Units for CCAUV

[Acoustics, Ultrasound and Underwater Acoustics]

DRAFT INTERNATIONAL STANDARD

ISO 80000 consists of the following parts, under the general title *Quantities and units*:

- Part 1: General
- Part 2: Mathematics
- Part 3: Space and time
- Part 4: Mechanics
- Part 5: Thermodynamics
- Part 7: Light and Radiation
- Part 8: Acoustics
- Part 9: Physical chemistry and molecular physics
- Part 10: Atomic and nuclear physics
- Part 11: Characteristic numbers
- Part 12: Condensed matter physics

IEC 80000 consists of the following parts, under the general title *Quantities and units*:

DRAFT INTERNATIONAL STANDARD ISO/DIS 80000-8

ISO/TC 12

Secretariat: SIS

Voting begins on: 2017-07-14 Voting terminates on:

2017-10-05

Quantities and units —

Part 8:

Acoustics

Grandeurs et unités -

Partie 8: Acoustique

ICS: 01.060

DRAFT INTERNATIONAL STANDARD

ISO/DIS 80000-8:2017(E)

Item No.	Quantity				Remarks
	Name	Symbol	Definition	Symbol	Remarks
8-15 (<i>8-22</i>)	sound pressure level, SPL	L_p	$L_p \equiv 10 \lg \frac{p_{\mathrm{rms}}^2}{p_0^2} \; \mathrm{dB} \; \mathrm{where} \; p_{\mathrm{rms}} \; \mathrm{is} \; \mathrm{the} \; \mathrm{root\text{-}mean\text{-}square} \;$ sound pressure and p_0 is the reference sound pressure. For sound in air and other gases, the reference sound pressure is given by $p_0 = 20 \; \mu \mathrm{Pa}$. For sound in water and other liquids, the reference sound pressure is given by $p_0 = 1 \; \mu \mathrm{Pa}$.	dB	Sound pressure level is the level of the power quantity $p_{\rm rms}^2$. It is expressed in decibels (dB). For a general definition of the level of a power quantity, see ISO 80000-3.
8-16 (<i>8-23</i>)	sound power level,	L_W	$L_W \equiv 10 \lg \frac{w_{ m m}}{w_{ m o}}$ dB where $W_{ m m}$ is mean sound power (item 8-9) and the reference sound power is $W_0=1$ pW	dB	Sound power level is the level of the power quantity $W_{\rm m}$. It is expressed in decibels (dB). For a general definition of the level of a power quantity, see ISO 80000-3.

Acoustics, Ultrasound and Underwater Acoustics

The primary quantity is sound pressure, defined as the difference between instantaneous total pressure and static pressure. The SI unit of sound pressure is the pascal (Pa).

Sound pressure is often expressed as a Sound Pressure Level (SPL) in decibels, L_p , calculated from:

$$L_P = 10 \log \frac{p_{rms}^2}{p_0^2} dB$$

where $p_{\rm rms}$ is the root-mean-square sound pressure and p_0 is the reference value of sound pressure.

For sound in air and other gases, the reference sound pressure is given by $p_0 = 20 \mu Pa$.

For sound in water and other liquids, the reference sound pressure is given by p_0 = 1 μ Pa.

Ref: ISO 80000: Quantities and units — Part 8: Acoustics

The SI unit of the sound power is the watt (W).

Note that in ultrasound metrology, sound power is often referred to as ultrasound power.

In air acoustics, sound power is sometimes expressed as sound power level in decibels calculated from

$$L_W = 10 \log \frac{W_m}{W_0} dB$$

where $W_{\rm m}$ is mean sound power and $W_{\rm 0}$ is the reference value of sound pressure. The reference value for sound power is $W_{\rm 0}$ = 1 pW

Ref: ISO 80000: Quantities and units — Part 8: Acoustics

Table 8. Non-SI units accepted for use with the SI Units

Quantity	Name of unit	Symbol for unit	Value in SI units
time	minute	min	1 min = 60 s
	hour	h	1 h = 60 min = 3600 s
	day	d	1 d = 24 h = 86 400 s
length	astronomical unit (au au	1 au = 149 597 870 700 m
plane angle	degree	0	$1^{\circ} = (\pi/180) \text{ rad}$
	minute	,	$1' = (1/60)^{\circ} = (\pi/10\ 800)$ rad
	second (b)	"	$1'' = (1/60)' = (\pi/648\ 000)$ rad
area	hectare (c)	ha	$1 \text{ ha} = 1 \text{ hm}^2 = 10^4 \text{ m}^2$
volume	litre (d)	1, L	$1 \ 1 = 1 \ L = 1 \ dm^3 = 10^3 \ cm^3 = 10^{-3} \ m^3$
mass	tonne (e)	t	$1 t = 10^3 kg$
	dalton ^(f)	Da	1 Da = $1.660 538 86 (28) \times 10^{-27} \text{ kg}$
energy	electronvolt ^(g)	eV	$1 \text{ eV} = 1.602 \ 176 \ 565 \times 10^{-19} \text{ J}$
logarithmic	neper (h)	Np	see text
ratio quantities	bel ^(h)	В	
_	decibel (h)	dB	

Table 8. Non-SI units accepted for use with the SI Units

Quantity	Name of unit	Symbol for unit	Value in SI units
time	minute	min	1 min = 60 s
	hour	h	1 h = 60 min = 3600 s
	day	d	1 d = 24 h = 86 400 s
length	astronomical unit (au	1 au = 149 597 870 700 m
plane angle	degree	0	$1^{\circ} = (\pi/180) \text{ rad}$
	minute	,	$1' = (1/60)^{\circ} = (\pi/10\ 800)$ rad
	second (b)	"	$1'' = (1/60)' = (\pi/648\ 000)$ rad
area	hectare (c)	ha	$1 \text{ ha} = 1 \text{ hm}^2 = 10^4 \text{ m}^2$
volume	litre (d)	1, L	$1 1 = 1 L = 1 dm^3 = 10^3 cm^3 = 10^{-3} m^3$

(h) In using these units it is important that the nature of the quantity be specified, and that any reference value used be specified. These units are not SI units, but they have been accepted by the CIPM for use with the SI.

logarithmic	neper ^(h)	Np	see tex
ratio quantities	bel ^(h)	В	
	decibel (h)	dB	~ 20