

Gravity measurements supporting Kibble balances

Vojtech Pálinkáš

Research Institute of Geodesy, Topography and Cartography Geodetic Observatory Pecný, Czech Republic

- 1) Definition of ,,gravity" and ,,free-fall" acceleration
- 2) What is needed for Kibble balance?

3 components and methods/techniquue for determination of:

- spatial "g" variations,
- temporal ,,g" variations,
- absolute "g",

3) Uncertainty of absolute ,g measurements, key systematic effects

4) Conclusion: Uncertainty of different approaches of ,,g'' determination for Kibble balance

In geodesy, the Earth's Gravity Field is described by **non-inertial system** – geocentric terrestrial reference system (including oceans and atmosphere) :

Definitions

gravity potential W = gravitational. p. U + Q centrifugal p. gravity acceleration grad W = g = gravitation b + z centrifugal acceleration

 $g = /\mathbf{g} /$ (magnitude of gravity acceleration)

International Earth Rotation and Reference Systems Service (IERS) Service International de la Rotation Terrestre et des Systèmes de Référence

IERS Technical Note No. 36

consensus quantity

IERS Conventions (2010)

Gérard Petit¹ and Brian Luzum² (eds.)

IERS Conventions Centre

¹ Bureau International des Poids et Mesures (BIPM) ² US Naval Observatory (USNO) Not only gravitational force is relevant \Rightarrow the usual term of "gravitational" acceleration is incorrect in this case

$$g = g_F + \Delta g_T + \Delta g_{Atm} + \Delta g_{Pol}$$

gravity acceleration = <u>free-fall acceleration</u> <u>measured by absolute gravimeters</u> corrected by set of conventional corrections for tides, polar motion and atmosphere variation needed for Kibble balance

Target $u = 10 \ \mu g \Rightarrow$ relative standard uncertainty of **1E-8** g_F contribution should be $\langle 5E-9 \Rightarrow 5E-8 \text{ m} \cdot \text{s}^{-2} (50 \text{ n} \text{m} \cdot \text{s}^{-2})$

at the centre of mass and time of the KB experiment

BASIC CONCEPT

Measure **absolute** g 1)

Measure/model temporal gravity variations 2) (tides. polar motion, atmosphere, hydrosphere, geodynamics)

5 µGal

3) Transfer $g_F(t)$ to the centre of mass

Jiang et al. (2013) Metrologia 50

Tra	nsferirng "g"	to the centre of ma	S.S	
IOP PUBLISHING				
Metrologia 45 (2008) 265–274	OP Publishing Bureau International des Poids et Mesures	IOP Publishing Bureau International des Poids et Mesures	Metrologia	
Micro-gravity inve	Metrologia 51 (2014) S32-S41	Metrologia 54 (2017) 445-453	https://doi.org/10.1088/1681-7575/aa71e1	
LNE watt balance	Gravimetry for wat	Self-attraction mapping and an	update	
Lite watt balance	-	on local gravitational accelerati	on	
Sébastien Merlet ¹ , Alexander Kopaev ² , Mi	J O Liard ¹ , C A Sanchez ¹ , B M Wood ¹ , A	measurement in BIPM Kibble ba	alance	
Gerard Geneves , Arnaud Landragin and	¹ National Research Council Canada, 1200 Montreal Road ² Natural Resources Canada, 615 Booth St, Ottawa, ON, K			
		Shisong Li, Franck Bielsa, Adrien Kiss and Hao Fang		
Carefull 3D gravity determination of the s Well calibrated relat significant magnetic se The gravity differ	mapping is needed elf- attraction effect \Rightarrow tive gravimeters are is ensitivity . rence should be computed is invariant of the second	(13 mm \approx -1 µGal) including standard uncertainty of 2.0 µGal needed avoiding those having ed from the position gradien - effective		
position of the free	ee-fall (1.22 m / 1.27 m	for FG5/FG5X)		
$(5^2 - 2^2)^{0.5} = 4.6 \ \mu Gal$ contribution from determination of absolute g_F (including temporal variations)				

Always check if the **permanent tide (M0+S0, frequency = 0.000)** are treated by the same way for tidal variations and for absolute g

Easily predictable effect

Possibility to determine:

- 1) modelling only (solid tides + ocean loading) $\pm 1 \mu$ Gal
- 2) **6-months observations** with well calibrated relative gravimeter \pm **0.2 µGal**. Tidal parameters for main tidal waves are determined (**ocean tides** are included).

No need to measure exactly on the site of Kibble balance experiment. Tidal parameters have **large spacial validity** if the ocean tides are small - e.g. differences between using parameters from Prague or Vienna reach below 0.1 μ Gal

Temporal variations - polar motion

The motion of the rotation axis of the earth **relative to the crust**. Main components: a free oscillation with period about **435 days** (Chandler wobble) and an **annual oscillation**.

DIN 5450 (ISO 2533:1975) Standard Atmosphere \Rightarrow Nomal pressure (depends on elevation *H*:

$$p_n = 1013,25 (1-0,0065 H/288,15)^{5,2559}$$
 hPa

Temporal variations – Atmosphere

Simply model/correction using single admittance: $\Delta g_P = 0.3 (p - p_n) \mu$ Gal

Pressure variations up to 60 hPa at given site \Rightarrow variations of about 18 μ Gal

- the simple model works well in most of cases (errors up to 2 μ Gal with respect to 3D model) $u = \pm 1.0 \mu$ Gal

especially at high elevations, the single admittance should be verified
atmospheric pressure has to be measured simultaneosly with KB experiment (daily variations up to 20 hPa)

Temporal variations – Global hydrology

Continental water storage variations (hydrological models WGHM, LaD, etc.) - validateted by **GRACE**

4

-4

-8

1g /μGal

Temporal variations – Local hydrology

400

BH

CO

Geophysical Journal International

Geophys. J. Int. (2014)

Int. (2014) doi: 10.1093/git/ggt524 Geophysical Journal International Advance Access published January 29, 2014

The quest for a consistent signal in ground and GRACE gravity time-series

Michel Van Camp,¹ Olivier de Viron,² Laurent Métivier,³ Bruno Meurers⁴ and Olivier Francis⁵

Worldwide SG stations International Geodynamics and Earth Tides Service (IGETS) **IGETS Stations 2018** -180-135°-90°-45° 0° 45° 90° 135° CNA-11 oNy-Alesund Onsalar Metsahovi 45' 45 Cent. Europe Boulder Yebes atsushiro LhasaWuhan **OApache Point** Hsinchu **Continuous monitoring** of temporal gravity variations with Superconducting Gravimeters Djougou 0 Selection from active 21 (+2) stations: CibinongBandung Europe (13+1): BG, BH, CO, MC, MB, ME, MO, NY, OS, PE, ST, WE, YS, [BF] Sutherland Plata Canberr Concepcion North America (3): AP, BO, CA 45 South America (1): LP Svowa Asia: China (3): LH, LI, WU Japan (1+2): MA, [MI, IS] -180-135'-90'-45' 0' 45' 90' 135' 180' Africa (1+1): SU, [DJ] http://isdc.gfz-potsdam.de/igets-data-base

Antarctica (1): SY

FG5/X absolute gravimeters

Absolute gravimeter:

- based upon physical standards
- no drift
- uncertainty: ± 2.5 µGal
- Long-term reproducibility : ± 1.5 µGal
- observation epochs

Most accurate and commercial available absolute gravimeters

Corner-cube absolute gravimeter The freely falling test mass is tracked by laser interferometer

$$z_i = z_0 + v_0 \left(t_i + \frac{W_{zz}}{6} t_i^3 \right) + \frac{1}{2} g_0 \left(t_i^2 + \frac{W_{zz}}{12} t_i^4 \right),$$

Gravitational acceleration. On (stable) site, **9.75** m/s^2 to **9.85** m/s^2 Absolute expanded uncertainty (k = 2, level of confidence 95 %) in m/s²: **1.0E-07** Absolute measurement Ambient temperature: (21 ± 5) °C

CMCs

Finland, FGI (Finnish Geospatial Research Institute)

Complete CMCs in Mass and related quantities for Finland (.PDF file)

Gravitational acceleration. On (stable) site, **9.75 m/s² to 9.85 m/s** Absolute expanded uncertainty (k = 2, level of confidence 95 %) in m/s²: **8.0E-08** Free fall experiment Ambient temperature: 21 °C ± 8 °C Approved on 03 January 2007

Italy, INRIM (Istituto Nazionale di Ricerca Metrologica)

Complete CMCs in Mass and related quantities for Italy (.PDF file)

Gravitational acceleration. On (stable) site, **9.75** m/s² to **9.85** m/s² Absolute expanded uncertainty (k = 2, level of confidence 95 %) in m/s²: **1.5E-07** Absolute measurement Ambient temperature: 23 °C ± 10 °C Approved on 03 January 2007

Switzerland, METAS (Federal Institute of Metrology)

Complete CMCs in Mass and related quantities for Switzerland (.PDF file)

Gravitational acceleration. On (stable) site, **9.75 m/s² to 9.85 m/s²** Absolute expanded uncertainty (k = 2, level of confidence 95 %) in m/s²: **8.0E-08** Absolute measurement Ambient temperature: (20 ± 5) °C Approved on 02 July 2008

Ukraine, NSC "Institute of Metrology" (National Scientific Centre "Institute of Metrology")

Complete CMCs in Mass and related quantities for Ukraine (.PDF file)

Gravitational acceleration. On (stable) site, **9.77 m/s² to 9.85 m/s²** Absolute expanded uncertainty (k = 2, level of confidence 95 %) in m/s²: **2.08E-07** Absolute measurement Ambient temperature: 14 °C to 34 °C Approved on 21 June 2017 Internal NMI service identifier: NSCIM-M-8.1.1/7

$u = 4.0 \,\mu Gal$

How accurate are the absolute measurements?

Comparisons of absolute gravimeters

	1081 82	1095	1080	1004	1007	2001	2005	2000
	7 AC	1905 6 A C	10 AC	1114C	17 AC	15 AC	10 AC	2009
ICAC _c of BID M	MCC Italy	IMCC	IMAG	IIAG	I/AG	IJAG	IJAG	TMCC 2*
ICAGS – at DIF M	GABL USSR	GABI	GABI	INGC	GABI	A10-b02*	GABI	CAG-01
from 1081 to 2000	UADL, USSK	LAEGER	UADL		UADL	A10-002	OADL	CA0-01
110111 1961 10 2009	JAEGER, BIPM	BIPM		JAEGER, Japan	NIM-2A	A10-03	A10-8	NIM-02
	NIM, China	NIM-1	NIM-1		NIM-2B*		FGC-01	MPG-2
	Hammond, USA	Zumberge, USA	NAO, Japan		ZZB		GABL- 01	A10-05
	Sakuma, static array		Sakuma, static array*				TBG-01	A10-14
	Faller, USA	JILAg-1	JILAg-4					A10-20
			JILAg-2	JILAg-2	JILAg-2	JILAg-2	JILAg-2	
		0	JILAg-3	JILAg-3	JILAg-3			
			JILAg-5	JILAg-5	JILAg-5	JILAg-5		
			JILAg-6	JILAg-6	JILAg-6	JILAg-6	JILAg-6	JILAg-6
		_						FGL-103
				FG5-101	FG5-101	FG5-101	FG5-101	FG5-101
		1		FG5-102	FG5-103	FG5-103	FG5-108	FG5-102
				FG5-104	FG5-105	FG5-105	FG5-202	FG5-105
				FG5-107	FG5-107	FG5-202	FG5-200	FG5-209
				105-108	FG5-202	FG5-202	FG5-211	FG5-215
					FG5-206	FG5-206	FG5-213	FG5-220
	J ALA				100 100	FG5-209	FG5-215	FG5-221
						FG5-211	FG5-216	FG5-224
						FG5-213	FG5-221	FG5-228
						FG5-301*	FG5-224	FG5-230
	X						FG5-228	FG5-233
		A						FG5-238
		1 st JILAg	5 JILAg	5 FG5	7 FG5	11 FG5	12 FG5	13 FG5

2003, 2007 – Walferdange in Luxembourg

3 CIPM_KC: 2009 (11 KC + 10 PS), 2013 Walferdange (10 KC + 15 PS), 2017 Beijing (13 KC + 17 PS);

3 EURAMET_KC + PS: 2011, 2015, 2018

Comparisons of absolute gravimeters

The KCRV is defined by KC gravimeters only using the weighted constraint

CCM-KC 2009: 7 from 11 AGs FG5/X

CCM-KC 2013: 8 from 10 AGs FG5/X

CCM-KC 2017: 12 from 13 AGs FG5/X

COMPARISONS – more than **90% of weights** are given by **FG5/X** gravimeters **declaring standard uncertainties of 2-3 µGal (confirmed at comparisons)**

However, KCRVs are strongly "FG5/X dependent" !!!

Possible **Systematic effects** have to be **captured!!!**

Another technique have to be used for verification !!!

$$\Sigma w_k \, \delta_k = 0$$

Systematic errors of FG5/X

Research Institute of Geodesy, Topography and Cartography

Experiments on FG5-215 and FG5X-251:

- validation of measurement results
- determination of particular systematic errors
- improvement of the original measurement technology
- developping new measurement systems, methods, software, analysis

Petr Křen et al.

Metrologia 53 (2016) 27-40

Metrologia 55 (2018) 451-459

Journal of Geodesy 93 (2019) 27-40

Metrologia 54 (2017) 161-170

Metrology and Measurement Systems 25 (2018) 701-713

New syste	FG5/X with HS5 77 system + additonal corrections	FG5/X - original system + standard corrections	
Influence parameters x_i	Contribution to the uncert.	Contribution to the uncert.	
	/ µ Gal	/ µ Gal	-0.4
Laser frequency	0.02	0.02	-0.6
Rb-oscillator frequency	0.02	0.02	-1 0 0.05 0.1 0.15 0.2 0.25
Test mass rotation, mechanical effects	0.70	0.70	Time (s)
Air gap modulation, floor recoil, fringe interval	1.15	1.15	Investigated
Vacuum pressure	0.15	0.15	
Self attraction correction	0.20	0.20	
Electrostatic effect	0.12	0.12	0.004 -
Magnetic gradient field	0.23	0.23	0.0035 -
Temperature sensitivity	0.50	0.50	
Determination of the reference instr. height	0.35	0.35	9.002 -
Perturbation due to non-constant gravity gradient	0.20	0.20	- 0.0015 - 0.001 -
Electronic phase shift and timing electronics	0.40	2.00	0.0005 -
Impedance mismatch	0.05	0.70	
Coriolis effect	0.10	0.60	Coordinate, x (mm)
Verticality of the test beam	0.05	0.60	al" Coriolis effect (resolved parallel to surface)
Diffraction correction	0.45	1.00	Coriolis
Dispersion in cable	0.02	0.50	effect
Setup-error, interferometer alignment	0.90	0.90	Eötvös effect
	1.88	3.10	"vertical"

FG5(X) Original system bias

Corrections / µGal	Standardly applied	New corrections	Difference
Speed-of-light	$\tilde{t}_i = t_i + \frac{(z_i - z_0)}{c}$	$\tilde{t}_i = t_i + \frac{(z_i - z_0)}{c}$	0.0
Self-attraction	-1.2	-1.2	0.0
Diffraction	+1.2	+2.4	+1.2
Distortion (350 mV fringes)	N/A	-2.2	-2.2
Cable length (5 m)	N/A	-1.0	-1.0
Impedance mismatch	N/A	-1.4 / +1.4	?
Verticality	N/A	+0.2 / +1.0	+0.6
Eötvös/Coriolis	N/A	-1.0 / +1.0	?
Air-gap modulation etc.	?	?	?
Sum			-1.4

According to present estimates, the g-values of FG5/X should be too high at present and decreased by -1.4 µGal in average. However few next effects have to be estimated.

Generaly, the present bias of KCRV is expected to be up to 2 µGal.

Comparison with cold atom gravimeters

CAG-01 (LNE-SYRTE) – till 2015 the only CAG at International Comparisons

τ(s)

100

Comparison with cold atom gravimeters

GAIN

Freier et al. 2016, Journal of Physics: Conference Series 723 012050

Nice stabilities are showed but uncertainties have to be verified at comparisons

Figure 5. Allan deviation (left) and power spectral density (right) of the gravity measurements with AQG-A01 in Larzac (solid red) and Talence (blue), and with FG5#228 in Larzac (solid green). The effective sampling interval of the FG5 was taken as 36 s. The red (resp. green) dashed line in the Allan plot indicates a sensitivity of 750 (resp. 450) nm.s⁻².Hz^{-1/2}. Scientific REPORTS | (2018)8:12300 | DOI:10.1038/541598-018-30608-1

Conclusion: Accuracy of g_F 1/3

The most accurate method: Combination of a continuous Superconducting Gravimeter (SG) and Absolute measurements (e.g. once per year)

	Parameter	Standard uncertainty / µGal
	Absolute g: FG5X-HS5 (CAG- 01) / FG5X	1.9 / 3.1
	Time variability	0.1
	3D mapping and self- attraction	2.0
	Combined	2.8 / 3.7
	relative standard uncertainty	2.8E-9 / 3.7E-9
		41

Advantage: continuos g/g_F time series, possibility to invite more AGs, compare them etc. Disadvantage: SG needs ice-cleaning once/year, cold-head repair each 3-years

140

Absolute method, based on absolute measuments. Monthly measurements are able to clearly detect the seasonal signal. The parameter standard standard uncertaint

101

10⁰

Conclusion: Accuracy of $g_F 2/3$

To determine, g_F "combination with $_{1D^2}$ models of tides, polar motion, air pressure is efficient– no need to operate AG exactly at the time of KB experiment

Th Parameter	Standard uncertainty / µGal
Absolute <i>g: FG5X-HS5</i> • <i>01) / FG5X</i>	<i>(CAG-</i> 1.9 / 3.1
Tides	0.2
Polar motion	0.05
Atmosphere	1.0
Seasonal signal	≈1.0
3D mapping and self- attraction	2.0
Combined	3.1 / 4.0

Disadvantage: AG offset variations are not controlled, regular validation is needed

Conclusion: Accuracy of g_F 3/3

Minimalistic method, based on rarely absolute measuments and modelling tides,

atmosphere and polar motion effects.

"Seasonal" variations are dangerous:

- the measured absolute g (e.g. in spring) might be deviated from the "middle"

- KB experiment can be done in the opposite season (in autumn)

Maximal systematic error (peak to peak variability of seasonal signal)

Parameter	Standard uncertainty / µGal
Absolute g: FG5X-HS5 (CAG- 01) / FG5X	1.9 / 3.1
Tides	0.2
Polar motion	0.05
Atmosphere	1.0
Seasonal signal	???????????????????????????????????????
3D mapping and self- attraction	2.0
Combined	>3.1 / >4.0

Thank you for your attention!

