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Introduction 
 

In 2018, the unit of thermodynamic temperature, the kelvin, will be redefined with the 
introduction of the ‘New SI’ (New International System of units), by fixing the value of the Boltzmann 
constant, k [1]. To assure that there are no large unknown systematic effects in determining the value 
of k by any single technique, the Consultative Committee for Thermometry (CCT) of the International 
Committee for Weights and Measures (CIPM) requires that the kelvin redefinition should proceed 

when the next CODATA adjustment assigns a value of k with a relative uncertainty below 1∙10-6, 
supported by at least one determination from a second technique reporting a relative uncertainty 

below 3∙10-6 [2]. Two determinations by acoustic gas thermometry have already achieved relative 

uncertainties less than 1∙10-6
 so the current CODATA recommended value of k has met the first 

requirement [3-5]. To meet the second requirement, at least three different research groups have 

been pursuing determinations of k with a relative uncertainty less than 3∙10-6 using dielectric-
constant gas thermometry (DCGT) [6-7], Doppler broadening thermometry (DBT) [8-9], and Johnson 
noise thermometry (JNT) [10-12]. The second target has been met by PTB who recently reported a 

determination by DCGT with a relative uncertainty of 1.9∙10-6 [13]. Here we report on Johnson noise 
thermometry to determine the Boltzmann constant, which recently met the 3 ppm-target in 
measurements carried out at NIM within the joint NIST/NIM/MSL collaboration [14]. This result, 
which is purely electronic and distinctly different from the gas thermometry determinations, provides 
additional assurance that any unknown systematic errors in any of the determinations must be small. 

Johnson noise thermometry infers the thermodynamic temperature from measurements of the 
voltage or current noise caused by the thermal motion of electrons in conductors [15-17]. Similar to 
gas thermometry, the Johnson noise fundamental relation follows from the fluctuation-dissipation 
theorem relating the electron gas temperature directly to voltage noise. As a purely electronic 
approach, JNT has attracted the attention of physicists and metrologists over many years. Still, even 

                                                 
1  This work is a contribution of the U.S. government and is not subject to U.S. copyright. 
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with modern electronic measurement systems, the amplification of small and wideband noise-
voltages for the determination of k is not trivial and requires correlation techniques and nearly 
perfect shielding since EMI in cross-correlation channels can influence the measurement. Over the 
years, an elaborate analysis technique has been developed, which recently was further improved by 
the cross-validation method developed at NIST [18]. 

In the following 6 sections, we will introduce the principles of the Johnson noise thermometry, 
the experimental and analysis techniques, and finally results of the measurement and their 
uncertainty. 

 
Johnson noise temperature measurement system 

 
Johnson noise is usually characterized by its mean square voltage, conventionally called the noise 

power. For frequencies below 1 MHz and temperatures above 25 K, it is approximated to better than 
1 part in 106 by Nyquist’s equation, 

  V 2
 = 4kTRf,  (1) 

where k is Boltzmann’s constant, T is the temperature of the resistance R, and f is the measurement 
bandwidth. Johnson-Nyquist noise is often described as a “white noise”, since the power spectral 
density (PSD) SR = 4kTR is independent of frequency. Because the fluctuation-dissipation theorem is 
fundamental, Johnson noise thermometers (JNT) are primary thermometers measuring “absolute” 
thermodynamic temperatures. The most significant measurement challenge of JNT is apparent from 

(1), namely that the noise voltages are extremely small, ~1.2 nV/Hz1/2, for a 100  resistor at the triple 
point of water. Very-high-performance electronics, cross-correlation measurement techniques, and 
long averaging times are required to make metrologically useful JNT measurements [19] (for an 
extensive JNT review see [20]).  

In conventional JNT systems, one measures the noise power from a sensor at a known 
temperature (often the triple point of water, which conveniently has a defined temperature in the 
International System of Units: Tw  273.16 K) and the noise power of a second sensor at the unknown 
temperature. The temperature is inferred using (1) from the ratio of the measured noise powers and 
the ratio of the sensing resistances. The most successful JNT technique for the medium- and high-
temperature ranges is the switched-input correlator pioneered by Brixy for application in nuclear 
reactors [21] and is now used routinely for most metrological noise thermometry. It combines the 
amplifier-noise immunity of cross-correlators, first used by Fink [22], and the gain-instability immunity 
of the Dicke radiometer [23].  

The most accurate noise thermometers are based on a switching-correlator design first proposed 
by Brixy [19, 20]. A correlator is used to ensure that the measurement of the noise power is 
independent of the input noise voltage of the preamplifiers. Frequent switching between two noise 
sources, eliminates the effects of drifts in the gain and frequency response of the two channels. The 
correlator is implemented by digitizing the amplified signals from two correlator channels and 
followed by multiplication and averaging operations via software. 

Modern JNT systems use a switched digital cross-correlator and a programmable quantized-
voltage noise source (QVNS) based on ac-Josephson voltage standards as a calculable noise reference 
[24-28]. This enables the correlator to compare the power spectral density of the thermal noise of the 
resistor at the triple point of water with the quantum-mechanically stable synthetic noise generated 
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by the QVNS, and infer a value of k/h [29,12]. 

 
Quantum voltage noise source 
 

The Quantum Voltage Noise Source (QVNS) is a Josephson-junction-based delta-sigma digital-to-

analog converter that uses oversampling techniques to produce a programmed sequence of pulses 

clocked at >= 5 GHz [27,30]. With appropriate algorithms and biasing, it produces a pseudo-noise 

waveform with the desired harmonic content over a baseband well beyond the <10 MHz bandwidth of 

the JNT. The primary advantage of the QVNS is that the voltage pulse from each Josephson junction 

has a quantized area nh/2e=nKJ, where n is an integer (normally n = 1 in the NIST QVNS) and KJ is the 

Josephson constant. This enables the synthesized baseband voltage to be calculated exactly from the 

known sequence of pulses, the clock frequency of the pulse generator, and fundamental physical 

constant.  

The synthesis technique underlying the QVNS was originally developed for ac-Josephson voltage 
standards [31]. However, the low voltages and long integration times of noise thermometry 
necessitate a specialized QVNS circuit consisting of a pair of symmetric, grounded, lumped arrays, 
having only a small number of junctions (typically NJ = 8 to 256).  The quantum-accurate pseudo-noise 
output voltage from the series-connected arrays is provided to the two channels of the cross-
correlation electronics through a pair of three-wire grounded differential output voltage leads. The 
four impedance-matching resistors terminating the QVNS transmission line are placed in each lead of 
the transmission line so that they produce only uncorrelated noise, and are maintained at 4 K so that 
they do not unduly increase the uncorrelated noise in each channel of the correlator. 

Each array is separately biased with a continuously recycled pulse drive sequence that is clocked 
at half the 10 GHz sampling frequency, fs. To reduce inductive voltage errors caused by low-frequency 
drive currents passing through the inductive JJ arrays, a zero-compensation technique is used where 
each drive pulse is composed of a negative half-pulse followed by a full positive pulse followed by 
another negative half-pulse.  This composite drive pulse can still force each JJ to create a single 
positive output pulse, but does not have any low-frequency components [32,33]. The drive sequence, 
M composite pulses long, is generated with a delta-sigma analog-to-digital conversion algorithm that 
is programmed to produce a synthesized waveform with the desired and precisely calculable power 
spectrum. The spectrum is composed of a series of tones at multiples of the pattern repetition 
frequency, f1 = fs/M≈100 Hz. The usual JNT waveform is a series of tones at the odd harmonics f1, 3f1, 
5f1,…, all of the same amplitude but random phase. When used to measure k, the voltage amplitude 
of the tones is adjusted by changing the pulse sequence so that the synthesized waveform’s average 
power spectral density SQ = D2NJ

2fsM/KJ
2 matches the thermal noise power spectral density, SR=4kTR, 

where D is a precisely known parameter that is chosen to closely match the QVNS power spectral 
density to that of the resistor SQ ≈ SR,  

In addition to providing the link to Planck’s constant, the QVNS has important advantages over 
resistor noise sources [20]. Unlike a resistor noise source, the QVNS output voltage is inherently 
independent of its output impedance. This overcomes the matching conflict inherent in conventional 
Johnson noise thermometers. Now, the thermal and QVNS sources have the same noise power, in 
order to minimize effects of any amplifier or ADC nonlinearity. An output resistance is chosen to 
ensure the same frequency responses of the transmission lines between the resistor and QVNS 
sources and the preamplifiers. This reduces the ‘spectral match’ error and allows a reduced 
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measurement period due to a greater operating bandwidth. The QVNS can also be programmed to 
produce a variety of different waveforms for diagnostic purposes. In contrast, the noise power and 
impedance cannot be independently varied in a conventional Johnson noise thermometer, resulting in 
some degree of mismatch of frequency response and noise power between measurement and 
reference sensors. 

 
Measurement of Boltzmann’s constant – Experiment  
 

To measure the Boltzmann constant, the JNT runs as a comparator to compare the power of 
thermal noise across a sense resister immersed in a triple point of water cell to that of a synthesized 
comb-like quantum pseudo noise waveform. The power spectral density of the quantum pseudo 
noise waveform, SQ-calc, was set to closely match that of the thermal noise SR, so that problems with 
linearity and accuracy of the electronics can be greatly reduced. 

The two correlator channels alternately amplify, filter, and sample the respective noise signals 
from the thermal and QVNS sources, which are then digitized by the ADCs, Fourier transformed, and 
cross-correlated in software. The output of the correlator is proportional to the noise powers of the 
respective thermal and QVNS signals. Since the bandwidth of the system is defined digitally and is the 
same in the two configurations, the ratio of the cross-correlated discrete-Fourier transforms for each 
source yields the measured ratio of the power spectral densities SR/SQ. The Boltzmann constant is 
then determined by 

Q -ca lc

Q T P W 9 0
4

R
SS h

k
S T R h

   ,     (2) 

where SQ-calc is the calculated power spectral density of the quantum noise waveform, TTPW is the 
temperature of triple point of water, R is the resistance of the thermal sensor, h and h90 are the 
Planck’s constant in the SI and the 1990 conventional electrical units, respectively.  

For the recent measurement at NIM, a 100  metal foil resistor was used as thermal noise 
sensor. The QVNS waveform comprises a series of odd harmonic tones with the same amplitude but 
random phase at multiples of the 90 Hz pattern repetition frequency up to 9 MHz with SQ-calc = 1.2282 
nV/Hz1/2. The ADCs digitize the amplified noise signal with a sampling frequency of 4 MHz. For every 
1 s, FFT of the signals are computed yielding complex spectra with 1 Hz frequency-resolved FFT bins 
and a 2 MHz Nyquist frequency. To ensure that the QVNS tones are located in a single FFT bin, the 
ADC clocks are locked to the same frequency reference as the QVNS clock. In addition to the FFTs, the 
computer carries out a complex frequency-domain cross correlation of the FFT spectra for the two 
channels, which reduces the uncorrelated amplifier noise voltages. All of these spectra are then 
accumulated for 100 s into averaged spectra to provide a compact form of data storage for post 
processing and for final computation. These computations are carried out in real time, and every 
100 s, the correlator is switched between the resistor and the QVNS. The combination of 100 s of 
resistor data and 100 s of QVNS data is defined as one ‘chop’. 

Individual measurements were performed, each having an integration period of about 20 hours, 
which is determined by the capacity of the batteries for the digitizers and the maintenance period of 
the triple point of water cell in the ice bath. In total 120 such measurements were completed to 
reduce the statistical uncertainty, such that the combined total integration period of about 100 days 
were accumulated with 43752 chops of data. The resistance value of the sense resistor was checked 
before and after every measurement with a dc resistance bridge. 
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Once the measurements are complete, all of the cross-correlation spectra, 43752 chops of data 
for both of the thermal and QVNS sources, are averaged respectively. The real part of each of the 
thermal and QVNS cross-spectra are reduced in resolution by summing the 180 FFT bins, to form a 
spectral ‘block’. This rebinning is necessary because most of the bins in the QVNS spectrum are largely 
empty due to the absence of the tones, and a direct ratio of the QVNS and thermal spectra would not 
have similar ratios in each bin. The ratio of the rebinned thermal and QVNS spectra is then computed. 

 
Measurement of Boltzmann’s constant – Analysis 
 
For temperatures near 300 K and frequencies below 1 GHz, the mean-square voltage of Johnson noise 
is described by Nyquist’s law, Equation (1), with a relative error of less than 1∙10-9. In the electronic 
measurement, the ratio of the power spectral densities of thermal noise across a resistor at the triple 
point of water and pseudo-random noise synthetically generated by a quantum-accurate voltage-
noise source (QVNS) is determined. Given knowledge of this ratio, and the values of other parameters 
that are known or measured, one can determine Boltzmann’s constant. Due, in part, to mismatch 
between transmission lines, the experimental ratio spectrum varies with frequency. We model the 
ratio of the power spectral densities of resistor noise and QVNS noise, 𝑟𝑚𝑜𝑑𝑒𝑙(𝑓), as a dth order even 

polynomial function of frequency as follows 𝑟𝑚𝑜𝑑𝑒𝑙(𝑓) = ∑ 𝛼2𝑖 (
𝑓

𝑓0
)
2𝑖

𝑖𝑚𝑎𝑥
𝑖=0 where 𝑑 = 2𝑖𝑚𝑎𝑥   and 𝑓0 is a 

reference frequency. From the constant term in the polynomial model 𝑎0 we determine Boltzmann’s 
constant and compare it with a reference value 𝑎0,𝑐𝑎𝑙𝑐. When determining 𝑎0 from experimental data, 

the assumed order d (complexity) of the polynomial model and the maximum frequency analyzed 
(fitting bandwidth or 𝑓𝑚𝑎𝑥  for short) dramatically affects results. For any particular fitting bandwidth, 
we select the complexity of the model by cross-validation - a data-driven machine learning method. 

In our cross-validation approach, we randomly split observed spectra data from multiple runs of 
the experiment into 5 equally sized subsets. Data from each run appears in just one of the 5 subsets. 
From these subsets, we form training and validation data sets, and select the order of the model 
determined from training data which is most consistent with validation data according to mean-
square deviation criterion. Based on 20 000 splits, we determine model selection fractions for all the 
candidate models. The orders of candidate models are 2, 4, 6, 8, 10, 12 and 14. We select the model 
that yields the largest model selection fraction. 

Given that a dth order model is valid and d is known, asymptotic theory predicts a sampling 
distribution for the estimate of 𝑎0. The standard deviation of this sampling distribution is the random 
uncertainty of the estimate predicted by asymptotic theory. To account for the effect of imperfect 
knowledge of the model on results, we form a mixture of the sampling distributions from the 
candidate models weighted by their associated model selection fractions determined by cross-
validation. We estimate the uncertainty of estimated 𝑎0 as the standard deviation of the mixture 
model distribution �̂�𝑡𝑜𝑡 where 

�̂�𝑡𝑜𝑡
2 = ∑ �̂�(𝑑)�̂��̂�0(𝑑),𝑟𝑎𝑛

2 + ∑ �̂�(𝑑)(�̂�0(𝑑) − �̂̅�0)
2

𝑑𝑑  .   (3) 

Above, �̂�0(𝑑) is the estimate of 𝑎0 associate with a dth order model, �̂��̂�0(𝑑),𝑟𝑎𝑛
2  is the predicted 

variance of the estimate according to asymptotic theory, �̂�(𝑑) is the estimated model selection 
fraction for the dth order model, and �̂̅�0 = ∑ �̂�0(𝑑)�̂�(𝑑)𝑑  . 
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Fig. 1: Model selection results for experimental data from Qu et al. [14]. (a) Estimated polynomial 
complexity parameter d. (b) Estimated uncertainty �̂�𝑡𝑜𝑡. (c) Estimated 𝑎0 − 𝑎0,𝑐𝑎𝑙𝑐 and approximate 
68 % coverage interval as a function of fitting bandwidth. At 𝑓𝑚𝑎𝑥  = 368.75 kHz for a d=2 (quadratic) 
model, �̂�𝑡𝑜𝑡 takes its minimum value (on a frequency grid with a 6.25 kHz resolution) of 2.58∙10-6. For 
this selected fitting bandwidth, the estimated value of 𝑎0 − 𝑎0,𝑐𝑎𝑙𝑐  is 0.89∙10-6. Based on the 

estimated standard deviation of estimated 𝑎0 values determined at 𝑓𝑚𝑎𝑥  values that yield the thirteen 
(approximately 10 percent of all fitting bandwidths) lowest value of �̂�𝑡𝑜𝑡, we estimate an additional 
component of uncertainty due to fitting bandwidth ambiguity to be 0.57∙10-6. 
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We then select 𝑓𝑚𝑎𝑥  by minimizing  �̂�𝑡𝑜𝑡 on a uniformly spaced grid in frequency space. We also 
estimate an additional component of uncertainty that accounts for uncertainty associated with 
imperfect performance of our fitting bandwidth selection method. The sources of this imperfection 
include both random effects as well as systematic effects including possible frequency-dependent 
physical effects. We equate this additional component of uncertainty to the estimated standard 
deviation of estimated 𝑎0 values determined at the 𝑓𝑚𝑎𝑥  values that yield the M lowest values of �̂�𝑡𝑜𝑡. 
Typically, we set M so that it is approximately 0.1 𝑁𝑓 where 𝑁𝑓 is number of discrete 𝑓𝑚𝑎𝑥  values in 

our frequency grid. For more details about our model selection and uncertainty quantification 
methods, see [18]. 

 
Uncertainty Budget 

Table 1: Uncertainty budget. All uncertainties are expressed as relative uncertainties in parts per 
million. The uncertainty budget for the 2015 determination is given for comparison. 
 

Component Term 
Relative 

uncertainty 
Correlati
on 

2015 2017 

Ratio of the 
power spectral 
densities, SR/SQ 

Statistical  3.2 2.37 0 

Model Ambiguity 1.8 1.02 0 

Bandwidth Ambiguity NA 0.57 0 

Dielectric losses 1.0 0.2 0 

EMI 0.4 0.4 0 

Non-linearity 0.1 0.1 1 

Total ur(SR/SQ) 3.8 2.68  

QVNS waveform 
SQ 

Frequency reference < 0.001 < 0.001 1 

Quantization effects 0.1 0.1 1 

Total(SQ) 0.11 0.11  

TPW 
temperature T 

Reference standard TPW 
cell 

0.29  0.29  1 

Temperature 
measurement 

0.04  0.04  1  

Hydrostatic pressure 
correction  

0.08  0.08  1 

Immersion effects  0.18  0.18  1  

Total ur(TW) 0.35 0.35  

Resistance R 

Ratio measurement  0.05 0.05 0 

Transfer Standard 0.1 0.1 1 

Ac-dc difference 0.1 0.1 1 

Relaxation effect 0.5 0.1 1 

Thermoelectric effect 0.1 0.1 1 

Total ur(R) 0.53 0.21  

 TOTAL (kB) 3.9 2.7  
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All the factors that contribute to the total uncertainty were analysed in detail in the 2015 

determination [12]. In the new measurement [14], for the terms such as the power spectral density SQ 
of the synthesized quantum voltage waveform, the temperature of triple point of water, and some of 
the contributions to the uncertainty in the ratio of the power spectral densities SR/SQ and the 
resistance of thermal sensor are unchanged.  
 
Discussion of Systematic Errors 

 

The measurement of the mean ratio of spectral power spectral densities SR/SQ can be shifted 
under the influence of electromagnetic interference (EMI), preamplifier imperfections, or by various 
sources of spectral aberrations.  

In the case of EMI, it is mainly necessary to access the presence of interference that is coupled to 
the resistor input and superimposed onto the white noise of the resistor. EMI with enough amplitude 
to contribute to errors greater than about 1 ppm may be present but would be too small to be 
spectrally resolvable in the normal measurement scheme. Fortunately, techniques are established [34] 
which involve a separate series of null measurements that allow quantitative evaluation of the EMI 
contributions in the resistor by rewiring the resistor into a four-wire short. EMI that may be coupled 
into the QVNS is more readily subject to direct inspection due to the nature of the QVNS source and 
the discrete spectra. EMI may be evaluated by comparison of that spectra with and without the 4 K 
background noise present between the tones. 

Various preamplifier imperfections may lead to subtle errors in the measured spectral ratio. 
These have been treated by White and Zimmermann [35], and by White [36]. When the preamplifier 
is properly designed, all these sources of error should be manageable or negligible. Amplifier 
distortion is also a possibility which, if present, will eventually cause the statistical uncertainty to 
saturate to a fixed limit with accumulated integration time. 

Spectral aberrations are a category which includes all potential sources of frequency dependence 
which cannot be modelled by the even-order filter-response functions that are normally used to fit 
the ratio spectra and are not caused by EMI or by amplifier distortion. This would include: sources of 
quasi-linear frequency dependence due to dielectric loss in shunt capacitance and unintentional local 
resonances in the input circuits. These errors would normally be captured in the statistical analysis 
and estimated by the model ambiguity uncertainty or bandwidth ambiguity uncertainty. In the case of 
a lossy dielectrics, auxiliary measurements may be necessary to set bounds on the magnitude of the 
losses and run statistical simulations to evaluate the errors via equivalent circuit models [26]. 

Other types of systematic errors may occur in either temperature or resistance. Resistance 
measurement errors may occur in either DC or AC measurements and have been discussed in [29]. 
Temperature errors associated with the direct use of triple-point-of-water (TPW) cells are generally 
known and can be empirically evaluated to auxiliary measurements using standard platinum 
resistance thermometers and other TPW cells. 
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