

La science pour la santé _____ From science to health

Probing biological systems with ultrasound

S. Lori Bridal, Pascal Dargent

Sorbonne University, UMR CNRS 7371 –U1146 INSERM, Laboratoire d'Imagerie Biomédicale, France

CCAUV/19-46

Ultrasound and biological systems

- Safely probe living systems in real-time
 - Characterization of low-level blood flow

- Precisely evaluate physical properties of biological materials
 - Resonant ultrasound spectroscopy

Characterization of low-level blood flow

Tumor microenvironment

Features and processes

- patient/tumor-dependent
- present heterogeneity within a tumor
- evolve both with time and treatment

- Molecular reactions
- Cell-cell interactions
- Pysiological relationships

Structural and functional heterogeneity of vascularization associated with progression and malignancy *Agrawal et al. Cancer, 2009*

Need longitudinal imaging biomarkers

That meaningfully probe a tumor's

- functional, molecular and heterogeneity profile.

1) Discovery

Advances in imaging (engineering, modeling, chemistry ...) enable response to unmet medical needs

2) Technical validation

Accessibility, repeatability and reproducibility (devices, contrast agents, software...)

- 3) Link to tumor biology and outcome Key to developing measurement value in guiding decision-making
- 4) Clinical validation and cost-effectiveness

Advantage of cost per quality adjusted life year with respect to current standard of care

Contrast-enhanced ultrasound

Intravenous Injection

Specific acoustic signature

Can evaluate functional flow and its heterogeneity

Multiple advantages:

Quantification can be achieved from image-based data

[Payen et al., Ultra Med Biol 2013]

Clinically accessible use of CEUS to assess tumor status

• Qualitative

Vascular distribution and enhancement patterns to characterize focal liver lesions as malignant or benign

Quantitative:

 Δ AUC for contrast time intensity curves (TIC) for prediction of solidtumor response to anti-angiogenic therapy *Lassau, Invest Radiol, 2014*

Malignant Lesion : arterial and portal phases

Dietrich, Ultrasound Int Open 2017

Improved capacity to map heterogenity

- Identified that the gamma distribution is consistent with the nature of DCE-US signal
 - Flexible choice for mathematical analysis
- Definition of a multiplicative noise model to describe DCE-US signal

Significantly lower variability from small ROA because algorithm is better adapted to the nature of the signal

Mean transit time mapped from small ROA in mice renal cortex

[Barrois et al. IEEE Trans UFFC, 2013]

Accounting for flow heterogenity

Visually different areas:

- \rightarrow Well Perfused area (WP)
- \rightarrow Low Perfused area (LP)
- \rightarrow Not Perfused area (NP)

Time Intensity Curve used to differentiate the zone based on a goodness of fit parameter (FIR)

Example of FIR values for different zones

Estimation threshold for NP zones

Estimation threshold for WP zones

Example of zone evolution over time

Relative sizes of functional territories during growth

Microbubbles enable many imaging advances

Voxels > microvasculature

- Flow tracer kinetics
- Diffusion model
- Fluid dynamic model

Claude Monet: Les Nymphéas

Georges Seurat: Un dimanche après-midi à l'ïle de la Grande Jatte

Traces out microvessels

- Acoustic angiography
- Spatiotemporal filtering of ultrafast images
- Motion model ultrasound localization microscope

Key: plane-wave ultrarapid ultrasound

Identify and track individual microbubbles

[Couture et al. IEEE Trans UFFC, 2018]

Subresolution mapping of vessels and flow

Relative blood volume Arrival time Spatiotemporal correlation Mean transit time Distance to closest vessel Tortuosity/branching Vessel flow velocity

Lin et al. Theranositcs, 2017

Summary

- Sensitive to physiological motion
- Need precise localization of microbubble center-points
- Without volumetric information tracking and characterization are incomplete

Enticing capacities to visualize new aspects of tumor microvasculature with subresolution blood dynamics

Acknowledgements

Imaging and Therapy Development Laboratoire d'Imagerie Biomédicale

Modeling the contrast response

