CCEM/17-23

Report on the work programme of the BIPM electricity laboratories

CCEM meeting 24 March 2017

BIPM METPA XPA

Bureau International des Poids et Mesures

Physical Metrology Department, since October 2015

Mesures

BIPM comparisons

Organized by BIPM

BIPM.EM-K10.a/b	JVS on-site comparison, 1.018 V and 10V	
BIPM.EM-K11.a/b	Zener voltage, 1.018 V and 10 V	
BIPM.EM-K12	QHR on-site comparison, $R_{\rm H}(2)/100 \Omega$, 100 $\Omega/1 \Omega$, 100 $\Omega/10 k\Omega$	
BIPM.EM-K13.a/b	resistance, 1 Ω and 10 k Ω	
BIPM.EM-K14.a/b	capacitance, 10 pF and 100 pF at 1592 Hz and/or 1000 Hz	
ССЕМ-К4.2017	capacitance, 10 pF at 1592 Hz (optional 100 pF, 1233 Hz)	
Future acJVS comparison		

BIPM participation		
EURAMET.EM-S31	capacitance and capacitance ratio	
GULFMET.EM.BIPM-K11	Zener voltage at 1.018 V and 10 V	

BIPM.EM-K10: on-site Josephson comparison (1.018 V and 10 V)

BIPM.EM-K10.b: on-site Josephson comparison (10 V)

June 2015: DMDM-Serbia, 10 V:

 $(U_{\text{DMDM}} - U_{\text{BIPM}})/U_{\text{BIPM}} = -0.1 \times 10^{-10} u_{\text{r}} = 1.5 \times 10^{-10}$

November 2015: NIMT-Thailand, 10 V:

 $(U_{\text{NIMT}} - U_{\text{BIPM}})/U_{\text{BIPM}} = -1.0 \times 10^{-10}$ $u_{\text{r}} = 2.6 \times 10^{-10}$

June 2016: JV-Norway:

no satisfactory result could be obtained, due to instability of JV standard

No K10-comparisons planned for 2017, to concentrate on ac measurements

BIPM.EM-K10.b: on-site Josephson comparison (10 V)

First trial of an ac Josephson voltage comparison, at CENAM

First trial of an ac Josephson voltage comparison, at CENAM

Red diamonds: participants in BIPM.EM-K11.b Blue circles: participants in EUROMET.EM.BIPM-K11 Black square: participant in EUROMET.EM.BIPM-K11.6 only Green triangle: participant in APMP.EM.BIPM-K11.1 only Orange square: participant in EUROMET.EM.BIPM-K11.5 only Pink circle: participant in SIM.EM.BIPM-K11.b only White square: participant in COOMET.EM.BIPM-K11 only Blue square: participant in APMP.EM.BIPM-K11.4 only

New RMO provisionally accepted by CIPM for participation in MRA

GULFMET.EM.BIPM-11, Zener voltage

Pilot lab: SCL Hong Kong (Steven Yang)

Participants

- BIPM
- KRISS, Rep. of Korea
- QCC EMI, UAE
- SASO, Saudi Arabia

BIPM contribution

- member of support group
- 2 measurement periods
- determination of sens. coeff. of Zeners (*T*, *p*)
- Steven Yang on secondment at BIPM for 2 months

1. Example of CB&KT project in PMD

Comparison on 10 V and 1.018 V DC Voltages

Technical Protocol

Version 0.17 (Last update: 17 February 2017)

T Standards an Calibration Laboratory

Re-determination of Zener temperature coefficients

Measurement setup

Bureau International des Poids et Mesures

Zener temperature coefficients for 10 V output

Zener thermistor reference value (at 23°C RT)

Conclusion

NSAI- BIPM bilateral Zener comparison – 2016

Bureau International des

 \rightarrow the change of Tc and R_{ref} has negligible effect: 20 nV (2 x 10⁻⁹)

Poids et Mesures

Bilateral resistance comparisons, BIPM.EM-K13.a/b, 1 Ω and 10 $k\Omega$

2013/2014: BIM-Bulgaria published in 2017

2013/2014: NPL-India Draft B under review

2014: NSAI-Ireland published in 2017

2015: NIMT-Thailand published in 2017

2015: CMI-Czech Republic published in 2017

2016/17: SMD-Belgium Draft A under preparation

2017: NMISA-South Africa

measurements under way at NMISA

Bureau
International des
Poids et
Mesures

Bilateral resistance comparisons, BIPM.EM-K13.a/b, 1 Ω and 10 k Ω

On-site quantum Hall resistance key comparison (BIPM.EM-K12)

- To verify international coherence of primary resistance standards by comparing quantum Hall effect based standards of the NMIs with that of the BIPM
- Five such comparisons have already been carried out in the period 1993 to 1999. This comparison has been resumed in 2013 at the request of the CCEM
- A first comparison has been carried out with the PTB in Nov 2013
- 15 new comparisons are expected for the coming years

Bureau

International des

Poids et

----> NMI bridge

On-site quantum Hall resistance key comparisons (BIPM.EM-K12)

December 2016: comparison at METAS

- Resistors brought to METAS in September
- Postponed by METAS until unknown date

Next try: CMI in April 2017

October 2015: comparison at VSL

- unexpected behavior of VSL equipment
- no publishable result

Behaviour of 1 Ω resistors

Typical frequency dependence for 1 Ω and 100 Ω standard resistors

Some evidence from resistance comparisons (BIPM.EM-K13)

Investigations towards a compact next-generation QHR reference

Graphene sample #60214

1st exposure to NH

Graphene QHR samples

- Iower field (5 T)
- Higher temperature (4-5 K)

Carrier density of new G-SiC devices usually too high, needs to be adjusted

Investigation of techniques for n_e adjustment:

- o UV light
- o electrost. discharge
- \circ NH₃ gas

Poster at CPEM 2016 (with PTB, MIKES, Aalto Univ.)

 $R_{\rm H}$ /k Ω

Bureau International des Poids et Mesures

LFCC bridge at room temperature

- cryogen free
- operating << 1Hz, small ac-dc correction</p>

Investigation of LFCC operating below 1 Hz, based on new high permeability materials (nanocrystalline mat.);

Comparison between two new LFCCs and the 1 Hz BIPM LFCC

Poster at CPEM 2016 (with PTB, MIKES)

Bilateral capacitance comparisons, BIPM.EM-K14.a/b

2016: NIS-Egypt, 10 pF and 100 pF Draft B under review

2016: NMISA-South Africa, 10 pF and 100 pF Draft B under review

2016: NSAI-Ireland, 100 pF
 Final Report, to be published soon

CCEM-K4: capacitance, 10 pF at 1592 Hz (opt. 100 pF, 1233 Hz)

Comparison scheme:

- \rightarrow star scheme, N bilateral comparisons carried out simultaneoulsy
- ightarrow advantage to shorten considerably the time duration of the comparison

Comparisons in capacitance: EURAMET-S31

- EURAMET.EM-S31 comparison of 10 pF and 100 pF standards for measurements traceable QHR – piloted by PTB, participation of LNE, METAS, VSL and BIPM. Circulation of standards 2010-2011.
- First round revealed significant frequency-dependent discrepancies.
- A supplementary circulation of ac-dc resistors in 2013 gave excellent results and eliminated one suspected cause of errors.
- Some participants discovered systematic bridge errors and submitted corrections.
- A new circulation of capacitance standards has started end 2014, this time to include calculable capacitor traceability from NMIA.
- Draft A: All results found in agreement.
- "...the ac measuring technique is prone to delicate systematic effects and a comparison is a proper instrument to rectify the ac measuring bridges of the participants."

Calibrations

Determining R_{κ} with a calculable capacitor with best unc. ever

Bureau International des Poids et Mesures

Target uncertainty for $R_{\rm K}$: 1 x 10⁻⁸

First measurements with calculable capacitor

Status of calculable capacitor

- New stabilized laser source has been built to fix the laser frequency instabilities detected during measurements
- The CC has been disassembled, relocated in a new room offering a floor of much better stability and, then, realigned with geometrical error of the order of 3×10^{-9} (sub-µm accuracy)
- Better alignment thanks to new precision alignment probe, for residual skew and diagonal spacing of main electrode bars

- The completion of the reassembling and the start of new series of measurements are planned for the coming months
- Target uncertainty: 1 x 10⁸

Bureau

mobile clean room cabin

Watt balance: Major achievements during 2014-2016

- precision alignment of the magnetic circuit, publ. in *Metrologia*
- assembly of the improved apparatus on a new open support structure
- integrated mass exchanger
- re-arrangement of control and measurement units; electrical, optical links and vacuum feedthroughs
- completion and integration of the new interferometer
- new control and acquisition programs using FPGA & data synchronization scheme
- compact and vacuum compatible mechanical mounts for optics
- detailed study of effect of current on magnetic field profile (reluctance force), submitted to *Metrologia*

Assembly of the improved apparatus completed

www.bipm.org

New interferometer

Objective: minimize periodic non-linearity observed previously

- Heterodyne frequency of about 3 MHz
- Spatially separated beams
- Non-polarizing elements
- Differential output
- noise level: 1/6000 fringe
- S/N level improved by factor of 5

Last measurements, early 2016

Outlook

Outlook in to the future

- Maintain travelling quantum standards which eliminates need for some CCEM comparisons
- Development of more versatile and more efficient quantum standards
 - acJVS for comparison of ac voltages
 - table-top QHR system using graphene samples and new LFCCs at room temperature
 - □ acQHR as impedance standard
- Calibration service for ac/dc transfer standards using acJVS ?
- Replace 1 Ω comparisons and calibrations by higher values (> 10 kΩ) ? Which values (1 MΩ) ?

