

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin National Metrology Institute

FINAL DETERMINATION OF THE BOLTZMANN CONSTANT **k** BY DIELECTRIC-CONSTANT GAS THERMOMETRY (DCGT)

C. Gaiser, <u>B. Fellmuth</u> et al.

Outline

History & Motivation

Dielectric-Constant Gas Thermometry

First Results & Difficulties

Improvements & Final Result

Uncertainty estimates & correlations

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Situation in 2003:

Fact: Only **one** measurement of the Boltzmann constant on the level of 2 ppm (NIST acoustic gas thermometry).

<u>Demand:</u> A sound new definition of the kelvin should not **only** be based on speed of sound measurements.

<u>Reaction:</u> First internal study at PTB in 2003 for a determination of k with DCGT based on the **experience** gained at low temperatures (T < 30 K)

Component	State of the art (2003)	Goal	
$\chi(p=0)$ determination	3 ppm	1 ppm	
pressure measurement	4 ppm	1 ppm	
Compressibility $\kappa_{\rm eff}$	13 ppm	0.5 ppm	
Polarizability α_0	2 ppm	0.5 ppm	
Impurities	5 ppm	0.5 ppm	
Adsorption	0.5 ppm	0.2 ppm	
T measurement	2 ppm	1 ppm	
Type B combined	15 ppm	2 ppm	

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Dielectric-Constant Gas Thermometry (DCGT)

Pressure

Clausius-Mossotti equation combined with the ideal-gas law:

Measuring quantity :

$$\frac{C(p) - C(0)}{C(0)} = \underbrace{\varepsilon_{\rm r} - 1}_{\chi} + \varepsilon_{\rm r} \kappa_{\rm eff} p$$

- *ε*r dielectric constant
- ε_0 electric constant
- α_0 atomic polarizability
- κ_{eff} effective compressibility
- χ electric susceptibility
- p pressure
- T temperature

Temperature

Water vapour Ice Water

Capacitance ratio

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Bernd Fellmuth

"28th CCT Meeting"

National Metrology Institute

Main Challenges

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

"28th CCT Meeting"

National Metrology Institute

PB Determination of the Boltzmann constant with DCGT

PB Determination of the Boltzmann constant with DCGT 2011

² C. Gaiser and B. Fellmuth, *Metrologia*, **49**, L4-L7 (2012)

PBReducing the uncertainty of the effective compressibility

Improvements in RUS measurements (e.g. temperaturedependent measurements)

Refinement of evaluation models (FEM, Monte-Carlo simulation)

Test samples also for the insulation materials (AI_2O_3)

Determination of the thermal expansion coefficient and the molar specific heat capacity

adiabatic \rightarrow isothermal

Resonant ultrasound spectroscopy (**RUS**):

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

"28th CCT Meeting"

Page8

PBReducing the uncertainty of the effective compressibility

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Reducing the uncertainty of the susceptibility

Careful analysis of the capacitance measuring network (chokes) and switch to low noise cables

Only one cable for the zero detector (increase of the sensitivity by nearly a factor two)

Measurement of the unbalanced signal of the null detector with a bandwidth of 0.01 Hz

99.99999% Helium (Linde AG)	Component	Certificate Gas (ppb)	Specification Getter (ppb)	Specification Adsorber (ppb)
	H ₂	< 30	< 10	< 0.1
	H ₂ O	< 50	< 10	< 0.1
Gas purifier (adsorber) (Micro Torr SP70, SAES Pure Gase, Inc.)	O ₂	< 30	< 10	< 0.1
	СО	< 30	< 10	< 0.1
	CO ₂	< 30	< 10	< 0.1
	N ₂		< 10	
Helium purifier (getter) (HP2, Valco Instruments, Co. Inc.)	Hydro-carbons	< 1	< 10	< 0.1
	Noble gases			

Component	Detection limit (ppb)	
H ₂	< 300	
H ₂ O	< 20	
0 ₂	< 10	
СО	< 100	
CO ₂	< 50	
N ₂	< 100	
CH ₄	< 20	
Ne	< 10	
Ar	< 10	
Kr	< 10	
Хе	< 10	

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Bernd Fellmuth

"28th CCT Meeting"

GAM 400

National Metrology Institute

99.99999% Helium (Linde AG)				
	Component	Mass-Spec and	Sensitivity	Uncertainty
Gas purifier (adsorber)		Getter Spec. (ppb)	In He	(ppm)*
(Micro Torr SP70, SAES Pure Gase, Inc.)	H ₂	< 10	4	0.02
	H ₂ O	< 10	160	0.9
Helium purifier (getter)	O ₂	< 10	10	0.06
(HP2, Valco Instruments, Co. Inc.)	CO ₂	< 50	10	0.3
	N ₂ & CO	< 100	8	0.4
Mass-spectrometry	Ne	< 10	2	0.01
measurements	Ar	< 10	8	0.05
	Kr	< 10	10	0.06
Experiment	Хе	< 10	16	0.09
(UHP gas tubing)	Combined uncertainty 1.		1.0	
		*(asymmetric r	octangular (distribution)
Mass-spectrometry measurements		(asymmetric r		

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Uncertainty budget DCGT 2013 (TPW)

Typ A

Typ B

Component	<i>u</i> (<i>k</i>)/ <i>k</i> ·10 ⁶	Component
Overall weighted mean of A_1 values	2.6 (6.3)	Susceptibility measurement (capacitance change)
		Pressure measurement
		Temperature
		Determination of the effection compressibility
		Head correction
		Impurities (measuring gas)
		Surface layers (impurities)
		Polarizability ab initio

1.0 (1.0) 1.9 (1.9) 0.3 (0.3) ve **2.4** (5.8) 0.2 (0.2) **1.0** (2.4) **0.5** (1.0) 0.2 (0.2) calculation (theory)

Combined standard uncertainty: 4.3 ppm (9.2 ppm)

B. Fellmuth et al., Metrologia 48, 382-390 (2011),

C. Gaiser et al., Metrologia, 50, L7-L11 (2013)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

"28th CCT Meeting"

u(k)/k ·10⁶

Determination of k with DCGT (TPW)

² C. Gaiser *et al.*, *Metrologia*, **50**, L7-L11 (2013)

Improved pressure standard

Cross-float measurements

 $u_{2013}(p)=1.9 \text{ ppm} \rightarrow u_{2015}(p)=1.0 \text{ ppm}$

T. Zandt et al., Metrologia, Special-issue on k (2015)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

¹ B. Fellmuth *et al.*, *Metrologia* **48**, 382-390 (2011),

² C. Gaiser et al., Metrologia, 50, L7-L11 (2013)

³ C. Gaiser et al., Metrologia, Special-issue on k (2015)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Type A

Type B

Component	<i>u</i> (<i>k</i>)/ <i>k</i> ·10 ⁶
Susceptibility measurement (capacitance change)	1.0
Pressure measurement	1.0
Temperature	0.3
Determination of the effective compressibility	2.4
Head correction	0.2
Impurities (measuring gas)	1.0
Surface layers (impurities)	0.5
Polarizability ab initio calculation (theory)	0.2

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Improvements since 2014

New massive shielding of the capacitor electrodes and more stable insulating discs

Parallel measurement of 2 different capacitors against two different types of reference capacitors

top:

bottom:

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Improvements since 2014: Type A

Reduction of Type A uncertainty by a factor ≈ 2

3 Improvements since 2014: compressibility

Use of two different types of tungsten carbide $\Delta \kappa_{\rm eff} \approx 6 \%$

Refinement of evaluation models (FEM, analytic approximation)

RUS measurements on many samples > consideration of $\kappa_{vol}(\rho)$

Consistent results for the two capacitors led to reduction of $u(\kappa_{eff})$ by a factor of ≈ 2

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Uncertainty Budgets (ppm)

Component	TC1 (2013)	TC2 (2017)	TC3 (2017)
Type A estimate	2.62	1.60	1.86
Type B estimates			
Susceptibility measurement ($\Delta C/C$)	1.00	0.40	0.40
Determination of the compressibility $\kappa_{\rm eff}$	2.35	0.65	1.53
Temperature T_{TPW} (traceability to the TPW)	0.30	0.30	0.30
Pressure measurement (7 MPa)	1.00	1.00	1.00
Head correction (pressure of gas column)	0.20	0.20	0.20
Impurities (measuring gas)	1.00	1.00	1.00
Surface layers (impurities)	0.50	0.50	0.50
Polarizability from <i>ab inio</i> calculations (theory)	0.20	0.10	0.10
Combined standard uncertainty	3.97	2.36	2.89

DCGT > second primary thermometry method with $u_r(k) < 3$ ppm

Second condition of the CCT for the new definition of the kelvin fulfilled!

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

PTB Weighted mean considering fully correlations

Component	Correlation	
Type A estimate	Partial	
Susceptibility measurement ($\Delta C/C$)	Complete	
Determination of the compressibility κ_{eff}	Partial	
Temperature T_{TPW} (traceability to the TPW)	Complete	
Pressure measurement (7 MPa)	Complete	
Head correction (pressure of gas column)	Complete	
Impurities (measuring gas)	No (independent)	
Surface layers (impurities)	No (independent)	
Polarizability from <i>ab inio</i> calculations (theory)	Complete	

$k_{\text{WM}} = 1.3806482$ with $u_{\text{r}}(k) = 1.94$ ppm

(≈ 0.2 ppm smaller than CODATA 2014)

(Relative standard uncertainty without consideration of correlations: 1.66 ppm, i.e. smaller by about 20%)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Gaiser, Fellmuth, Haft: *Metrologia* **54**, 141 (2017): *Primary thermometry from* 2.5 K to 140 K applying dielectric-constant gas thermometry

Gaiser, Fellmuth: *Phys. Stat. Sol.* **B 253**, 1549 (2016): *Method for extrapolating compressibility data of solids from room to lower temperatures*

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin