. Bur. Std. 54, 335 (1955).
 E. K. Plyer, L. R. Blaine, and W. S. Connor, J. Opt. Soc. Am. 45, 102 (1955).
 C. I. Aslakson, Trans. Am. Geophys. Union 32, 813 (1951); 30, 475 (1949); Nature 168, 505 (1951); 164, 711 (1949).

K. Bol, Phys. Rev. 80, 298 (1950).
 L. Essen, Proc. Roy. Soc. (London) A204, 260 (1950).
 L. Essen and A. C. Gordon-Smith, Proc. Roy. Soc. (London) A194, 348 (1948).

Year of publication	Author	Method	(km/sec)		
1967	Simkin, Lukin, Sikora, and Strelenskii	MWI	299 792.56±0.11		

J. Phys. Chem. Ref. Data, Vol. 2, No. 4, 1973

The 1973 Least-Squares Adjustment of the Fundamental Constants*

E. Richard Cohen

Science Center, Rockwell International, Thousand Oaks, California 91360

and

B. N. Taylor

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

This paper is a summary of the 1973 least-squares adjustment of the fundamental physical constants carried out by the authors under the asspices of the CODATA Task Group on Fundamental Constants. The salient features of both the input data used and its detailed analysis by least-squares are given. Also included is the resulting set of best values of the constants which is the recommended for international adoption by CODATA, a comparison of several of these values with those resulting from recent past adjustments, and a discussion of current problem areas in the fundamental constant field recipiting additional research.

Key words: Data analysis: fundamental constants; least-squares adjustments; quantum electrodynamics.

Contents

	Page	
Glossary of Symbols and Units	664	16. Ratio, kxu to angstrom, A
I. Introduction	665	17. Avogadro Constant From X-Rays,
II. Review of Data	665	N ₄ A ³
A. The More Precise Data	665	
 2e/h From the ac Josephson Effect. 	666	18. Electron Compton Wavelength,
2. Differences in As-Maintained		$\lambda_C = h/m_e c$
Units of Voltage and a Value of		C. The Less Precise QED Data
2e/h in BIPM Units	667	19. Anomalous Magnetic Moment of
 Speed of Light in Vacuum, c 	669	the Electron and Muon, a_e and a_{μ} .
4. Ratio of BIPM As-Maintained		 Ground State Hyperfine Splitting
Ohm to Absolute Ohm	671	in Hydrogen, Muonium, and Posi-
5. Acceleration Due to Gravity, g	673	tronium: Theory
6. g-Factors of the Free Electron and	010	21. Ratio of the Magnetic Moment and
Muon, g, and g,	673	Mass of the Muon to that of the
7. Magnetic Moment of the Proton	013	Proton and Electron, μ_{μ}/μ_{μ} and
in Units of the Bohr Magneton,		m_{μ}/m_{c}
	470	22. Ground State Hyperfine Splitting
μ_p/μ_B	673	in Muonium, Hydrogen, and Posi-
8. Magnetic Moment of the Proton		
in H ₂ O in Units of the Bohr Mag-		tronium: Experiment
neton, μ'_p/μ_B	674	20. The Structure
Atomic Masses and Mass Ratios .	674	D. Other Bess Freeder Quantities
Rydberg Constant for Infinite		24. Newtonian Gravitational con-
Mass, R	676	stant, G
11. Summary of The More Precise		25. Molar Volume of an Ideal Gas,
Data	677	Vm, and the Molar Gas Constant,
B. The Less Precise WQED Data	677	R
12. Ratio of BIPM As-Maintained Am-		 Seran-Boltzmann Constant, σ
pere to Absolute Ampere	677	7. Summary of The Less Precise
13. Faraday Constant, F	679	Data
 Proton Gyromagnetic Ratio, γ'_p 	680 111	I. Analysis of Stochastic Input Data
15. Magnetic Moment of the Proton in	000	A. The WQED Data
Units of the Nuclear Magneton,		28. Inconsistencies Among Data of the
μ/μχ	684	Same Kind
		29. Inconsistencies Among Data of
*Work partially supported by the U.S. National Bureau of Standards Office of	f Standard	Different Kinds
eference Data.		B. The QED Data
opyright © 1973 by the U.S. Secretary of Commerce on behalf of the United S		30. Inconsistencies Among the QED
pyright will be assigned to the American Institute of Physics and the American Society, to whom all requests regarding reproduction should be addressed		Data
received to make an inspense inglitting representation stages or assessed	•	Date

TABLE 14.1. Summary of y' determinations

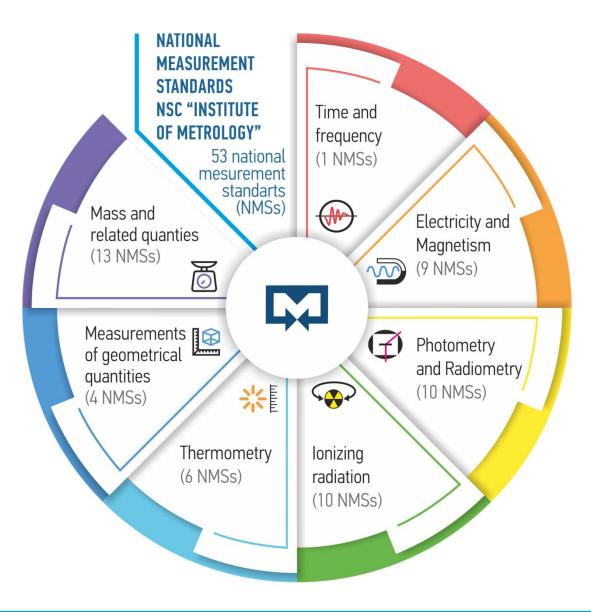
Publication date, laboratory ^a , and author	Y's	76	γ_{ν}^{\prime}	Uncer- tainty (ppm)	Eq. No.
		Low Field			
	$10^8 \mathrm{s}^{-1} \cdot \mathrm{T}^{-1}_{LAB}$	10 ⁸ s ⁻¹ · T ⁻¹ _{BIPM}	10 ⁸ s ⁻¹ ⋅T ⁻¹ _{Bito}		
1968, ETL Hara et al. ^b	2.6751384(107)	2.6751449(107)	2.6751156(107)	4.0	(14.1)
1972, NBS Olsen and Driscoll	2.6751344(54)		2.6751370(54)	2.0	(14.2)
1965, NPL Vigoureux ^d	2.6751707(107)	2.651480(107)	2.6751187(107)	4.0	(14.3)
1971, VNIIM Malyarevskaya, Studentsov, and Shifrin ^e	See text.		2.6751100(161)	6.0	(14.4)

High Field

	10° A _{LAB} ·s·kg ⁻¹	10" Agama 's kg"	10" A mes 's 'kg"		
1966, KhGNIIM Yagola, Zingerman, and Sepetyi	2.675079(20) ^h	2.675101(20)	2.675130(20)	7.4	(14.5)
1971, NPL Kibble and Hunt ^s	2.675075(43)	-	2.675075(43)	16	(14.6)

^a ETL = Electrotechnical Laboratory, Japan; KhGNIIM = Kharkov State Scientific Research Institute of Metrology, U.S.S.R.

Refs. [0.1, 14.2].
 Ref. [14.3].
 Refs. [0.1, 14.4].
 Refs. [14.5, 14.6].
 Refs. [0.1, 14.7, 14.8].
 Refs. [14.9, 14.10].
 This result is in terms of A_{BM}, the ampere as maintained at VNIIM.



High Field

	10° A _{LAB} ·s·kg ⁻¹	10° A _{BBM} 's 'kg"	10° A pss 's kg -1			
1966, KhGNHM Yagola, Zingerman, and Sepetyi	2.675079(20) ^h	2.675101(20)	2.675130(20)	7.4	(14.5)	
1971, NPL Kibble and Hunt [#]	2.675075(43)	-	2.675075(43)	16	(14.6)	

^{*} ETL = Electrotechnical Laboratory, Japan; KhGNIIM = Kharkov State Scientific Research Institute of Metrology, U.S.S.R.

Reconnaissance mutuelle

des étalons nationaux de mesure et des certificats d'étalonnage et de mesurage émis par les laboratoires nationaux de métrologie

Paris, le 14 octobre 1999

Mutual recognition

of national measurement standards and of calibration and measurement certificates issued by national metrology institutes

Paris, 14 October 1999

Comité international des poids et mesures

Bureau Orga international inter des poids de la

intergouvernementale de la Convention du Mètre

CIPM Mutual Recognition Arrangement

CIPM Mutual Recognition Arrangement (CIPM MRA) was signed on October 14, 1999 by Directors of National Metrology Institutes from 38 states signatories and two international organisations.

Ukraine participates in the Arrangement since 2003

ANALYSIS OF REALISATION OF CIPM MRA

		Total	AUV	EM	L	M	PR	QM	RI	T	TF
	DETU	73	3	16	5	17	11	4	10	6	1
Llkraina	KC	50	7	5	2	6	4	20	-	5	1
Ukraine	SC	63	2	17	12 [*]	16	7*	3	5	1	-
	CMC	275	30	57	27	14	6	33	15	63	30
	DETU	53	-	9	4	13	10	-	10	6	1
NSC	КС	16	-	1	1	4	4	-	-	5	1
"Institute of Metrology"	SC	33	-	2	12	9	4	-	5	1	-
	СМС	163	-	19	23	7	6	-	15	63	30
	DETU	15	-	7	1	2	1	4	-	-	-
SE	KC	27	1	4	1	1	-	20	-	-	-
"Ukrmetrteststandard"	SC	29	-	15	1	4	6	3	-	-	-
	CMC	79	-	38	4	4	-	33	-	-	-
	DETU	3	3	ı	-	-	-	1	-	-	-
DP NDI "Systema"	KC	6	6	ı	-	-	-	-	-	-	-
DE NOI Systema	SC	2	2	ı	-	-	-	ı	-	-	-
	CMC	30	32	-	-	-	-	-	-	-	-
	DETU	2	-	-	-	2	-	-	-	-	-
SE "Ivano-Frankivsk-	KC	1	-	-	-	1	-	-	-	-	-
standardmetrologiya"	SC	3	-	-	-	3	-	-	-	-	-
	CMC	3	-	1	-	3	-	-	-	-	-

Publishing activity of NSC "Institute of Metrology" has many years of publishing experience.

"Ukrainian Metrological Journal" (UMJ) is a specialized scientific and technical edition, founded by National Scientific Centre "Institute of Metrology" in 1995, first as the "Ukrainskyi Metrolohichnyi Zhurnal" ("Ukrainian Metrological Journal"), and in 2017, in order to expand the geography of publications and readers, an English translation was added to the title.

UMJ web-site address: www.umj.metrology.kharkov.ua

"Ukrainian Metrological Journal" is indexed by an international bibliometric and scientometric database of Google Scholar.

The edition has an identifier for a digital object (DOI: 10.24027 / 2306-7039).

In July 2019 UMJ was included in the leading scientometric, abstract, international citation database in the world **Web of Science** Core Collection (Web of Science until 2014).

PUBLISHING ACTIVITY

Since 2014, NSC "Institute of Metrology" has been publishing the "Information Bulletin on International Metrology", which is published twice a year.

Now the 12th edition is being prepared for release.

The Bulletin acquaints readers with the activities of international and regional organizations on metrology and their fundamental documents, as well as with the metrological infrastructure of different countries of the world; informs about international events and new world achievements in the field of metrology.

Under the guidance of COOMET, NSC "Institute of Metrology" performs biennially International Scientific & Technical Conference "METROLOGY AND MEASUREMENT TECHNIQUES".

The purpose of the conference is to promote the development of metrology and to implement its achievements in researches, practice and study.

Thank you for your attention very much!

Professor Pavel Neyezhmakov

