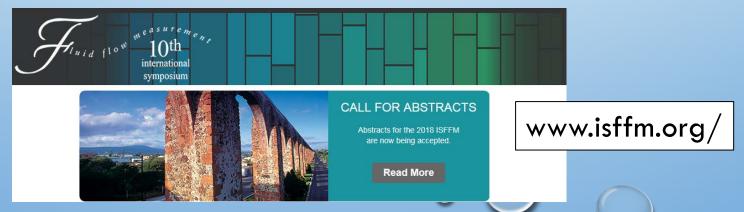
STATUS OF THE WORKING GROUP FOR FLUID FLOW

JOHN WRIGHT

NIST FLUID METROLOGY GROUP

CHAIR WORKING GROUP FOR FLUID FLOW

MAY 18, 2017 o


WGFF MEETINGS

April 13 and 14, 2015 at ISFFM, Washington D. C., (31 participants)

September 22 and 23, 2016 at FLOMEKO, Sydney, (27 participants)

Next meeting: March 19 and 20, 2018 at ISFFM, Queretaro, Mexico

OF THE WORKING GROUP FOR FLUID FLOW

SYDNEY, AUSTRALIA

SEPTEMBER 22 AND 23, 2016

WGFF LEADERSHIP

Chair: John Wright, since 2011, reappointed through 2019

Vice-Chair: Bodo Mickan, since 2011

Plan:

- Nominations and vote in 2018
- Transition to new chair at 2019 WGFF meeting

WGFF MEMBERS

<u>Country</u>	<u>Individual</u>	<u>Institute</u>
Austria	Petra Milota (RMO)	BEV
Australia	Khaled Chahine	NMIA
Chile (DI)	Jeny Vargas Angel	CISA
China	Chunhui Li	NIM
Czech Republic	Miroslava Benkova	CMI
France (DI)	Remy Maury	LNE-LADG
Germany	Bodo Mickan	PTB
Italy	Pier Giorgio Spazzini	INRIM
Japan	Takashi Shimada (RMO)	NMIJ
Kenya	Dominic Ondoro	KEBS
Korea	Yong Moon Choi	KRISS
Mexico	Roberto Arias (RMO)	CENAM
Netherlands	Peter Lucas	VSL
Portugal	Elsa Batista	IPQ

<u>Country</u>	<u>Individual</u>	<u>Institute</u>
Russia (DI)	Konstantin Popov	VNIIM
Singapore	Wu Jian	A*STAR
South Africa	Deona Jonker (RMO)	NMISA
Sweden	Olle Penttinen	SP
Switzerland	Hugo Bissig	METAS
Thailand	Theerarak Chinarak	NIMT
Turkey	Bulent Unsal	UME
United Kingdom	Michael Reader-Harris	NEL
United States	John Wright	NIST
	Invited Guests	
Canada	Christian Lachance (MC)	NRC
Chinese Taipei	Chun Min Su	CMS ITRI

APPLYING COMPARISON RESULTS TO CMC REVIEWS

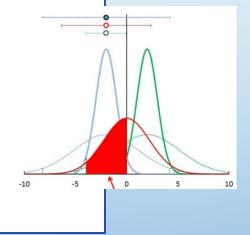
 IOP Publishing | Bureau International des Poids et Mesures
 Metrologia

 Metrologia 53 (2016) 1243–1258
 doi:10.1088/0026-1394/53/6/1243

Transfer standard uncertainty can cause inconclusive inter-laboratory comparisons

John Wright¹, Blaza Toman¹, Bodo Mickan², Gerd Wübbeler², Olha Bodnar² and Clemens Elster²

- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
- ² Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany


E-mail: john.wright@nist.gov

Received 11 April 2016, revised 30 July 2016 Accepted for publication 9 August 2016 Published 7 October 2016

Abstract

Inter-laboratory comparisons use the best available transfer standards to check the participants' uncertainty analyses, identify underestimated uncertainty claims or unknown measurement biases, and improve the global measurement system. For some measurands, instability of the transfer standard can lead to an inconclusive comparison result. If the transfer standard uncertainty is large relative to a participating laboratory's uncertainty, the commonly used standardized degree of equivalence \$\leq 1\$ criterion does not always correctly assess whether a participant is working within their uncertainty claims. We show comparison results that demonstrate this issue and propose several criteria for assessing a comparison result as passing, failing, or inconclusive. We investigate the behavior of the standardized degree of equivalence and alternative comparison measures for a range of values of the transfer standard uncertainty relative to the individual laboratory uncertainty values. The proposed alternative criteria successfully discerned between passing, failing, and inconclusive comparison results for the cases we examined.

Considered the effects of large transfer standard uncertainty on comparison results (generally only a problem when transfer standard is poorly evaluated during preliminary testing or is damaged during the KC).

Declaration of the impact of a CCM or RMO comparison on the CMC claims

Subfield: Air speed

RMO internal identifier

2. KCDB identifier: CCM.FF-K3.2011

3. Pilot/Coordinating laboratory(ies) (acronyms and countries):

PTB (Germany) & LNE-CETIAT (France)

4. Participating institute (acronym and country):

NIST (USA)

Person who declares on behalf of the participating laboratory

Name: Iosif Shinder Tel: (301) 975-5943 e-mail: iosif.shinder@nist.gov

The declarer affirms that the comparison results of his/her NMI have been checked against their CMC claims and states (please add rows as needed in the following table):

measurand	our CMC claims	our comparison results	Yes or No, our claims are supported by our comparison results
K3 Air Speed, 0.5 m/s to 40 m/s	(k = 2, level of confidence 95%) in %: (0.44 + 0.16/v²), v speed in m/s	LDA: En = 0.06 to 0.65 Ultrasonic: En = 0.04 to 1.02	Yes, the results of K3 support NIST's CMCs for the best existing device (LDA) but En values >1 for the ultrasonic anemometer transfer standar suggest that the uncertainty values given in customer calibration reports for this device under test are underestimated. NIST will investigate possible explanations (such as blockage effects) and either make appropriate corrections or increase the uncertainty for customer calibration reports.

Used CCM "Declaration of Impact" forms for CCM.FF-K3.2011

RECENT FLOW COMPARISONS

Key Comparison	Measurand	Pilot Lab	Status
CCM.FF-K4.2011.2	Liquid volume, 100 μL	IPQ	Complete, 2013
CCM.FF-K6.2011	Low pressure gas flow	SMU / CMI	Complete, 2014
CCM.FF-K4.2011.1	Liquid volume, 20 L and 100 mL	CENAM	Complete, 2015
CCM.FF-K2.2015	Hydrocarbon liquid flow	NMIJ	Complete, 2016
CCM.FF-K3.2011	Air speed	LNE / PTB	Complete, 2017
CCM.FF-K3.2011.1	Air speed	LNE / PTB	In progress
CCM.FF-K1.2015	Water flow	PTB	In progress
CCM.FF-K2.2011.1	Hydrocarbon liquid flow	VSL	Draft A Report
CCM.FF-K5.2016	High pressure gas flow	PTB	Preliminary testing
CCM.FF-K6.2017	Low pressure gas flow	ITRI	Planned, request CCM approval
CCM.FF-K1.2017	Microflow of water	NMIT / METAS	Planned

ON-GOING WGFF KEY COMPARISONS

K2.2011: Hydrocarbon Liquid Flow Smits (VSL)

2 Coriolis meters, Draft A in revision

K1.2015: Water Flow Frahm & Engel (PTB) Ultrasonic & turbine, damaged in shipment

K5.2016: High Pressure Gas Flow
Mickan (PTB)
Turbine & critical flow venturi, pressure certification

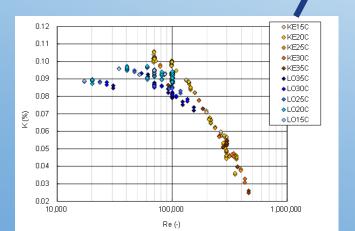
COMPLETED WGFF KEY COMPARISONS

K4.2: Volume, Batista (IPQ) Completed 2013

K6: Low Pressure Gas Flow, Benkova (CMI) & Makovnik (SMU) Completed 2014

K4.1: Volume, Arias (CENAM) Completed 2015

K2.2: Hydrocarbon Liquid Flow, Shimada (NMIJ) Completed 2016


K3: Air Speed, Care (LNE), Mueller (PTB).
Completed 2017

CCM.FF-K2.2015: HYDROCARBON LIQUID FLOW COMPARISON, SHIMADA (NMIJ)

Screw-type positive displacement flow meter

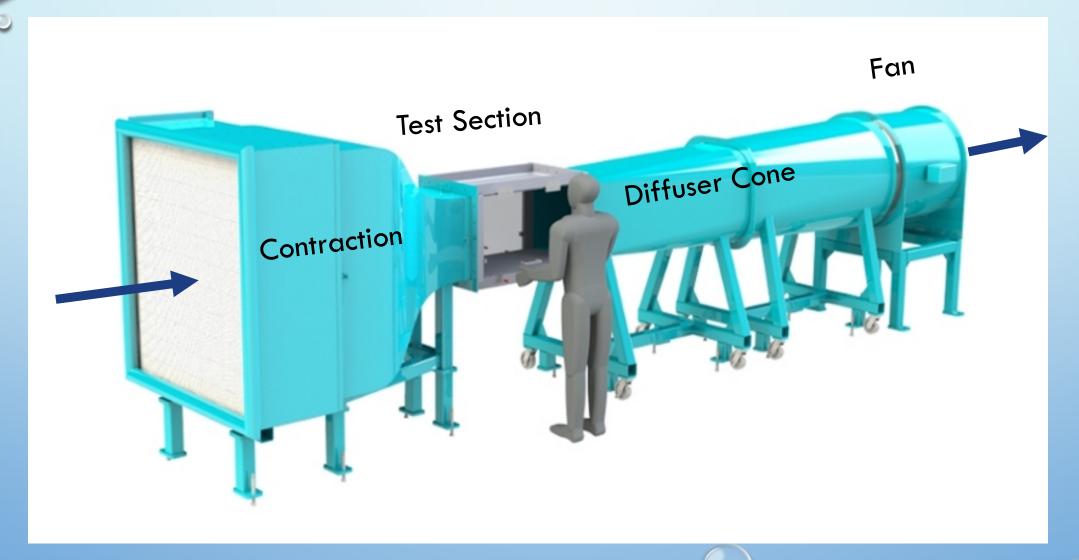
Most thorough preliminary testing!

Uncertainty category	(k=2, %)
Reproducibility	0.0035
Temperature and viscosity effects	0.0058
Pressure effects	0.0028
Linearity	0.0009
Root-sum-of-squares	0.0080

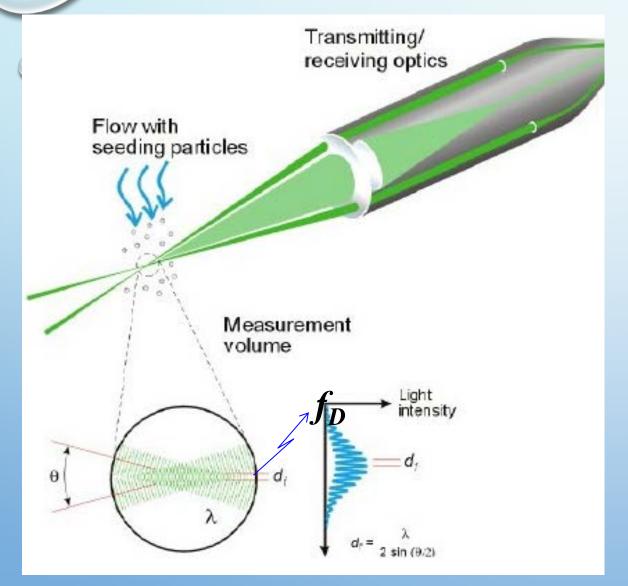
Wind turbine siting

Pollution control

AIR SPEED APPLICATIONS


Cup and vane anemometers

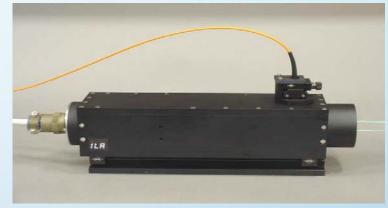
Velocity
profiles with
Pitot tubes



WIND TUNNEL

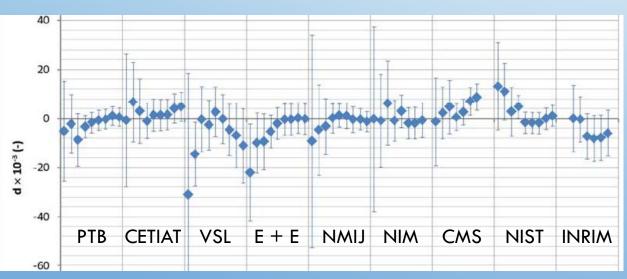
Small test sections have significant blockage effects

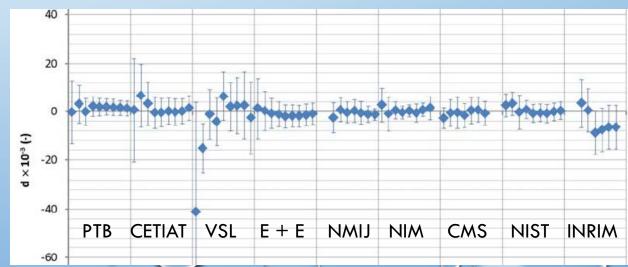
LASER DOPPLER ANEMOMETER (LDA)



Non-intrusive! No blockage!

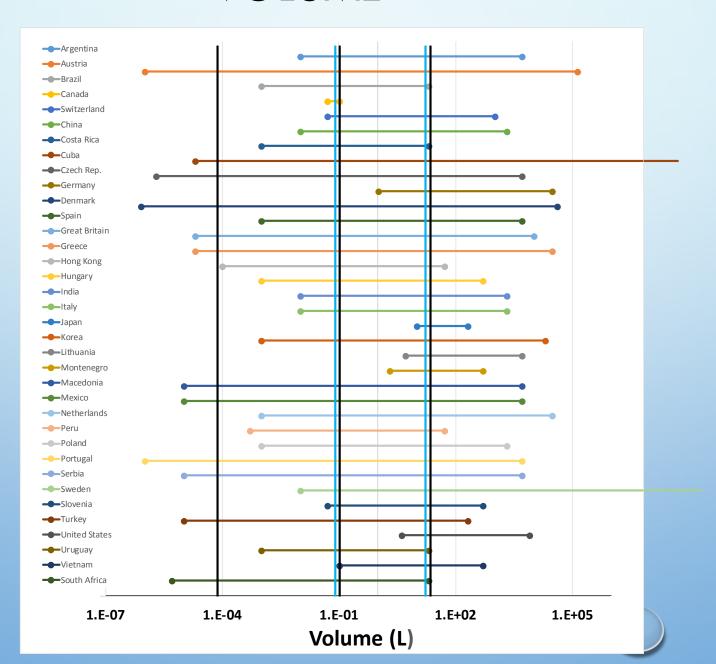
CCM.FF-K3.2011AIR SPEED: CARE (LNE) AND MUELLER (PTB)





Ultrasonic anemometer

Laser Doppler anemometer (LDA)

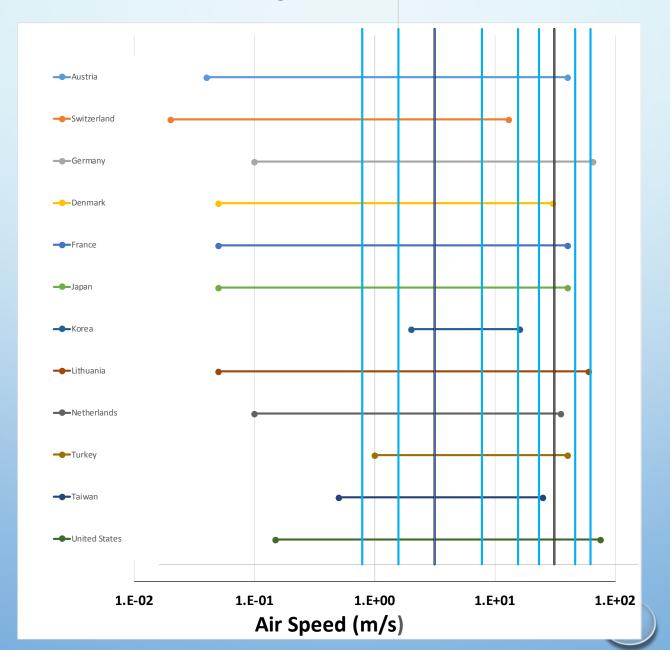

"GAP ANALYSIS"

How well do our comparisons cover our CMCs?

(How far does the light shine?)

36 countries

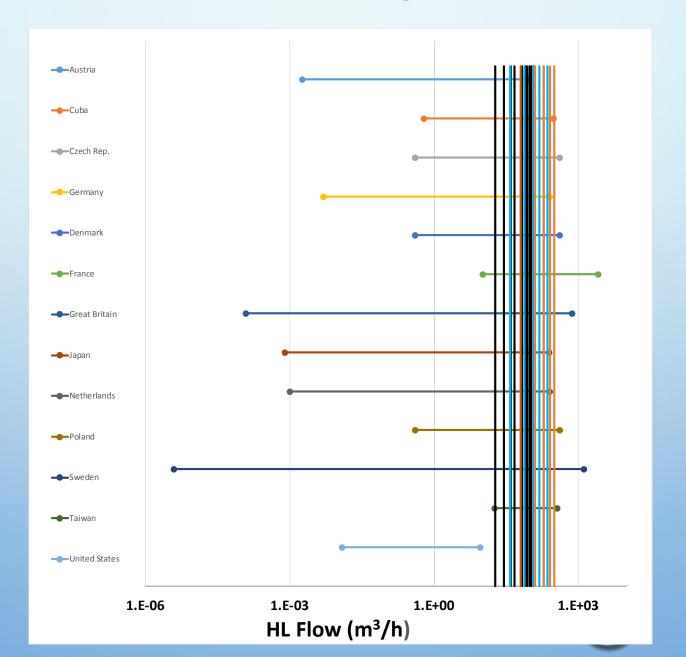
VOLUME


K4-2003

K4.1-2011

K4.2-2011

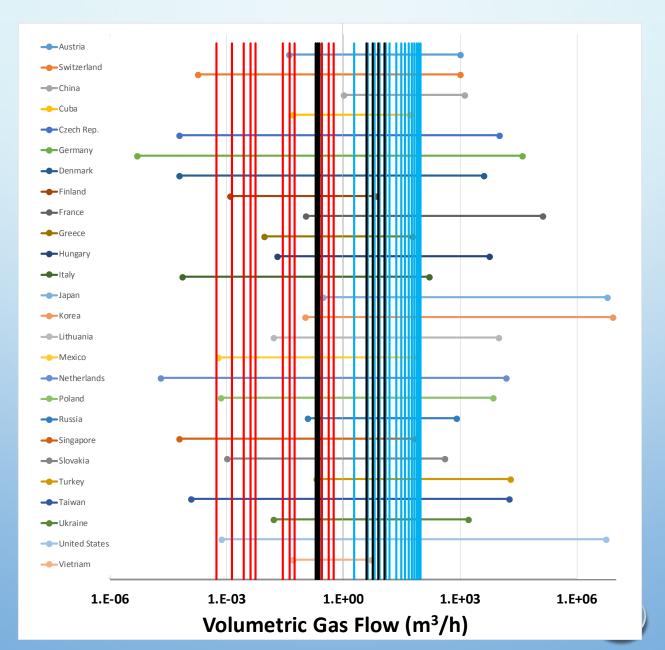
AIR SPEED



K3-2005

K3-2011

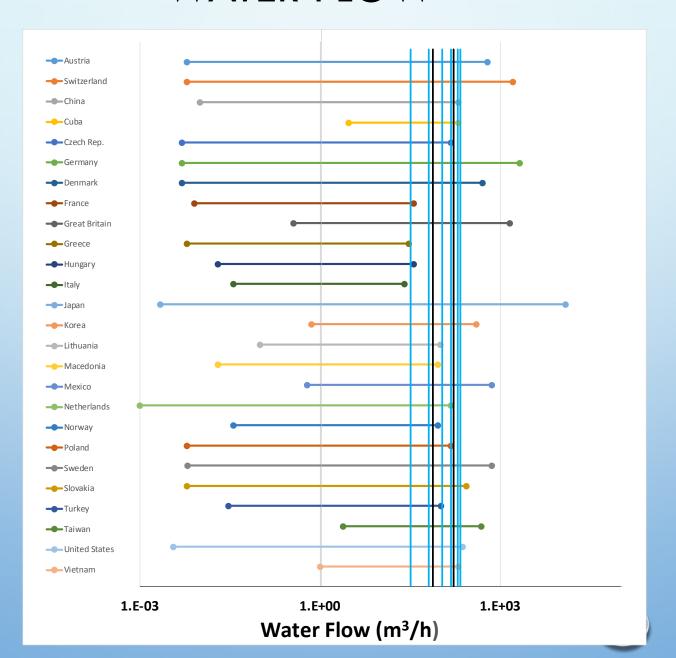
HYDROCARBON LIQUID FLOW


K2-2005

K2.1-2011

K2.2-2011

LOW PRESSURE GAS FLOW


K6-2005

K6-2011

K6-2017?

26 countries

WATER FLOW

K1-2005

K1-2015

REQUEST CCM APPROVAL FOR:

CCM.FF-K6.2017 Low pressure gas flow

Pilot: Chinese Taipei (CMS/ITRI)

- Participants: Australia, Chinese Taipei, Czech Republic,
 France, Germany, Italy, Japan, South Korea, Switzerland, USA
- Set points: 0.01 L/min to 10 L/min

PLANNED COMPARISON

CCM.FF-K1.2017 Water micro-flow

- Pilots: NIMT/Thailand & METAS/Switzerland
- Participants: Chinese Taipei, France, Germany,
 Japan, Netherlands, Portugal, Switzerland, USA
- Set points: 10 µL/min to 1 mL/min ?

PROGRAM OF WORK FOR NEXT 5 YEARS

- How to objectively apply KC results to CMC reviews
 - Reorganize flow service categories
 - Increase participation by developing economies, strengthen coordination with RMOs, encourage different labs to serve as Pilots of key comparisons
 - Guidelines on linkage and how to handle multiple artifacts
 - Guidelines on allowed changes between Draft A and Draft B
 - Solve transport and cost sharing problems

IN MEMORY OF JEAN-PIERRE VALLET

GREAT PERSON, GREAT FRIEND!!