# Report of the CCM Working Group on Gravimetry (CCM-WGG)

Alessandro Germak (INRiM) 17<sup>th</sup> CCM meeting, 16 May 2019

#### Bureau International des Poids et Mesures



#### Proposed changes to membership

|                           | •BEV (Bundesamt für Eich- und Vermessungswesen)                                               |  |
|---------------------------|-----------------------------------------------------------------------------------------------|--|
|                           | •BGI (Bureau Gravimetrique International)                                                     |  |
| No new                    | •BIPM (Bureau International des Poids et Mesures)                                             |  |
|                           | •FGI (Finnish Geospatial Research Institute)                                                  |  |
| memher                    | •INRIM (Istituto Nazionale di Ricerca Metrologica)                                            |  |
| пспост                    | •KRISS (Korea Research Institute of Standards and Science)                                    |  |
| nronocal                  | <ul> <li>LGUL (Faculté des Sciences, de la Technologie et de la Communication)</li> </ul>     |  |
| proposar                  | •LNE-SYRTE (Observatoire de Paris/Systèmes de Référence Temps-Espace)                         |  |
|                           | •METAS (Federal Institute of Metrology METAS)                                                 |  |
|                           | •NIM (National Institute of Metrology)                                                        |  |
|                           | •NIST (National Institute of Standards and Technology, United States Department of            |  |
| A study as such and (22). | Commerce)                                                                                     |  |
| Actual members (22)       | •NMIJ/AIST (National Metrology Institute of Japan, AIST)                                      |  |
|                           | •NPL (National Physical Laboratory)                                                           |  |
| 14 NIVIIS                 | •NRC (National Research Council of Canada)                                                    |  |
| 2.01                      | <ul> <li>SASO-NMCC (Saudi Organization for Standardization, Metrology and Quality)</li> </ul> |  |
| 3 DIS                     | •UME (National Metrology Institute of Turkey)                                                 |  |
|                           | •VNIIM (D.I. Mendeleyev Institute for Metrology)                                              |  |
| 4 personal                | <ul> <li>•VUGTK (Research Institute of Geodesy, Topography and Cartography)</li> </ul>        |  |
|                           | •Dr Reinhard Falk                                                                             |  |
| 1 International           | Prof. James Faller                                                                            |  |
|                           | •Prof. Dr Jan <b>Krynski</b>                                                                  |  |
|                           | •Dr Michel Van Camp                                                                           |  |
|                           | •RMO Technical Committee chairs in the field of Mass and Related Quantities or their          |  |
| www.bipm.org              | representatives 2                                                                             |  |

#### Proposed changes to membership

- Proposed change in chairmanship:
  - Chair: Dr. WU Shuqing (NIM, China)
  - Vice chair: Dr. Vojtech Pálinkás (VUGTK, Czech Republic)

#### WG Meetings held since last CCM

13<sup>th</sup> may, 2019
 BIPM
 Sèvres, France

21 Participants (16 members, 5 invited/observers)

 Next WGG meeting on 2021 in coincidence of IAG general assembly and meetings in Vienna (hosted by BEV)

#### Main actions taken and main achievements

- Organization and promotion of:
  - Key Comparisons (CCM and regionals)
  - CMCs submissions
  - Metrological issues
  - Liasons with geodetic/geophisicist community:

#### Main actions taken and main achievements

- Different CMCs:
  - Absolute <u>measurement</u> (on stable site)
  - <u>Calibration</u> of AG:
    - By direct comparison with other AG
    - By comparison with a reference station

"CCM – IAG Strategy for Metrology in Absolute Gravimetry": Scheme of the traceability chain www.bipm.org



#### Main actions taken and main achievements

- <u>New CMCs</u>:
  - NSC Ukraina, (June 2017)
- In progress:
  - VÚGTK, Czech Republic: submitted for both <u>absolute measurements</u> and <u>calibration of absolute gravimeter</u> (first CMC submitted in this field): approved by EURAMET on Feb. 2019 and now under evaluation from the other RMOs
  - CENAM, Mexico: finished the preparation process (peer rewiew and participation to a KC) for the CMC presentation and now they are under submission
  - NIM, China: under evaluation for both (measurement and calibration)
  - NIMT, Thailand: under evaluation (peer review on Feb.2020)

#### Progressing the state of the art

- Better understanding on uncertainty in measurement (<u>possible systematic errors</u> on comparisons of FG5 type dominant AGs). Agreed expanded uncertanty (95% confidence level) of FG5 type AGs: about **4.5x10-8** m/s<sup>2</sup>
- Giving better possibilities in traceability for measurements (implementing all possible traceability paths described in the document «CCM – IAG Strategy for Metrology in Absolute Gravimetry")
- Supporting emerging technolgies of AGs (quantum...)

|                                                                              | Instrumental uncertainty                                                |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Progressing the state of the art                                             | Drag effect (residual gas)                                              |
| Togressing the state of the art                                              | Outgassing effect                                                       |
|                                                                              | Non-uniform magnetic field effect                                       |
|                                                                              | Temperature gradient effect                                             |
|                                                                              | Effect for electrostatics                                               |
| Influence nerenetere.                                                        | Mass distribution effect (attraction of apparatus)                      |
| Innuence parameters:                                                         | Laser beam verticality correction (glass wedges)                        |
|                                                                              | Trajectory verticality                                                  |
|                                                                              | Air gap modulation effect                                               |
|                                                                              | Laser accuracy effect (distance measurement)                            |
|                                                                              | "Beat-mode" (inter-mode laser leak effects)                             |
|                                                                              | Index of refraction effect                                              |
|                                                                              | Beam divergence correction (laser beam diameter, diffraction corr.)     |
| Site-dependent uncertainty                                                   | Beam share effect                                                       |
| Coriolis effect                                                              | Clock effect (frequency standard)                                       |
| Floor recoil effect                                                          | Fringes timing effect (electronic phase shift, time interval asymmetry) |
| Barometric pressure effect (diff_pressure_atmospheric attraction and loading | Finite value of speed of light effect                                   |
| correction, admittance factor)                                               | Retroreflector balancing (trihedron or test mass rotation)              |
| Earth tides correction                                                       | Radiation pressure effect                                               |
|                                                                              | Vertical gravity gradient                                               |
| Delar motion correction                                                      | Data processing (start fringe and number of processed fringes)          |
|                                                                              | Set up                                                                  |
|                                                                              | Reference height (height measurement from a benchmark, effective        |
|                                                                              | height determination)                                                   |
|                                                                              | Air pressure measurement (air pressure correction - pressure sensor)    |
|                                                                              | Seismic shocks                                                          |
|                                                                              | Reproducibility                                                         |
|                                                                              | Others                                                                  |

- NMIs: for supporting their CMCs and for the new realization of the kilogram
- Liasons with geodetic/geophisicist community:
  - IAG SC2.1 Gravimetry and Gravity Networks:
    - SG 2.1.1: Techniques and metrology in terrestrial (land, marine, airborne) gravimetry
    - JWG 2.1.1: Establishment of a global absolute gravity reference system
    - JWG 2.1.2: Unified file formats and processing software for high-precision gravimetry

- Key Comparisons:
  - CCM.G-K2.2017, Pilot Lab: NIM, China, Oct. to Nov. 2017, Draft B
  - EURAMET.M.G-K3, Pilot Lab: VÚGTK Czech Rep., Apr. to June 2018, Draft A
  - SIM.M.G-K1, Pilot lab: NIST-USA, Oct. 2016, Approved for equivalence, Results available
  - COOMET.M.G-S1, Pilot lab: NSC, Ukraine, Jan. 2016, Approved and published

• Key Comparisons: CCM.G-K2.2017 *Site:* Changping Campus of NIM, China Pilot Lab: NIM, China Date: Oct. to Nov. 2017 **30 absolute gravimeters** (AGs): 13 KC and 17 PS instruments (4+2 quantum/atomic gravimeters) **Draft B** circulated



#### • Key Comparisons: CCM.G-K2.2017 *Site:* Changping Campus of NIM, China Pilot Lab: NIM, China Date: Oct. to Nov. 2017 30 absolute gravimeters (AGs): **13 KC** and 17 PS instruments (4+2 quantum/atomic gravimeters) **Draft B** circulated



#### • Key Comparisons: CCM.G-K2.2017 Site: Changping Campus of NIM, China Pilot Lab: NIM, China Date: Oct. to Nov. 2017 30 absolute gravimeters (AGs): **13 KC** and **17 PS** instruments (4+2 quantum/atomic gravimeters **Draft B** circulated



Key Comparisons: EURAMET.M.G-K3 *Site:* Geodetic Observatory Wettzell (GOW), BKG Bad Kötzting, Germany Pilot Lab: VÚGTK – Czech Rep. Date: Apr. to June 2018 16 absolute gravimeters (AGs): 5 KC and 11 PS instruments **Draft A** circulated



# Key Comparisons: SIM.M.G-K1

Site: Table Mountain Geophysical Observatory (TMGO) Boulder, Colorado *Pilot lab:* NIST-Gaithersburg Date: Oct. 2016 **12 absolute gravimeters** (AGs): 4 KC and 8 PS instruments Approved for equivalence, **Results available (2017)** 



#### Key Comparisons: SIM.M.G-K1

*Site:* Table Mountain Geophysical Observatory (TMGO) Boulder, Colorado Pilot lab: NIST-Gaithersburg Date: Oct. 2016 12 absolute gravimeters (AGs): **4 KC** and 8 PS instruments Approved for equivalence, **Results available (2017)** 



Key Comparisons: SIM.M.G-K1 Site: Table Mountain Geophysical Observatory (TMGO) Boulder, Colorado Pilot lab: NIST-Gaithersburg Date: Oct. 2016 12 absolute gravimeters (AGs): 4 KC and 8 PS instruments Approved for equivalence, **Results available (2017)** 



Key Comparisons: COOMET.M.G-S1 *Site:* INRiM, Torino, Italy Pilot lab: NSC, Ukraine Date: Jan. 2016 2 absolute gravimeters (AGs): Approved and published (2017) Agreement between the two participants



#### KCs planed

- Next CCM-KC in 2023
- Possible next RMO KC immediately after the CCM-KC

#### Program of work for the next 5 years

- Definition of the features of **reference sites**, improving the quality and the numbers in any Region
- Organization of technical Seminar/Workshop (in coincidence of WGG meetings)
- Improvement of CMCs
- Organization of Key Comparisons with periodicity of six years (next on 2023)
- Support the Global Absolute Gravity Reference System and the International Gravity Reference Frame - IGRF (Resolution No. 2 of the IAG at the XXVI General Assembly of the IUGG in 2015). The achieved uncertainty for measurement at reference stations should be better than 10 µGal, including systematic effects.

# Thank you for your attention

a.germak@inrim.it



Bureau International des Poids et Mesures