

17th CCM meeting May 16/17, 2019

Traceable desorption and outgassing rate measurements

Karl Jousten, PTB, Berlin, Germany

- 1. Short tutorial on related vacuum physics
- 2. Method of outgassing rate measurement
- 3. Written and measurement standards
- 4. Conclusions

What is desorption, what is outgassing?

 \bigcirc

Desorption rate with time

 \bigcirc

 $\widetilde{n_0}(t)$ surface layer

Ideal vacuum/vacuum pump

 $\widetilde{n}(t) = \widetilde{n_0}(t)e^{-t/\tau}$

$$\tau = \tau_0 e^{E_{\rm des}/RT}$$

Real case: readsorption

Reduction rate much lower than exponential

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Desorption rate with time at real conditions

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

 \bigcirc

Nationales Metrologieinstitut

Our experience in vacuum technology

In any, not baked-out vacuum system water molecules dominate the residual gas (70 % to 95%).

Typically, any surface exposed to air is "coated" by a few monolayers of H_2O (typically a few up to 30).

All but the last monolayer of H_2O disappear quickly in a vacuum pump down process down to about 1 Pa.

Numbers: Mass per area

Mass/geometrical surface area = Number of sites per area * mass of individual molecule

One monolayer of H_2O molecules on a surface: 10¹⁵ cm⁻²·18·1.66·10⁻²⁷ kg = 3 ·10⁻¹¹ kg cm⁻² = 0.03 µg cm⁻²

Metrologia 53 (2016), S. Davidson et al., Table 1: "Sorption value" below 1 Pa: 0.013 $\mu g~cm^{\text{-2}}$... 0.16 $\mu g~cm^{\text{-2}}$

10¹⁵ cm⁻² = 4.1 ·10⁻³ Pa L cm⁻² for 296 K (preferred and convenient units in vacuum metrology)

How to measure desorption/outgassing rates?

ISO TS 20177

$$q_{\text{out},i} = C_i (p_{1,i} - p_{2,i})$$

time dependent for desorption time independent for outgassing

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Why is it difficult?

ISO TS 20177

$$q_{\text{out},i} = C_i (p_{1,i} - p_{2,i})$$

1) Pressure gradients in vacuum systems:

- Positioning of sample
- Positioning of conductance
- Positioning of detector
- Non-infinite pumping speed
 2) Outgassing/desorption from vacuum chamber: "zero"=residual pressure, its
 Stability

3) Time dependence: When is t =0?
4) Mixture of outgassing species: Sensitivity of total pressure vacuum gauge unknown and the worst:

5) Partial pressure measurement: Quadrupole mass spectrometers cannot be calibrated

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Quadrupole mass spectrometers

How they work

What we know

•Settings of QMS play an important role: emission current, electron energy, ion energy, field axis potential, m/e resolution, scan speed, multiplier gain

•Settings of each type of QMS have different consequences in their metrological characteristics

•Often settings of individual QMS of the same type have different consequences

•Relative sensitivity for single gas species (to nitrogen) cannot be predicted

Problem of sensitivity ->

\mathcal{O}

Quadrupole mass spectrometers

What we know

Conditions and gases must be carefully specified

- Performance depends on application
- In-situ calibration with ion gauge helps

Lieszkovsky, Filippelli, Tilford, JVST A 8 (1990), 3838...3854

Standardization and traceability

Physikalisch-Technische Bundesanstalt

Braunschweig und Berlin

Nationales Metrologieinstitut

Measurement standards on NMI level

What is needed ?

- "Fundamental" method (no simple comparison) to realize partial pressure
- Total pressure should vary between 10⁻⁸ Pa (ideally) to 10⁻² Pa
- Partial pressure for at least 2 gas species, the more the better
- Partial pressure for special gas like helium <10⁻¹⁰ Pa
- Known partial pressures in varying mixture (ideally 1:1 down to 10⁻⁶:1)

NMIs that provide measurement standard for partial pressures (not officially as calibration service):

PTB, Germany

- 3 gases at the same time
- incl. H₂O and dodecane
- Total pressure 10⁻⁶ Pa to 10⁻² Pa
- 1:1 down to 10⁻⁶:1
- Est. 2014

IMT, Slovenia

- 3 gases at the same time
- incl. H₂O and dodecane
- 10⁻⁶ Pa to 10⁻² Pa
- 1:1 down to 10⁻⁶:1
- Est. 2014

NMIJ, Japan

- 2 gases at the same time
 - 10⁻⁴ Pa to 10⁻² Pa
- Est. 2008

NIST, USA

- 2 gases at the same time
- 10⁻⁶ Pa to 10⁻² Pa
- Est. 1989 ("sleeping" status)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Measurement standard of PTB

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Measurement standard of PTB

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Reference outgassing samples for comparisons of different outgassing rate measurement systems

Patent pending DE102014200907 A1 published 2015-07-23: Reference outgassing sample Setina/Jousten

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

TECHNICAL ISO/TS ISO/TS TECHNICAL 20177 SPECIFICATION 20175 SPECIFICATION First edition First edition 2018-04 2018-06 Vacuum technology — Vacuum gauges Vacuum technology — Vacuum gauges - Characterization of quadrupole Procedures to measure and report mass spectrometers for partial outgassing rates pressure measurement Technique du vide — Manomètres à vide — Méthodes de mesurage et Technique du vide — Manomètres à vide — Description des spectromètres de masse quadripolaires pour mesurage de la pression de rapport du taux de dégagement de gaz partielle

https://www.iso.org/standard/67207.html

https://www.iso.org/standard/67208.html

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Maximum flexibility

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

ISO Technical Specification 20177 to measure and report outgassing rates

Measurement systems

- Several options for measuring systems
- Some kind of **traceability** is ensured for all systems
- Concept of **nitrogen equivalent**

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

ISO Technical Specification 20177 to measure and report outgassing rates

Physikalisch-Technische Bundesanstalt

Braunschweig und Berlin

 \bigcirc

Nationales Metrologieinstitut

ISO TS 20177

Throughput system with measured effective pumping speed:

Explaining idea of traceability of outgassing rate

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

What you find in ISO TS 20177

- Which measurement system is suitable for you
- How to prepare the measurement system
- What to calibrate before
- How to prepare the sample
- How to measure
- How to report

 \bigcirc

• Measurement uncertainties

Coming up: Improve in-situ traceability of QMS

Support through the EMPIR 16NRM05 project is gratefully acknowledged. The EMPIR is jointly funded by the EMPIR participating countries within EURAMET and the European Union.

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Nationales Metrologieinstitut

Traceable desorption and outgassing rate measurements (CCM 17th meeting 2019, May 17)

by NMIs et al.

Conclusions

- Measurement standards for traceable desorption/ outgassing rate measurements are established
- Primary systems at NMIs exist
- Time dependent measurements can be performed
- Vacuum metrology can measure 10⁻¹⁴ kg/s
- Traceable outgassing measurements are not yet routine
- Comparison with mass loss measurements are very interesting for vacuum community

Support through the EMPIR SIP01 project is gratefully acknowledged. The EMPIR is jointly funded by the EMPIR participating countries within EURAMET and the European Union.

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin