

Phase-insensitive Ultrasonic Computed Tomography (piUCT) for the diagnosis of breast disease

Bajram Zeqiri Acoustics & Ionising Radiation Division National Physical Laboratory, UK

CCAUV11 Meeting, September 21-22

Background (I)

- Within the UK, over 50,000 women are diagnosed with breast cancer per year
- X-ray Mammography is difficult to apply in younger women with dense breast tissue. These have an increased breast cancer risk.
- About 30% of all mammograms are of questionable value with unwanted artefacts.
- Only one in three biopsies are found to be malignant meaning that 92,000 unnecessary procedures are carried out, at a cost of ~£35 million to the NHS.
- NPL, University Hospitals Bristol, Precision Acoustics, Acoustic Polymers Ltd and Designworks have developed a prototype clinical system for a new breast screening technique using ultrasound computed tomography (UCT).

Background (II)

- Ultrasonic Computed Tomography (UCT) is being investigated for whole breast applications;
- Reconstructions (using existing technologies) are strongly affected by artefacts, particularly when based on ultrasound attenuation of tissue;
- These artefacts arise due to the nature of the detectors used, in particular that they are *phase-sensitive*;
- In the 1980's, *phase-insensitive* detectors based on Cadmium Sulphide acoustoelectric sensors (1980s) seemed to show promise, but were far too insensitive;
- The project developed a UCT system based on *phase-insensitive* detector(s) that exploit the pyroelectric effect in a thin polymer.

Characteristic properties of biological tissues

Speed of sound [m/s]	Fat	Breat fibroglandular tissue	Fibroadenoma	Carcinoma	Cyst
Wiskins <i>et al.</i> 2011	1430 -1460	1550 -1575	1550 -1585	1585 -1630	1520-1540

Refraction of ultrasonic wave-fronts

 θ_{t}

 C_2

 C_1

 θ_{i}

<u>Solution</u>: need a large omnidirectional sensor to avoid missing refracted radiation

Distortion of travelling acoustic wave-fronts

Biological tissue	α (dB cm ⁻¹) 1 MHz	α (dB cm ⁻¹) 2.5 MHz	Speed of sound (ms ⁻¹)
Subcutaneous fat	0.89	1.71	1470
Internal fat	0.92	1.8	1470
High attenuation tumour	0.92	<u>3.2</u>	1549
Cyst	0.06	0.38	1569
Glandular parenchyma	1.02	2.94	1515

Duric et al. Development of ultrasound tomography for breast imaging, Medical Physics, 32 (5), 2005.

Phase-insensitive (PI) detectors

B. Zeqiri, P. N. Gélat, J. Barrie and C.J. Bickley. "A Novel Pyroelectric Method of Determining Ultrasonic Transducer Output Power: Device Concept, Modelling and Preliminary Studies", IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., Vol. 54, No. 11, 2318-2330, 2007.

NIHR PoC funding

 Bajram Zeqiri, Christian Baker, Giuseppe Alosa, Peter NT Wells and Haidong Liang, "Quantitative computed tomography using phase-insensitive detectors", *Phys. Med. Biol.* 58 (2013), 5237-5268.

Completed system

piUCT Scanning Process

- piUCT uses a parallel beam tomographic configuration
- 14 parallel transmitters
- 1 large area sensor

Frame: each of the transmittere

and sensor together builds up the full picture around the object

WS

e

piUCT Scanning Process

- The transmitters and receiver rotate the full 180° together
- Scan: a series of projections from multiple angles around the object
- An image of the object is reconstructed from a full set of projections

Real Object

Set of Projections

Image of Object

First piUCT Scans – CIRS Phantom

Transverse plane

- Breast phantom scanned by XCT and MRI at Bristol
- Scans used to compare to the piUCT system
- Suitable scan planes identified

Figure A comparison of two imaging modalities of a CIRS Model 043 breast phantom in the frontal plane at z = 17mm by: (a) XCT and (b) piUCT scans

Quantitative Comparison

- Material measurements on CIRS phantom samples performed at NPL
- piUCT scans slightly underestimate attenuations

-50 -40	Material Type	Material Measurements (dB.cm-1)	piUCT Scan Data (dB.cm-1)
	Water	-	-
	Z-Skin	1.5	1.1 - 1.4
20 30 30 30	Bulk Material	3.6 - 3.9	2.9 - 3.8
40 50 -50 -40 -30 -20 -10 0 10 20 30 40 50			

- We have developed a through-transmission ultrasound tomography system for imaging of breast tissue.
- The system uses a large area phase-insensitive detector which should remove many of the artefacts see in UCT.
- The system uses an array of 14 transducers operating at 3.2 MHz and is currently being optimised for Quantitative Imaging performance.
- Initial scans completed on a CIRS phantom are encouraging.
- The technique shows promise as an operator-independent, non-ionising, quantitative technique for assessing the pathology of soft tissue.