METPO

The next generation of ionization chambers for radionuclide metrology: a proposal to form a joint Task Group

Steven Judge (BIPM)

on behalf of Lisa Karam and Ryan Fitzgerald (NIST) steven.judge@bipm.org

Bureau

International des

- Poids et
- Mesures

One challenge for radionuclide metrology

Hospitals need a way to check the activity content of radiopharmaceuticals

NMIs / DIs need a way to prepare reference sources for hospitals without repeating complex realizations of primary standards

The BIPM needs a way to compare the national primary standards

One challenge for radionuclide metrology

Poids et

Mesures

Ionization chamber / radionuclide calibrator

- Simple, robust & reproducible
- Three components a gas-tight vessel, a HV power supply and a current-measurement system
- Easy-to-use

Why is a new generation needed?

http://www.npl.co.uk/upload/pdf/20080625_rcuf_fernandez_1.pdf

Bureau
International des
Poids et
Mesures

Existing electrometers are not linear enough

Sealed radioactive sources can be safety and security risks, are difficult to obtain, and can change...

We need:

Bureau International des Poids et Mesures A CCRI-CCEM workshop was held at NIST in September 2018 to discuss new technologies to meet this specification

Method used at present

Sealed reference sources are used to solve the linearity problem

Option 1: Quantum Electrical Standards

- Charge pumps produce very accurate currents
 to calibrate electrometers
- They 'pump' electrons using an input frequency
- Very accurate as frequency can be defined to 1 part in 10⁻⁸
- But the maximum current is 0.3 nA
- And they are very expensive
- The ULCA was a spin-out from this research...

Option 2: The Ultrastable Low-noise Current Amplifier

- Developed by the PTB
- A 2-stage transimpedance amplifier (a current to voltage convertor)
- Uses 3000 thin-film chip resistors, a metal foil precision resistor and amplifiers with gain >10⁹
- Calibration interval 50 years
- Measures currents up to 5 μA
- Calibration uncertainty <0.02 ppm traceable to quantum Hall resistance

D. Drung et al, Rev Sci Instrum **86** 024703 (2015)

Option 3: Conventional electronics (NIST)

- The largest uncertainty the voltage burden of the electrometer depends on the range
- The new NIST system avoids this by calibrating the electrometer at the same current

Fig. 1. Schematic diagram of well-type ionisation chamber. The chamber is surrounded by an overall electrical screen (not shown).

Option 4: Using a commercial ammeter

Giblin and Lorusso, arXiv: 1808.09217 (2018)

Option 4 (continued)

• Studies at the NPL (UK) using a capacitative-feedback electrometer have shown:

Parameter	Commercial ammeter	Custom electrometer
Traceability to SI	Calibrated using current source	0.05 % bias due to the frequency dependence of the capacitor calibration
Best possible Type A uncertainty	5 fA	1 fA
Sources of noise	Fluctuations in the ion chamber current are 100 x larger than the ammeter noise – this could be due to the HV power supply	

• NPL's conclusion: commercial ammeters can be a viable option at the 0.1 % level but custom electrometers can do better.

Giblin and Lorusso, arXiv: 1808.09217 (2018)

Next steps?

- The BIPM and some NMIs (eg PTB, NIST and NPL) are working to replace their existing systems
- But the biggest challenge is having the confidence to switchover to the new technology

Broader questions

- Current measurement is only part of the system
- Still must control/monitor consistency of IC response vs. environmental conditions, chamber pressure (leaks), geometrical changes (sample position) etc.
- Keeping reference sources for shorter time periods poses challenges for consistency in quality assurance (QA)
- These challenges may inspire innovative design of the next generation of instruments

Proposal

- We form a joint CCEM-CCRI Task Group to oversee the work
 - To provide expert technical guidance
 - To advise on key decisions
 - To help 'open doors'- eg, identify secondees from both fields
 - To encourage and support the work
 - To advise on promoting the outcomes, to achieve the best impact

With thanks to:

Lisa Karam (NIST) Ryan Fitzgerald (NIST) Carine Michotte (BIPM) Hansjörg Scherer (PTB) Neil Zimmerman (NIST) Denis Bergeron (NIST) Stephen Giblin (NPL) Michael Stock (BIPM)

Bureau

- International des
 - Poids et

