

DFM + BKSV-DPLA: current research activities

11th CCAUV Meeting September 2017

Danish Metrological Infrastructure

Main research activities

DFM

Danish National Metrology Institute

Microphone calibration

- Low-frequency pressure calibration
- Primary calibration of WS microphones
- High-Frequency free-field calibration –
 Environmental coefficients

Brüel & Kjær

- Microphone calibration
 - Very low-frequency calibration
- Vibration transducer calibration
 - Extended frequency range for vibration transducer calibration

- BKSV-DPLA: refinement and definition of the specifications of the new generation of universal ear simulators, its calibration and manufacturing
- DFM: calibration of the ear simulator, and the development of the traceability chain for ultrasound measurements

Environmental free-field coefficients – state of the art

- Analytical models for predicting the coefficients
 - Only for pressure sensitivity of Laboratory Standard (LS) microphones
 - Based on lumped parameter models

- LS Microphones (reciprocity)
- Working Standard microphones (some few models, based on actuator measurements)
- Different coefficiens for different sound fields
 - Free-field coefficient based on pressure coefficients
 + diffraction data
- Needed for increasing accuracy in an extended frequency range above 100 kHz

What did we do?

- Numerical Boundary Element Method calculations instead of analytical solutions
 - An axi-symmetrical model that includes viscous and thermal losses
 - Full coupling between the interior problem, the membrane and the exterior problem in a free-field.
- Determined the pressure and temperature coefficients by calibrating microphones at different pressures and temperatures
 - Setting the free-field reciprocity system inside environmentally controlled spaces
 - Using time-selective techniques to remove any disturbance from the spaces
 - Set-up an actuator measurement system inside the same spaces
- Analysed an alternative solution for the temperature coefficient
 - Additive Free-field coefficients based on actuator coefficients + diffraction data

Experiments - Measurement set-up

Experiments – Measurement set-up

Experiments – Time-selective technique

Numerical results - Environmental coefficients

Temperature coefficient - Additive method

$$M_{\rm f} = M_{\rm p} \cdot S(\theta) \cdot \frac{Z_{\rm a}}{Z_{\rm a} + Z_{\rm a,r}},$$

$$L_{Mf} = L_{Mp} + \Delta_{S} + \Delta_{Z},$$

$$\delta_{Mf} = \delta_{Mp} + \delta_{S} + \delta_{Z}$$

$$\delta_{Mf} = \delta_{Mp} + \delta_{S} + \delta_{Z}$$

Experimental results

Pressure coefficient

Temperature coefficient

Conclusions

- Temperature and static pressure coefficients of the free-field sensitivity of Working Standard microphones type 3 (Brüel & Kjær type 4939) have been determined using a BEM formulation that includes losses.
 - An accurate description of the internal geometry and membrane properties is needed.
- Temperature and static pressure coefficients of the free-field sensitivity of Working Standard microphones type 3 (Brüel & Kjær type 4939) have been determined experimentally, and compared to the numerically determined coefficients.
 - Experimental determination of the free-field coefficients is challenging
- Experimental and numerical results have a good coincidence, and differences can be traced to individual variations of the measured microphones as opposed to typical or design specifications used in the simulation.