CCEM/19-07

WGLF summary to CCEM 28 March 2019

Jonathan Williams WGLF Chairman

Completed Key Comparisons

- * **K4** capacitance, 10 pF and 100 pF, 1 kHz and 1.592 kHz
- * Adopted a star approach
 - * BIPM, METAS, NIM, NIST, NMIA, NPL, PTB and VNIIM
 - Measurements March 2017 to November 2018 are completed and the Draft B report is approved for publication in the KCDB. Total duration 20 months.
 - * Measurement of R_K compared with CODATA: (39 ± 23)×10⁻⁹

- * **K2** resistance at 10 M Ω and 1 G Ω
 - * Pilot laboratory: NRC
 - Started September 2012
 - Measurements completed,
 Draft A report prepared
 - Draft B report will be available in 2-3 months from now

- K5 primary power at 120 & 240 V, 5 A, 53 Hz;
 phase 0°, ± 60°, ± 90°, two Radian travelling standards
 - * Aimed uncertainty level < 20 µW/VA</p>
 - * Planned loop:
 - * Pilot measurements: PTB
 - * SIM: NIST, CENAM and INMETRO
 - * EURAMET: VSL, LNE and SP
 - * APMP: NIM, NMIA and VNIIM
 - * From Afrimets: NMISA
 - Measurements: January 2018 to September 2019
 - Draft A report: January 2020

- * **K13** power harmonics
 - * Participants: NIST, NRC, RISE, PTB, NPL, VNIIM, NIM, NMIA
 - Travelling standard Fluke 6105
 - * Technical protocol has 3 waveforms:
 - * Sine wave at 120 V, 5 A, unity power factor
 - * IEC62053-21 signals: voltage 10%, current 40%, 5th harmonic
 - * Field-recorded waveform
 - * Support group NIST, NRC, RISE, NPL, NIM (pilot)
 - * Comparison started autumn 2018 and the standard is now with the third participant, expected completion Dec 2019

- * K6a/K9, ac/dc voltage transfer:
 - * 3 V, 10 Hz 1 MHz & 500 1000 V, 10 Hz 100 kHz
- * Two travelling standards are being circulated, allowing K6c to be run in parallel to save on transport and reporting costs
- RISE, INTI, PTB, NMIA, NIST, NRC, JV, NMIJ, NIM, LNE, NMISA, INMETRO, VNIIM
- * Support group: RISE (protocol), INTI (reporting), NIST (pilot measurements), PTB and NMIA
- * Comparison started at the end of 2018 and the third participant is currently making measurements, end Oct 2020

- * K6c, ac/dc voltage transfer:
 - * 3 V, 500 kHz 100 MHz
 - * Running in parallel with K6a/K9
- * RISE, PTB, NIST, NRC, NIM, LNE, VNIIM, A*STAR
- * Support group: RISE (protocol), NIST (pilot measurements), PTB
- Comparison started at the end of 2018 and the second participant is currently making measurements, end Oct 2020

- K3 inductance 10 mH and 1 kHz
- Two temperaturecontrolled standards made available by PTB

NMI	Country	Region
KRISS	Korea	АРМР
NMIA*	Australia	АРМР
NIM*	China	APMP/COOMET
VNIIM	Russia	APMP/COOMET
LNE	France	EURAMET
VTT	Finland	EURAMET
PTB*	Germany	EURAMET/COOMET
Inmetro	Brazil	SIM
NIST	USA	SIM
NRC	Canada	SIM
NMISA	South Africa	AFRIMETS

WGLF strategy for comparisons

- * 10 Key quantities, 1 4 values in each quantity
- Discipline of NOT increasing the number of quantities without a strong case
- Review the values within a quantity
- Interval between comparisons typically 10 years, based on evolution in laboratories, some quantities longer or even no future comparison scheduled
- Choices also strongly influenced by the activities in the RMOs

Comparison overview

	Quantity	<1998	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	DC Voltage														
	1.1 Sources	BIPM.K	10, K11												
	1.3 Ratios					K8, 8.1									
2	2 DC Resistance														
	2.1.2 1 ohm to 1 Mohm	K1, 1 &	10 k	BIPM.K12	2 QHR,	K10, 100			K13a/b,	1 / 10 k					
	2.1.3 above 1 Mohm			K2, 10 M	& 1 G										
3 DC current to 100 A															
4	Impedance														
	4.1 Resistance														
	4.2 Capacitance	K4, 10 p	F					BIPM.K1	4a/b, 10	pF / 100	pF				
	4.3 Inductance	K3, 10 n	nH										K3.1, 10	mH	
5	5 AC Voltage														
	5.1.1 AC/DC <0.5V					K11, 10 I	mV, 100	mV	K11.1 1	0 / 100 m	V				
	5.1.2 AC/DC 0.5 to 5V		K6.a, 3	/											
	5.1.3 AC/DC >5V		K6.b, 50	<mark>0 / 1000 V</mark>	1	K9, 1000	V								
	5.3.1 AC ratio			ł	<mark><</mark> 7, 1 kH	z									
6	AC Current														
										K12, 10	mA / 5A				
7 AC Power															
			K5, 50 /	60 Hz											
8 High voltage & current															

Comparison overview

Quantity	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
1 DC Voltage												
1.1 Sources												
1.3 Ratios												
2 DC Resistance												
2.1.2 1 ohm to 1 Mohm												
2.1.3 above 1 Mohm		K2.2012	10 Mohn	n & 1 Goh	m							
3 DC current to 100 A												
4 Impedance												
4.1 Resistance												
4.2 Capacitance						K4, 10 p	F / 100 p	F				
4.3 Inductance										K3, 10 m	H	
5 AC Voltage												
5.1.1 AC/DC <0.5V												
5.1.2 AC/DC 0.5 to 5V								K6.a, 3 V			_	
5.1.3 AC/DC >5V								K9, 1000	V			
5.3.1 AC ratio												
6 AC Current												
7 AC Power												
				k	(5, 50 /	60 Hz						
	K13, power harmonics											

8 High voltage & current

Further comparisons

Reviewed the case for DC voltage

- * 1 V and 10 V are sufficiently covered by Josephson effect standards and comparisons – quantum standard maintains equivalence, supplemented by BIPM Zener comparisons
- * **1000 V** review requirements and methods with NMIs to establish a comparison approach: voltage ratio or voltage
- * Reviewed the case for DC resistance
 - * 100 ohm resistance is sufficiently covered by the quantum Hall effect standards, 10 kΩ is covered by BIPM comparisons.
 1 TΩ review requirements with NMIs to establish a comparison approach

Further comparisons

- * Reviewed the case for AC voltage ratio, K7
 - Inductive voltage dividers are very stable. Previous comparison meets the present needs
- * Reviewed the case for AC/DC current, K12
 - Now 15 years since the previous comparison so review requirements and methods with NMIs to establish a comparison approach
- * Reviewed the case for **High Voltage and Current**
 - * **100 kV** review requirements and methods with NMIs to establish a comparison approach

BIPM Comparisons

- * Three to four 1 V and 10 V Zener bilateral comparisons per year
- * One or two bilateral resistance comparisons per year at 1 Ω and 10 $k\Omega$
- * One or two bilateral capacitance comparisons per year
- * Calibrations: 3-5 Zener, 30 resistance, 20 capacitance per year carried out to 170025:2017.
- * On-site Josephson comparisons continue
- * Following the first on-site QHR comparison in the new series, there are now two per three per year.
- * Plan to use a PJVS for comparison of ac voltages, table-top QHR using graphene samples and the acQHR as an impedance standard

Other matters

* Any other business

- Presentation on the work done by NIM to support the emerging need for traceability for DC power relating to charging of electric vehicles
- Presentation from NIM on the use of big data from smart meter installations to establish metrology of meters in service
- * New WGLF chairman
 - Murray Early (MSL) will be taking over as the next WGLF chairman