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Preface 
 

This document provides guidance on the choice and calculation of Key Comparison Reference Values 
(KCRVs) for CCQM Pilot and Key comparisons [1] for which no independent KCRV is available. It 
implements the principles set out in the CCQM paper “Data Evaluation Principles for CCQM Key 
Comparisons” [2]. 

The document is not intended as a prescriptive or mechanical process. Rather, it provides guidance on the 
selection of appropriate calculation methods for a KCRV. It is based on the idea that working groups 
should generally discuss study results in the light of both measurement science and statistical 
information, with both being given due weight and involving appropriate expertise.  

The general approach to data analysis involves 

- Selection of the set of participants whose results are to be considered in forming the KCRV. This 
set may include all participants, or a qualified subset selected by the working group. Selection of 
qualified participants can only be made by the working group. This document does not advise on 
that decision, although CCQM-09-03 does set out some principles that working groups are 
expected to consider. 

- Review of the reported data, both to facilitate discussion of the results and to identify the main 
features of the data set. In particular, this review considers whether results can be considered 
mutually consistent, or whether the KCRV calculation needs to allow for the presence of 
unexpectedly extreme values or unexpectedly large dispersion of reported values. Statistical 
checks are recommended to assist the discussion, but are expected to be viewed in the light of all 
available information pertaining to the study materials, methods used, participant experience and 
any other relevant information.  

- Selection of a KCRV calculation method that is appropriate for the particular data set and, where 
required, allows the calculation of degrees of equivalence. 

- Calculation of the KCRV with associated uncertainty and degrees of equivalence. 

These outline steps are intended to fit well into the planning, Draft A and Draft B stages in CCQM 
comparisons. 

This document is written in part to guide the data analyst(s) responsible for advising a working group on 
statistical issues for a particular study, and some of the details of implementation consequently assume 
expertise in the analysis of data from inter-laboratory studies, including sufficient knowledge of the 
statistical methods used.  
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Estimation of a consensus KCRV and associated Degrees of 

Equivalence 

1 Introduction 

This document provides guidance on the choice, calculation and use of Key Comparison Reference 
Values based on consensus of reported results in CCQM Pilot and Key comparisons within the scope of 
the CIPM MRA [1]. It implements the principles set out in the CCQM paper “Data Evaluation Principles 
for CCQM Key Comparisons” [2]. 

 

2 Scope 

This guidance is applicable to the calculation of a single KCRV from a set of reported laboratory results 
relating to measurement of a measurand, namely, a specific property of a material under consideration.  
The results from each laboratory constitute a measured value* and an associated standard uncertainty or 
an expanded uncertainty with stated coverage factor. It is assumed throughout that the intent is to obtain 
the best available estimate of the value of the measurand, taken as the KCRV, and its associated 
uncertainty. 

Note: The KCRV and associated expanded uncertainty define an interval that will not usually 
encompass all reported values. 

The guidance provides information on procedures used to provide the KCRV, evaluate the associated 
standard uncertainty, and calculate the degrees of equivalence (DoEs). Correlation associated with the 
KCRV and individual laboratory measured values is taken into account in providing DoE uncertainties.  

Note: A degree of equivalence has two components, a value and an associated uncertainty at the 95 % 
level of confidence. 

It is assumed that most (if not all) the deviations from the KCRV can be regarded as outcomes of a 
Normal distribution, with the remainder having possibly extreme values, or that the data have been 
appropriately transformed to achieve underlying Normality. It is further assumed that uncertainties are 
reported in accordance with the Guide to the Expression of Uncertainty in measurement (the GUM) [3]. 

This guidance does not describe 

─ detailed methods for review of data on multiple measurands; 

─ graphical methods of KC data analysis; 

─ use of information on stability of the materials used. 

Note: The coordinator is normally responsible for setting transport and storage conditions that assure 
the stability of test materials and if necessary confirming that test materials do not change during 
the course of the study. 

3 General approach 

This document is based on the following general approach: 

1. The working group identifies which laboratories should be considered as candidates for inclusion in 
the KCRV calculation (the ‘candidate set’) and provides any additional information to be taken into 
account in preliminary data analysis. In particular the working group advises whether there is good 

                                                      
* “measured value” (or “measured quantity value”) is the term used by the VIM for a single value reported by a 
laboratory and representing a measurement result, and which may be accompanied by an uncertainty. In this 
document, the unqualified word “value” refers to a “measured value” as defined by the VIM. To emphasise that the 
value in question is reported by a study participant, “reported value” is also sometimes used.  
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reason to expect general consistency of the set of measured values, having regard to the reported 
uncertainties, for the candidate set and for the particular materials used.  

2. Graphical and numerical tests for consistency are performed, and an initial screening carried out in 
which any apparently anomalous results are identified and checked (for example for transcription or 
other remediable errors).  

3. One or more candidate KCRVs and associated standard uncertainties are calculated using accepted 
procedures appropriate to the assumptions in force and supported by the data. 

4. The working group reviews the results of the initial screening and candidate KCRV(s) and approves 
the final selection of laboratories to be used in the calculation of the KCRV together with the method 
of calculation. 

5. The KCRV and its associated standard uncertainty are obtained for the selected laboratories, DoEs 
calculated (including allowance for correlation) and the results incorporated in the Draft B report. 

This general approach is intended to inform a decision by the working group on the KCRV and its 
associated uncertainty. Like the process of uncertainty evaluation, this should neither be seen as a 
mechanical process driven by simple statistical testing, nor as a decision based entirely on chemical or 
biological measurement knowledge in which statistical inference plays no part. Rather, the decision 
should arise from an informed debate that involves all necessary expertise, including expertise in 
measurement science, in statistics, and in chemistry and biology.  

 

4 Terminology 

Terms and definitions used in this guidance document generally follow those in the VIM or in 
appropriate statistical standards and texts. Terms unique to this guidance document are listed below. Note 
that the descriptive text is explanatory and should not be taken as a formal definition for each term. 

Data set Set of all measured values and uncertainties reported in a given study  

Qualified 
participant 

Participant considered, prior to evaluation of the results, as a candidate for 
inclusion in the calculation of the KCRV  

Candidate set The set of reported results for a particular measurand (including uncertainties) 
from qualified participants.  

Note: The ‘Candidate set’ may include all the reported results.  

Candidate 
KCRV 

A value that could reasonably be considered as a possible KCRV given the 
assumptions applicable to the data. 

Outlier Any reported value which appears unexpectedly distant from the majority of 
values or from a candidate KCRV, taking the associated uncertainties into account. 

Note 1: This usage is intentionally broad, and covers values that appear extreme 
on visual inspection as well as any identified by particular statistical tests.  

Note 2: In this document, describing a reported value as an ‘outlier’ does not of 
itself imply any judgement about the merit of the particular value. Inevitably, 
however, outlying values will merit careful attention because they are unexpected. 
This is discussed further in section 5.  

Anomalous 
value 

A value that appears unusual for any reason, whether or not it is an outlier. 

Note: ‘anomalous’ does not mean ‘wrong’. Seriously erroneous values would of 
course usually appear as anomalous, but correct values in a population of poorer 
measurements might also appear anomalous on first inspection. The data set as a 
whole might also exhibit anomalies such as a general lack of agreement, 
unexpected asymmetry in the distribution of the values, evidence of a laboratory 
bias across several measurands etc. The emphasis should be on identifying, 
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discussing, understanding and as far as possible resolving such anomalies.  

 

A list of symbols used in this text can be found in Appendix 3. 

5 Procedure 

5.1 Identifying Qualified participants 

The working group should agree which laboratories should be considered as candidates for inclusion in 
the calculation of the KCRV for each material and measurand studied. This set may include all 
participants in the study, or a subset of the participants. The chosen laboratories are the ‘qualified 
participants’, and the results from this set of laboratories are the ‘candidate set’. 

Selection (if any) should be on the basis of demonstrable track record in the relevant field of 
measurement.  

Note 1: For Key Comparisons, the qualified participants must (following CIPM guidance [4]) all be 
eligible for inclusion in Key Comparisons. 

Note 2: It is not guaranteed that all named candidates will eventually be used, as subsequent investigation 
may show inconsistencies within the candidate set that indicate a need for reduced weighting or even 
exclusion. However, laboratories excluded at this stage will not be used in any part of KCRV 
calculation. They will, however, be included in data summaries and plots and DoEs will be 
calculated for them after calculation of the KCRV. 

Note 3: If there is only one qualified participant, the measured value and the associated uncertainty from 
that laboratory are taken as the KCRV and the KCRV uncertainty and the remainder of this guidance 
note does not apply. (This provision is, of course, only useful if there are additional participants 
whose results are not in the ‘candidate set’). 

Note 4: Identification of the qualified participants can in principle take place prior to the circulation of 
test materials but the qualified set should nonetheless be reviewed and confirmed following receipt 
of results.  

5.2 Screening the data for consistency and anomalous values 

5.2.1 Preliminary inspection 

5.2.1.1 The candidate set of values xi and associated standard uncertainties u(xi) should be inspected 
using appropriate graphical methods. The combination of graphical methods used should be capable of 
identifying: 

─ Individual values or subsets of the complete set of values whose location appears inconsistent with 
the majority; 

─ Reported uncertainties that are unusually large or small; 

─ Values that deviate substantially relative to their reported standard uncertainties. For example, a plot 
of [xi – med(x)]/u(xi) quickly identifies points that are far from the median, med(x), relative to their 
reported uncertainties.  

Figure 1 shows some of the main features of metrology comparison data. In addition to identification and 
checking of individual anomalies, one of the aims of the preliminary inspection is to establish which of 
the four regions depicted in Figure 1 best represents the data for a particular measurand. Establishing 
such a region will be important in selecting the method for calculating the KCRV. 
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Figure 1: Features of metrology comparison data 
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The figure schematically illustrates two of the main features of importance in metrology 
comparison data. Vertical bars denote approximate 95 % coverage intervals or expanded 
uncertainty intervals. A: mutually consistent data; B: Evidence of general over-dispersion (or 
understatement of uncertainty) affecting most or all participants; C: Generally consistent 
results with a small number of outlying values: D: General over-dispersion combined with 
some particularly extreme values. 

 

 

5.2.1.2 Graphical inspection may be supported by outlier tests, for example, Grubbs’ tests, Dixon’s test, 
or tests based on non-parametric or robust statistics. A simple test based on robust statistics when 
reported uncertainties are essentially identical is to calculate a robust estimate of location µ̂  and 

dispersion ,σ̂  and to consider values as extreme when outside σµ ˆ2ˆ ± (corresponding to approximately 
95 % confidence). Robust methods are also available for the determination of a robust weighted mean 
and associated scale parameters, and can be applied where reported uncertainties differ appreciably. A 
common non-parametric indicator of an outlier, used by default in most box plots [5], is a result outside 
the inter-quartile interval [Q1, Q3] by more than 1.5(Q3 – Q1)

*. At this stage, any outlier tests should be 
carried out at approximately the 95 % confidence level, the aim being primarily to check that closer 
inspection of a visually identified outlier is justified. 

5.2.1.3  Where the data set under consideration forms part of a wider study in which several measurands 
are involved, or several test materials are studied, graphical or other methods for detecting consistent bias 
across a set of measurands or different materials should be used and taken into account when identifying 
anomalous values. 

                                                      
* This non-parametric outlier indication corresponds to approximately 99 % confidence for large normally 
distributed data sets, but identifies a higher proportion of identified outliers for data sets of size 5 to 20.   
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5.2.1.4 It is important to take due account of all available information when screening data, including, 
for example, knowledge of the measurement methods used in each laboratory and relevant chemical 
information.  

5.2.1.5 Paragraphs 5.2.1.1 to 5.2.1.4 refer only to the candidate set, since outlier tests and some graphical 
methods (for example, box plots) may be adversely affected by including data other than those from 
qualified participants. However, it is recognised that it is important to inspect the whole data set carefully, 
including any data that are not part of the candidate set, in order to refer any additional anomalies to the 
laboratories or to inform interim reports. This process is usually carried out as part of the preliminary 
screening.  

5.2.1.6 Following inspection, anomalies should be followed up to the extent permitted by current rules 
for the conduct of key comparisons, and any identifiably erroneous results either corrected or removed 
from the candidate set.  

Note 1: The resulting data set will be a possibly reduced candidate set that may still display unresolved 
anomalies, including outliers, over-dispersion, or both.  

Note 2: The fact that a value appears anomalous is not of itself sufficient to justify removal from the 
candidate set at this stage, whether or not it is identified as anomalous using a statistical outlier test. 
‘Identifiably erroneous’ indicates that a substantiated error in procedure or reporting has been found 
or that the participant concerned has chosen to withdraw the value and associated uncertainty from 
consideration for the KCRV. 

5.2.2 Consistency check 
5.2.2.1 A check of mutual consistency should be performed to assist selection of the KCRV calculation 
method. An example of a common consistency check is provided as Appendix 1.  

Note:  The test given in Appendix 1 tests the hypothesis that laboratories share a common mean value 
and that the deviations from that value are normally distributed with mean 0 and standard 
deviation ui. 

5.2.2.2 It is important to treat consistency checks — including that in Appendix 1 — as advisory rather 
than as simple decision criteria.  Figure 2 indicates a typical interpretation of the chi-squared test, 
taking n as the number of values included in the test. Below a chi-squared value of n – 1 there is no 
reason to believe there is inconsistency. Above the chosen critical value (usually the 5 % upper tail value) 
there is apparently clear evidence of inconsistency (but see Appendix 1 for additional comment). 
Between the two, there is no strong reason to believe there is appreciable inconsistency, but — 
particularly for a small data set — the chi-squared test result does not rule out the presence of potentially 
important over-dispersion. Particularly in the mid-range, therefore, it is important to consider all available 
information before reaching a decision about the method used to calculate the KCRV. In doing so, the 
working group should consider the following: 

5.2.2.3 Evidence that would support a decision to treat the data as mutually consistent includes: 

─ Mutual consistency for most of the participating laboratories in at least three prior interlaboratory 
comparisons on closely similar materials. 

─ Evidence of consistently good performance across a broad range of prior comparisons within the 
working group’s remit. 
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Figure 2: Indications from a chi-squared test 
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The figure shows a schematic illustration of a chi-squared distribution and the two most commonly used 
decision points. The particular distribution shown is for n = 9 measured values; the axis shows values of 
chi-squared.  

 

5.2.2.4 The following circumstances make inconsistency more likely:  

─ Fewer than three prior interlaboratory comparisons involving the same measurand at similar levels in 
closely similar materials; 

─ Measurements on a substance not previously included in a Pilot or Key Comparison; 

─ Measurements on materials of unknown homogeneity; 

─ Measurements at concentrations not previously subjected to interlaboratory comparison by the 
working group; 

─ Application of new measurement methods by a substantial proportion of participants. 

If any of these circumstances apply, it may be unsafe to treat the results as mutually consistent, and in 
particular to assume that the reported uncertainties can be taken as including all the effects that influence 
the measured values. 

5.2.2.5 A working group may adopt a general policy in regard to the interpretation of consistency (or 
otherwise) based on experience of a range of materials over a period of time. 

5.2.3 Validity of assumptions 
5.2.3.1 Many of the KCRV calculation methods rely to a greater or lesser extent on assumptions of 
underlying normality (either for the data set as a whole or for the distributions associated with reported 
uncertainties) and large degrees of freedom for reported uncertainty. Where they are important to the 
working group’s preferred method(s) of KCRV calculation, these assumptions should be checked to the 
extent possible. 

5.2.3.2  Degrees of freedom should normally be reported. Where they are not immediately available, 
reported coverage factors should be reviewed. Any coverage factor greater than 2.0 for an assumed 95 % 
level of confidence should be regarded as evidence of limited degrees of freedom. Any coverage factors 
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over 2.2 (corresponding to approximately 11 degrees of freedom) should be regarded as evidence of low 
degrees of freedom.  

Note: It is assumed that laboratories have considered and incorporated degrees of freedom for type B 
evaluations of uncertainty in accordance with the GUM. In particular GUM clause G.4.2 suggests a 
method for assigning finite degrees of freedom for Type B evaluations involving judgements which 
are themselves subject to doubt. 

5.2.3.3  The distribution assumptions associated with reported uncertainties can be checked by 
contacting participants if necessary. Usually, however, provision of a single expanded uncertainty implies 
a symmetric distribution that can usually be assumed to be approximately normal or t-distributed. 
Asymmetric reported intervals indicate non-normality. 

5.2.3.4  With the exception of the presence of outlying values, departures from normality for the data set 
as a whole are hard to detect using normality tests because the statistical power of such tests is inadequate 
for the relatively small data sets in metrology comparisons. Visual inspection is accordingly 
recommended.  

Note: Where reported uncertainties differ appreciably, measured values are not generally expected to be 
normally distributed. Rather, the scaled deviations )(/)ˆ( ii xuxx −  where x̂  is a candidate KCRV, 
should be approximately normally distributed.  

5.2.3.5  Where serious departures from the assumptions above are detected, action should be taken to 
address the issue. In particular, KCRV calculation methods should be chosen for robustness to departures 
from these assumptions, and statistical tests (including chi-squared and outlier tests) should be used with 
caution. 

5.2.3.6 If an initial consistency check shows evidence of remaining inconsistencies, or if there remains a 
risk that additional factors are contributing to the dispersion and it is considered unsafe to assume mutual 
consistency, the features of the data set responsible for failure of the consistency check should be 
determined. These features are usually identified on the basis of graphical inspection with the assistance 
of outlier checks, possibly supplemented by repetition of consistency checks after removal of clear 
outliers.  

The two most relevant features are: 

• The continued presence of a small number of extreme values. 

• Apparently general over-dispersion; that is, evidence that most laboratory uncertainties are 
insufficient to account for the observed dispersion of results.  

Figure 1 shows these features schematically.  

Both features may be present. If outliers appear to be present, checking for consistency after removal of 
clear outliers will help to establish whether the majority of the results are mutually consistent. 

5.2.3.7 If there is evidence of inconsistency other than the presence of a small number of extreme values, 
the working group should consider whether calculation of a KCRV remains justifiable. If there is 
evidence of severe inconsistency (for example, no overlap in reported expanded uncertainty intervals or 
several discrepant subsets) it is normally considered prudent to abandon the attempt to assign a KCRV 
and to undertake further investigations of the cause.  
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6 Selection of methods for KCRV calculation 

6.1 General criteria for the selection of methods for KCRV calculation 

6.1.1 Methods used for KCRV calculation should have the following characteristics: 

i)  Well-characterised theoretical performance. At least the following performance 
characteristics should have been established, preferably from theoretical considerations:  

• Bias 

• At least large-sample variance characteristics 

• Asymptotic relative efficiency for a normal distribution (see Note below) 

• Breakdown point (see Note below). 

ii)  Known performance on data typical of Key and Pilot Comparisons. For example: 

• Performance on smaller data sets (of size 3 to 30) should have been established; 

• Performance in the presence of extreme values should have been established, including 
performance on sets with extreme values regarded as drawn from an asymmetric 
distribution if appropriate; 

• Comparison with any previously used methods meeting similar assumptions is useful. 

iii) Broad scientific acceptance, usually shown by prior publication in appropriate refereed 
statistical journals.  

6.1.1 A selection of estimators currently considered to meet the above criteria is provided in 
Appendix 2. 

Note: The asymptotic relative efficiency of a location estimator means, here, the large-sample variance of 
the estimator divided by the variance of the mean, which is the minimum variance estimator for the 
normal case. High efficiency indicates low variability and correspondingly low uncertainty. 
“Breakdown point” for an estimator describes the proportion of values that can move to infinity 
before affecting the estimate. High breakdown point corresponds to high resistance to outliers.  

 

6.2 Factors affecting choice of a specific estimator 

6.2.1 Location estimators fall into four broad classes, according to whether or not they are resistant to 
the effect of outliers (robust) and whether or not they use uncertainty information in the estimation of 
location. The appropriate class of estimator to use is therefore guided by two features of the data set 
identified during preliminary inspection: 

i)  The presence or likelihood of outliers. If outliers are present or likely, an estimation 
procedure that is robust to the presence of outliers should be used. 

ii) The reliability of the reported uncertainties for the majority of participants, usually indicated 
by the degree of consistency found. If reported uncertainties are considered reliable and the 
majority of the data are mutually consistent, estimators that weight measured values 
according to their reported uncertainties should be used.  

Estimators chosen to match the properties of the data set are regarded as valid estimators for the purpose 
of KCRV calculation. 

Table 1 lists a selection of valid estimators, grouped by applicability based on the features above. Section 
6.3 discusses the four different classes of estimator in more detail and compares estimators within each 
class. Appendix 2 gives details of calculations, uncertainty evaluation and properties of some useful 
estimators. 
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6.2.2  Additional factors that motivate the choice of a specific estimator include: 

• The uncertainty associated with the estimator (related to the efficiency); 

• The degree of resistance to extreme values (breakdown point and bias given extreme values 
regarded as drawn from an asymmetric distribution);  

• Simplicity of application and presentation. 

6.2.3 Preference should normally be given to valid estimator(s) having the smallest theoretical 
uncertainty (equivalent to best efficiency). Appendix 2 provides information on the efficiency of various 
estimation methods. 

Note Calculated uncertainties derived from a given data set do not necessarily reflect the order of 
preference. By way of illustration, given a choice between the median and the mean and 
assuming both are otherwise equally valid choices for a particular data set, it is entirely possible 
that the scaled median absolute deviation of this particular data set (often used as a basis for the 
uncertainty associated with the median) might be appreciably smaller than the standard deviation 
used as the basis for the uncertainty of the mean. Despite this, the mean remains the preferred 
estimator because its theoretical variance (and therefore efficiency) is by far the smaller of the 
two.  

6.2.4 Where different valid approaches provide similar values for location and similar values for the 
associated uncertainty, the simplest approach is normally preferred. 

6.2.5 The choice of KCRV estimator should also permit the determination of degrees of equivalence. A 
desire for informative DoE uncertainties may restrict the choice of estimator. For example, KCRV 
estimators that do not use reported uncertainties often lead to degree-of-equivalence uncertainties that do 
not reflect the differing uncertainties reported by participants.  

 

6.3 Recommended estimators for the KCRV  

Recommended estimators for each of the four main scenarios in Table 1 are listed below. In these 
paragraphs, m denotes the number of laboratories accepted for KCRV calculation (the candidate set after 
any adjustments by the working group).  

Note: These recommendations should not be taken as a requirement to apply one and only one 
estimator. It is often helpful to review the values and associated uncertainties returned by several 
nominally valid estimators operating on different principles. Appreciable differences between 
different estimators can help to identify the features of the data set that are responsible for these 
differences and inform the final choice of estimator. Where several estimators agree well, 
confidence in the KCRV calculation is improved. The recommended estimators indicated below, 
however, are expected to provide the best efficiency within their domain of applicability and 
should normally be preferred where there are differences between KCRVs.  

6.3.1 Estimators for mutually consistent results 
6.3.1.1 Essentially all estimators listed in Table 1 and Appendix 2 are applicable to mutually consistent 
results. However, some estimators are uniquely applicable to consistent data and should not normally be 
applied where anomalous values exist or where inconsistency is found or suspected. The 
uncertainty-weighted mean, also widely known as the Graybill-Deal estimator, is the most important of 
these.  

6.3.1.2 The uncertainty-weighted mean weights the measured values by the reciprocals of the squared 
standard uncertainties. Where the reported uncertainties are consistent with the observed dispersion in the 
data set (that is, there is no over-dispersion), the uncertainty associated with the resulting KCRV involves 
only the reported uncertainties.  
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6.3.1.3 For validity, this procedure relies on large degrees of freedom associated with the reported 
uncertainties, and the absence of additional effects resulting in over-dispersion. Under these 
circumstances, the weighted mean is the recommended estimator.  

6.3.1.4 Where reported uncertainties are closely similar, the arithmetic mean and the 
uncertainty-weighted mean are equivalent; the arithmetic mean may then be used as the location estimate.  

Note: The standard uncertainty associated with the arithmetic mean is usually based on the standard 
deviation associated with the reported values. This uncertainty may differ from that of the weighted 
mean, which is based on reported uncertainties. For instance, the dispersion of reported values might 
by chance be substantially lower than expected from the reported uncertainties, resulting in too small 
a value for the KCRV uncertainty. For this reason, the uncertainty-weighted mean and its associated 
uncertainty should normally be used wherever the results are demonstrably consistent, and especially 
where 2

obsχ < m – 1 (see section 5.2.2). 

6.3.1.5 The uncertainty-weighted mean, with associated standard uncertainty set to ∑
=

m

i

iw
1

1 , should 

not be used if there is appreciable risk of significant over-dispersion (see section 5.2.2 and prior 
assumptions); that situation should be treated as in section 6.3.3.  

Note: Zhang [6] recommends a modified estimate and associated uncertainty which are preferred where 
any participant uncertainties are associated with small degrees of freedom. 

Recommended estimator: Uncertainty-weighted mean. 

Note 1: Where reported uncertainties are very similar, and the arithmetic mean provides similar location 
and uncertainty estimates to the weighted mean, the arithmetic mean may be reported as the KCRV. 

6.3.2 Mutually consistent results with some outliers present 
6.3.2.1 CCQM-09-03 paragraph 5 notes that “… some values, through human error or unexpected 
chemical or sample effects, might be discrepant.” This principle, which is based on prior experience in 
measurement and not on statistical considerations, is interpreted here as indicating that unexplained 
anomalous values must be regarded as possible erroneous results. Most identifiable anomalies appear as 
outliers in the final data set. Outliers cause deviations in location estimates and have severe effects on 
dispersion estimates, in turn affecting the resulting KCRV uncertainty. With an acknowledged risk of 
human or other error, unexplained extreme values should normally be given less weight in the calculation 
of the KCRV. 

6.3.2.2 Working groups may direct that no measures may be taken to reduce the adverse effects of 
outlying values. In that case, the presence of outlying values should be taken as strong evidence of over-
dispersion and the methods of section 6.3.3 should be applied.  

6.3.2.3 Where the working group agrees that the provisions of CCQM-09-03 paragraph 5 should apply, 
two general types of procedure are available: i) Procedures based on automatic outlier detection and 
removal (‘Outlier rejection procedures’), and ii) the use of robust statistics. The advantages and 
disadvantages of each are discussed below. 

Note: At this stage, outlier testing and rejection or robust statistics are used to reduce the risk of undue 
influence from extreme values. By their nature, these procedures will inevitably remove or 
downweight some valid results; this is the price paid for increased resistance to possible error. For 
this reason, removal or downweighting of a value as part of a robust estimation procedure should not 
be taken to imply that the values so treated are excluded from calculation of the KCRV.  

 

Outlier rejection 

6.3.2.4 Automatic outlier rejection (that is, exclusion of extreme values based purely on statistical 
criteria) can be considered as a robust estimation technique, and for this reason as a valid procedure for 
calculation of a KCRV when mutual consistency is compromised by a small number of extreme values. 
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6.3.2.5 Outlier rejection procedures have the advantage of comparative simplicity once outliers are 
removed, because they permit the application of comparatively simple KCRV calculation methods. 
Disadvantages include: i) outlier rejection based on tests at low confidence levels (95 % and below) reject 
a substantial proportion of valid entries, causing estimates of dispersion and therefore the KCRV 
uncertainty to be biased low;  ii) Repeated outlier testing and rejection (or some other methods for 
identifying multiple outliers) is often necessary to identify all extreme values, and this procedure may 
result in an unreasonably high rejection rate and ultimately conceal real inconsistency; iii) the most 
common outlier tests do not take account of uncertainty information. Working groups should therefore 
consider outlier rejection carefully before use. 

6.3.2.6 Taking the above factors into account, if a working group adopts the use of outlier rejection for 
calculation of a KCRV, the following principles should be observed: 

i)  If used, automatic rejection should be applied at confidence levels of 99 % or above. This 
choice provides reasonable protection against gross error while minimising adverse effects on 
uncertainty evaluation. 

ii)  Repetitive outlier testing and rejection should be used if necessary to identify multiple extreme 
values, but no more than 20 % of the values in a data set should be rejected (note that this 
constrains the breakdown point to 20 %). 

iii) Where reported uncertainties differ appreciably, outlier tests should take account of these 
uncertainties. 

 

Robust statistics 

6.3.2.7 Robust statistics allow explicitly for the presence of extreme values and (usually) accommodate 
them by assigning weights that decrease with distance from the body of data (‘down weighting’). They 
have been recommended for general application in analytical chemistry [7], particularly in connection 
with interlaboratory study [8, 9], and are in wide use. The early estimators proposed for analytical 
chemistry did not use uncertainty information, but the statistical literature has long treated this as a 
special case of estimators that do use uncertainty information [10]; there are therefore many well-
characterised estimators that are both robust to the presence of outliers and use uncertainty information 
appropriately. The most useful class of robust statistics for calculation of a KCRV is the class known 
as M-estimators, which include the median and arithmetic mean as particular cases. 

6.3.2.8 Robust estimators take due account of down-weighting when calculating dispersion and 
associated uncertainties, do not require removal of values from the candidate set, and accommodate 
marginal outliers appropriately, overcoming many of the disadvantage of excluding extreme values. They 
have well-characterised efficiency, which can be chosen explicitly for most M-estimators and is usually 
set to 85 % to 95 % depending on the degree of resistance required to extreme values. Their breakdown 
point is usually substantially higher than for outlier rejection procedures. Their principal disadvantages 
are i) comparative complexity in implementation and ii) sensitivity to estimates of dispersion, which can 
degrade their efficacy for very small data sets, particularly if several extreme values are present.  

6.3.2.9 The sample median is a robust and simple estimator, often used in CCQM studies. Its breakdown 
point is high (50 %), but asymptotic efficiency for normally distributed data is very low (64 %)  
Uncertainties associated with the location estimate are therefore typically about 20 % to 25 % larger for 
the median than for other M-estimates. The sample median does not take reported uncertainties into 
account. Uncertainty estimation for the median usually uses a scaled median absolute deviation (MADE); 
this is very simple and robust, but again has very poor efficiency and is additionally biased low for data 
sets with m < 10. These factors make it hard to recommend the median over more sophisticated robust 
estimators given the priorities in paragraph 6.2.2.  

Recommended estimators: Any well-characterised robust estimator with breakdown point of at least 
20 % and efficiency of at least 85 % for the size of data set in question. 



12 of 12 

Consensus_KCRV_v10.doc: 2013-04-12 

Note 1: Efficiency for the size of data set in question may differ substantially from the asymptotic 
efficiency usually available from theoretical considerations. 

Note 2. Where the median and MADE provide closely similar values and uncertainties to the 
recommended estimators above, the reported KCRV may be based on the simpler estimates. 

Note 3. Among robust estimators, the class known as MM-estimators offers high efficiency and 
breakdown point with minimal sensitivity to extreme values. 

Note 4. Robust statistics should not normally be used on data sets of fewer than 7 values unless there 
is evidence to support their applicability. Below this, the median and MADE are likely to behave very 
nearly as well in the presence of moderate outliers, and outlier rejection followed by classical 
estimates can perform better than either for very small sets. 

6.3.3 Lack of mutual consistency with no individual anomalous values 
6.3.3.1 General inconsistency manifests as larger observed dispersion than can be accounted for by 
reported uncertainties – that is, over-dispersion or excess variance. Such dispersion can arise from 
understatement of uncertainties for most or all participants, or from the presence of genuine differences 
between items tested by each participant. For determining a KCRV, the principal effects are, first, that the 
validity of weighting based on reported uncertainties depends on the nature of the effect causing 
over-dispersion and, second, that reported uncertainties cannot be treated as appropriate for KCRV 
uncertainty evaluation.  

6.3.3.2 The nature of over-dispersion affects the choice of estimator. The recommended approach is to 
decide, based on chemical knowledge and experience, the most likely form of the over-dispersion 
(proportional or fixed contribution) and act accordingly as set out below: 

i) If the deviations resulting in over-dispersion are, to a reasonable approximation, proportional to 
reported uncertainty, weighting on the basis of reported uncertainty remains approximately valid, 
and it is sufficient to increase the calculated KCRV uncertainty by a simple scale factor. This is 
the basis of the correction for over-dispersion described in connection with the uncertainty-
weighted mean in Appendix 2, which uses the Birge ratio. Under these circumstances, the 
uncertainty-weighted mean with KCRV uncertainty corrected for over-dispersion is appropriate. 
Note, however, that effects on chemical and biological measurements are rarely strictly 
proportional to laboratory uncertainties; simple scale factor increases in KCRV uncertainty are 
therefore best regarded as approximate adjustments only.  

ii) If over-dispersion is attributable to a random factor, such as inhomogeneity of test materials, 
which operates on the same scale for all participants irrespective of their reported uncertainty, the 
combination of reported uncertainty and uncertainty associated with the additional random effect 
is no longer proportional to reported uncertainty. As the additional effect increases, the effective 
uncertainties of the reported values, taking the additional random effect into account, increase 
(and when the additional effect dominates they converge to the same uncertainty). Three 
situations can be distinguished: 

a) With small excess variance (for example, where the calculated Birge ratio is between 1.0 
and 1.5), the uncertainty-weighted mean with a scale correction for over-dispersion is an 
appropriate estimator.  

b) With substantial inconsistency the effective weights are essentially equal, and the uncertainty-
weighted mean converges to the arithmetic mean. The arithmetic mean is then the most 
appropriate estimator.  

c) At intermediate levels of over-dispersion, the most accurate representation involves estimation 
of the variance associated with over-dispersion, combination of that variance with the reported 
uncertainties, and recalculation based on the revised weights. This is usually an iterative 
process, but numerical methods with assured convergence exist. Implementations of this 
principle include, for example, the Mandel-Paule estimate [11], DerSimonian-Laird estimator 
[12] and the Ruhkin-Vangel restricted maximum likelihood estimate [13]. Note that the latter 
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is additionally valid for small degrees of freedom in the reported uncertainties and should be 
preferred where available. Toman and Possolo have provided an accessible illustration of the 
methodology [14]. 

Note: Approach c) is valid for all three situations, but a) and b) provide simpler and sufficient 
approximations at the extremes.  

 

Recommended estimators:  

Over-dispersion arising from unquantified effects proportional to 
reported uncertainty 
 

Uncertainty-weighted mean with 
scale adjustment of the 
uncertainty 
 

Over-dispersion arising from modest unquantified additive effect  Uncertainty-weighted mean 
 

Over-dispersion arising from large unquantified additive effect  
 

Arithmetic mean 

Over-dispersion arising from unquantified additive effect  Mandel-Paule or Ruhkin-Vangel 
estimate 

 

 

6.3.4 Lack of mutual consistency in addition to one or more anomalous values 
6.3.4.1 The presence of a minority of extreme values together with either suspected or apparent mutual 
inconsistency of the remaining majority combines the features of the preceding two sections. The same 
considerations apply to the nature of the effect responsible for over-dispersion in the bulk of the data set 
as in section 6.3.3. Treatment, however, must accommodate outliers. Since there is no current 
implementation capable of modelling excess variance in the presence of outliers, only two scenarios are 
amenable to treatment. The recommended approaches are as follows: 

i) When over-dispersion is, to a reasonable approximation, proportional to reported uncertainty, 
excluding extreme values at the 99 % level followed by uncertainty-weighted mean with 
correction for over-dispersion is applicable. For data sets of size 7 or greater, an uncertainty-
weighted robust estimator, such as the MM-estimate, with uncertainty corrected for observed 
dispersion, is likely to perform at least as well, and will usually perform better for large sets.  
Note: The term ‘MM-estimator’ refers to a specific class of robust estimators suggested by Yohai 
et all [10] and should not be confused with the mixture model median, sometimes abbreviated as 
‘MM-median’, which is not currently recommended for KCRV estimation pending a validated 
method of estimating uncertainty. 

ii) When over-dispersion is attributable to a random additive effect, such as inhomogeneity of 
materials, which applies for all participants irrespective of their reported uncertainties, excluding 
extreme values at the 99 % level followed by the methods of section 6.3.3.2 ii) c) is the most 
generally applicable approach. A robust estimator applied without taking reported uncertainties 
into account is applicable for data sets of size 7 or larger. For data sets of size 6 or less, the 
median with uncertainty based on MADE provides similar or better overall performance. 

 Note: Where there is clear evidence of over-dispersion as well as a number of serious outliers, it is not 
usually appropriate to estimate a KCRV; rather, further investigations of the cause should be undertaken 
and the study repeated if necessary. 

7 Degrees of equivalence 

7.1 General 

A degree of equivalence (DoE) is defined [1] as follows: 
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The degree of equivalence of each national measurement standard is expressed quantitatively by two 
terms: its deviation from the key comparison reference value and the uncertainty of this deviation (at 
a 95 % level of confidence). The degree of equivalence between pairs of national measurement 
standards is expressed by the difference of their deviations from the reference value and the 
uncertainty of this difference (at a 95 % level of confidence). 

Thus a DoE has two components: a value component and an uncertainty component. 

7.2 Correlation associated with the KCRV and participants’ measured values 

7.2.1 When a consensus value is calculated, the consensus value and any participant value contributing 
to the estimate has correlation associated with them; if a participant value changes, so in general does the 
estimate. For small data sets, this effect can be large. CCQM-09-03 therefore requires that correlation 
associated with the KCRV and the reported participant values be taken into account in calculating DoEs 
using that KCRV.  

7.2.2 Calculation of a particular participant’s DoE generally involves the participant reported 
uncertainty, the KCRV uncertainty and a covariance term that takes account of the correlation associated 
with the KCRV and the participant value. The general calculations for DoEs are provided in Appendix 2. 

7.2.3 The covariance term depends on the participant uncertainty and on the weight given to the 
participant value in calculating the KCRV. The appropriate weight depends on two factors. First, if the 
participant was not among the qualified participants used in obtaining the KCRV, the weight is set to 
zero. Second, the weight allocated depends on the estimator employed and, for robust estimators, on the 
reported value as well as on the reported uncertainty. Weighting functions for common estimators are 
given, together with covariance calculations, in Appendix 2. In general, the weights used are available 
from the software employed to calculate the KCRV. For members of the candidate set rejected using an 
outlier-rejection scheme, the weights should be set to zero for DoE calculation purposes. 

7.3 Interpretation of degrees of equivalence and their uncertainties 

7.3.1 The value components of the degrees of equivalence and, to a greater extent, their associated 
uncertainties, depend heavily upon the choice of KCRV calculation method. In all but the most 
straightforward case (perfect consistency among participants with large degrees of freedom and good 
evidence for the absence of undetected additional variance) the DoE uncertainties are not directly related 
to the reported laboratory uncertainties. Indeed, for KCRV estimation methods that do not make use of 
the reported uncertainties (including the simple mean and median) there is no relationship between the 
DoE uncertainty and an individual participant’s reported uncertainty. For such KCRV calculations, 
therefore, the resulting DoEs and their associated uncertainties may be extremely unreliable indicators of 
laboratory performance even though the KCRV and its associated uncertainty may appear sensible. 

7.3.2 In addition to the above, the KCRV uncertainty evaluation methods presented in Appendix 2 do 
not include any allowance for uncertainty associated with the particular choice of KCRV. Where several 
different KCRV calculation methods might reasonably be chosen for a given study, the interpretation of 
individual DoEs is inevitably more complex. In particular, a given DoE may show apparently significant 
inconsistency with one reasonable choice of KCRV calculation, whilst being apparently consistent with 
another. 

7.3.3 Where the interpretation of the DoEs is appreciably affected by the issues in paragraphs 7.3.1 and 
7.3.2, working groups should consider including appropriate cautionary notes in the KC report to 
discourage over-interpretation of the results. 

 

7.4 Use of pairwise degrees of equivalence 

7.4.1 The Technical Annex to the CIPM MRA [1] provides for the reporting and use of DoEs between 
pairs of institutes. Pairwise degrees of equivalence have the advantage that they do not depend on a 
particular choice of KCRV calculation; only on the laboratory results and reported uncertainties. Where 
the interpretation of DoEs with respect to the KCRV is difficult (for example where section 7.3 applies) it 
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may be useful to report pairwise degrees of equivalence in addition to, or instead of, the degrees of 
equivalence with respect to the KCRV. 

 

8 Inhomogeneity 

8.1 CCQM-09-03 states that: 

“Homogeneity effects should be taken into account by the coordinating NMI when determining a 
KCRV and its associated uncertainty. Homogeneity effects should be characterized by the 
coordinating NMI before distributing samples. 

NOTE 1. Homogeneity effects should be expressed in terms of a standard uncertainty uwb for within-bottle 
effects and a standard uncertainty ubb for between-bottle effects. 

NOTE 2. A similar statement applies to some other effects such as stability.” 

8.2 Where one unit per participant is distributed and inhomogeneity needs to be considered, the 
simplest approach is for the coordinator to include an additional term, equal to the estimated between-unit 
standard deviation sbb, in the calculation of the standard uncertainty associated with the KCRV.  

Note:  This is equivalent to assigning an individual KCRV to each participant with a standard 
uncertainty appropriate for the unit(s) supplied. This standard uncertainty will be larger than that 
associated with the estimated true mean of the population of results.  

8.3  Where multiple units are distributed to each participant and the measurand is the estimated 
average across units, treatment of inhomogeneity becomes far more complex. With multiple units per 
laboratory, the dispersion of measured values within the laboratory will normally increase, inflating 
uncertainties slightly.  Some (but rarely all) participants may detect between-unit inhomogeneity and 
make explicit allowance for between-unit effects in their reported uncertainty. It then becomes impossible 
for the coordinator to make a reliable allowance for inhomogeneity for each laboratory without risking 
some double-counting of the effect of inhomogeneity. 

8.4 In general, the complexity of possible inhomogeneity effects when multiple units are circulated 
makes it advisable to take all measures possible to minimise inhomogeneity and to design homogeneity 
tests with sufficient power to rule out significant inhomogeneity wherever possible. 

9 Application to Pilot studies 

9.1 The principles of this document apply both to Key Comparisons and to Pilot Studies, although 
the term ‘KCRV’ would normally be replaced by ‘reference value’ or ‘assigned value’ in a Pilot 
comparison. However, there are important differences between pilot and key comparisons that may affect 
the choice of estimators used:  

• Pilot studies are usually exploratory, involving new measurement methods or more challenging 
measurement problems. 

• Pilot studies often involve laboratories that are not NMIs. 

• Pilot studies often involve participants in the early stages of implementing a measurement 
technique, or wishing to add a new technique to their established capabilities. 

• Degrees of equivalence are not generally calculated in pilot studies. 

These features make pilot studies much more likely to show unexpected results, either for individual 
participants or for all participants.  

9.2 The increased likelihood of unexpected values coupled with the reduced need for degrees of 
equivalence makes it more appropriate to use robust estimation methods for pilot studies. Robust 
estimation methods as described in section 6.3.2 are therefore recommended for pilot studies. 
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Table 1: Choice of Estimators and Uncertainty Evaluation Methods for Consensus 

Assignment in CCQM Studies
 a
 

Presence of outliers
c 

Consistency
b
 

No extreme values One or more extreme values  

There is no 
evidence of 
significant 
inconsistency in 
the bulk of the data 
set and the working 
group concludes 
that it is safe to 
assume that there is 
no source of over-
dispersion. 

Note: This situation 

is rare in practice; it 

is usually safer to 

assume some 

undetected between-

laboratory effects. 

If uncertainties do not differ 
significantly: 
� Arithmetic Mean 
� Uncertainty-weighted mean 

 

(The two are comparable for consistent 
data with approximately equal 
uncertainties) 

If uncertainties differ appreciably: 
� Uncertainty-weighted mean 

Note: Approaches valid for data 

contaminated by outliers but otherwise 

consistent are also valid for this case, but 

will generally result in slightly or 

appreciably larger uncertainties. 

If uncertainties do not differ significantly: 

• Mean, after rejection of some outliers, q, 
say, in number, identified at the 99 % 
level, with standard uncertainty estimated 
as s/√(m – q) 

• Huber (H15) or other M-estimates without 
prior weights  

• Median  

If uncertainties differ appreciably: 

• M-estimators, including those using 
Huber, Hampel and bisquare weighting 
functions, with accommodation for prior 
weights based on reported uncertainties  

• MM-estimates with prior weights based on 
reported uncertainties 

There is 
insufficient 
evidence of mutual 
consistency, or 
evidence of 
significant 
inconsistencyd 

If uncertainties do not differ 
appreciably:  

• Arithmetic mean 

If uncertainties differ significantly: 

• Uncertainty-weighted mean with 
correction for over-dispersion 

• Mandel-Paule, Vangel-Ruhkin or 
equivalent weighted-mean estimates 
of location and uncertainty 

 

Note: The arithmetic mean and Mandel-

Paule approaches converge as inconsistency 

becomes large. 

If uncertainties do not differ significantly: 

• Arithmetic mean of outlier-rejected data 
• M- or MM-estimates (including Huber, 

Hampel and bisquare weighting functions) 
without prior weights 

• Median 
 

If uncertainties differ appreciably: 

• M-estimators, including Huber, Hampel 
and bisquare weighting functions, with 
prior weights based on reported 
uncertainties  

• MM-estimates with prior weights based on 
reported uncertainties 

• Mandel-Paule, Vangel-Ruhkin, or 
equivalent weighted-mean estimates of 
location and uncertainty after outlier 
rejection at the 99 % level 

a Approaches known to CCQM at April 2013 and meeting the criteria of section 6.1 are listed. Section 6.3 
includes recommendations and additional remarks on some estimators. For the small numbers of values 
typically found in the studies covered by this Table, alternative valid approaches often provide very similar 
performance. 

b Checks for consistency are considered at section 5.2.2. 

c “Outliers” in this Table refers both to values that are unusually distant from the bulk of the data set and to 
values that appear remote from a candidate KCRV when their reported uncertainty is taken into account. 
Inspection for outliers and other anomalies is discussed in section 5.2.1. 

d Severe inconsistency is normally considered grounds for abandoning any attempt to calculate a KCRV (see 
paragraph 5.2.2.2). 
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Appendix 1: A common consistency check 
A simple consistency check meeting the requirements of section 5.2.2 is as follows: 

i) Calculate the uncertainty-weighted mean* ux of the candidate set: 
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iii) Compare 2
obsχ  with m – 1 and with 2

1050 , m-.χ , the 95 percentile of χ2 with m – 1 degrees of freedom. 

iv) If 2
obsχ < m – 1, it is normally safe to proceed with the assumption that the results are mutually 

consistent and that the uncertainties account fully for the observed dispersion of values. 

v) If 2
1,05.0

2
obs1 −≤≤− mm χχ  the data provide no strong evidence that the reported uncertainties are 

inappropriate, but there remains a risk that additional factors are contributing to the dispersion. Refer 
to the prior working group decision on presumptive consistency and proceed accordingly.  

vi) If ,
m,.

2
1050

2
obs −> χχ  the data should be considered mutually inconsistent. 

A worked example is given overleaf. 

Notes:  

i)  Any other consistency check may be used if it has equivalent power of detecting over-dispersion. 

ii)  The consistency check above depends on a reliable location estimate. Replacing the weighted mean 
in the test above with a robust estimator is a useful precaution against undue influence from extreme 
values. High breakdown point is more important than efficiency at this stage. The median is 
therefore a useful simple estimator where reported uncertainties are reasonably similar. High-
breakdown robust estimates that additionally take account of reported uncertainties (including, for 
this purpose, the mixture model median and largest consistent subset method) are useful if reported 
uncertainties differ appreciably (see Appendix 2).  

iii)  The chi-squared test assumes approximately normally distributed error. This test is inappropriate if 
any of the results included in the test have small degrees of freedom. Use of the critical values for 
chi-squared then leads to a higher probability of rejection of the null hypothesis. For this and other 
reasons, section 5.2.2 recommends that the result of a chi-squared test be used as a guide and not as a 
simple decision criterion. 

                                                      
* This is often referred to as the Graybill-Deal estimator. 
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Example: A consistent data set 

Reported data on lead  in a test material from 6 laboratories, with standard uncertainties, are given in 
Table 2 and plotted in Figure 3. 

Consistency test: 

i) The uncertainty-weighted mean ux is calculated as follows: 
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ii) The chi-squared statistic is calculated as  
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(only the first two summed terms are shown) 

iii) The chi-squared statistic is compared with m–1 and with 2
1050 , m-.χ . For m = 6, 2

1050 , m-.χ  is 11.07. The 

calculated value of 1.499 is considerably below m-1 = 5 and the upper 95% critical value of 11.07. There 
is therefore no evidence of important excess dispersion. 

 

Table 2: Data for consistency check example
Note 1

 

Laboratory 1 2 3 4 5 6 

x (mg kg-1) 2.938 2.917 2.915 2.951 2.910 2.928 

u (mg kg-1) 0.018 0.035 0.059 0.014 0.064 0.052 

Note 1: The data are simulated, with mean and uncertainties based on the KCRV and median reported 
uncertainty for CCQM K-30 (lead in wine).  
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Figure 3: Consistency test example 
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The figure shows values from Table 2. Error bars show expanded uncertainties using  
coverage factors of k=2. The solid and dashed horizontal lines are the weighted mean and the upper and 

lower limits of the corresponding expanded uncertainty interval (again with k = 2) , respectively. 
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Appendix 2: Calculations for consensus KCRV estimators 
 

The following tables provide calculations for some common estimators used for KCRVs. The list is not 
intended to be either comprehensive or restrictive; any estimator that meets the criteria of section 6 and is 
appropriate to the assumptions in force may be used.  

It is assumed that the study includes a total of n laboratories of which the first m (m ≤ n) are included in 
the calculation of the KCRV (but all n laboratories are used in the calculation of degrees of equivalence). 

1 General 

1.1 Degrees of equivalence 

For a KCRV µ̂  and an individual reported value xi, the degree of equivalence or DoE is (di , U(di)), 
where  

U(di) = ku(di). 

When normality can be assumed, k can be taken as 2.  When normality cannot be assumed, k is chosen 
based on knowledge of the distribution.  u(di) is given by 

 .ˆ,xˆuxudu,ˆxd iiiii )cov(2)()()( 222 µµµ −+=−=  (A2.1) 

1.2 Uncertainty and Covariance 

Many estimators can be expressed as a linear combination of  values xi with associated weights wi, so that 
the KCRV µ̂  can be expressed as 

 ∑
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For example, the arithmetic mean can be treated as an instance of equation (A2.2) with all wi set to 1/m. 
Although there are specific formulae for many estimators, the general form of equation (A2.2) is 
particularly useful for obtaining uncertainties and covariances in key comparisons, because it is 
applicable not only to common classical estimators, but also to many robust estimators.  

Where the u(xi) are compatible with the observed dispersion of the values xi (for example, where a 
chi-squared test shows no evidence of over-dispersion) , the standard uncertainty )ˆ(µu  associated with µ̂  
can, in the absence of correlation associated with the xi, be calculated from  

 .xuwˆu

m

ii∑
=

=
1i

222 )()(µ  (A2.3) 

Note: Strictly, this expression applies only to exact weights; however, it is likely to be a sufficient 
approximation for the purposes of this document.  

Under the same conditions, the covariance associated with xi and µ̂  is  

 ., ..., m i xuwˆ,x iii 1),()cov( 2 ==µ  (A2.4) 

 

Note 1: When the standard uncertainties u(xi) are not compatible with the dispersion of the xi,  Equation 

(A2.3) can underestimate .ˆu )(µ  A compensating adjustment to equation (A2.3) that is sometimes 
used is to modify )ˆ(µu  by a scaling factor based on the observed dispersion of (scaled) deviations 
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(the Birge ratio does this explicitly; many robust estimates implicitly choose scale based on 
dispersion). This aspect will be considered further below in relation to particular estimators. 

Note 2: In some cases – including the arithmetic mean and the median – )ˆ(µu as usually evaluated is 
formally unrelated to the reported standard uncertainties u(xi). Equations (A2.3) and (A2.4) do not 

then apply correctly unless s(x), the standard deviation of x1, …, xm, is used in place of all the u(xi). 
An important exception is the case where s(x) is largely attributable to an additional random effect 
outside laboratory control; this aspect is discussed in connection with the calculations for classical 
estimators below.  

Note 3: Many robust estimators (including the median) can be expressed in the form of equation (A2.2) 
using ‘posterior weights’ that become available following, or in the process of, estimation. 

Note 4: Values excluded from the calculation of µ̂  can be treated as having zero values for the 
corresponding weights wi and consequently there is zero covariance associated with these values and 

.µ̂  Correlation may, however, arise for other reasons, such as use of a calibrant common to all study 
participants. 

1.3 Uncertainty component of the degree of equivalence 

The uncertainty component  

Ui(di) = ku(di) 

of the DoE for the ith participant is given by expression (A2.1).  

1.4 Efficiency and breakdown point 

The performance of robust (and other) estimators can usefully be described in terms of two properties; 
efficiency and breakdown point; these properties are included in the tables below.  

Efficiency describes the dispersion properties of an estimator when applied to well-behaved data; it is 
usually given as asymptotic relative efficiency, defined as the inverse of the ratio of estimator variance to 
the variance of the corresponding minimum variance estimator when applied to the normal distribution. 
High efficiencies are desirable, as higher efficiency leads to smaller KCRV uncertainty.  

Note: CCQM 08-08 principle 7 requires that “The most efficient approach [that is giving the smallest 
value of u(xref )] of those consistent with the applicable assumptions is preferred.” 

The breakdown point (or simply ‘breakdown’) can be thought of as the proportion of the data set that can 
go to infinity while keeping the estimate finite. It gives an indication of outlier resistance. A high 
breakdown point is desirable for outlier resistance.  

Note: No useful estimator has a breakdown point higher than 0.5, but many approach 0.5. The mean 
and weighted mean have a breakdown point of zero, indicating that they have essentially no 
resistance to the presence of outliers.  
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2 Classical estimators 

2.1 Arithmetic mean 

Value x  
.

1

1
∑
=

=
m

i

ix
m

x  

Standard uncertainty )(xu  ),(
1

)( 22
xs

m
xu =  

where s(x) is the standard deviation of the measured values 
x1, …, xm, given by 

∑
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−
−

=
m

i

i xx
m

xs
1

22 .)(
1

1
)(  

Covariance )cov( x,xi  







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=
.otherwise,0

,,...,1,)(
1

),cov(
2

mixs
mxxi   

DoE uncertainty component: U(di) = ku(di), 

where 









+

=






 −
=

.otherwise,)()(

,...,,1,)(
1

1
)(

22

2
2

xuxu

mixs
mdu

i

i  

Breakdown point Zero. 

Efficiency One (for identically equal and reliable uncertainties u(xi), 
i = 1, …, m). 

Special cases Where the u(xi) are considered to be reliably determined and an 
additional random effect increases the dispersion of values xi, 
so that s2(x) is greater than 

∑
=

m

i

ixu
m 1

2
2

:)(
1

 

)(
1

),cov( 2
ii xu

m
xx =  

and 

.)()(
2

1)( 222
xuxu

m
du ii +








−=  

Software  The arithmetic mean and standard deviation are routinely 
included in spread sheets and statistical software.  

Additional remarks  The arithmetic mean is not a minimum-variance estimator 
unless all u(xi) are identical or an additional random term 
dominates the dispersion so that s2(x) is very much greater than 

∑
=

m

i

ixu
m 1

2
2

).(
1
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2.2 Uncertainty-weighted mean 

Note: This is also referred to as the ‘Graybill-Deal’ estimator. 

Value ux  
,

1
∑
=

=
m

i

iiu xwx  

where  

∑
=

=

mj

j

i
i

xu

xu
w

,1

2

2

)(1

)(1
 

 

Standard uncertainty )( uxu   

a) Uncorrected for observed 
dispersion .

)(

1

)(

1

1
22 ∑

=

=
m

i iu xuxu
 

b) Corrected for observed 
dispersion ,)(

1
)( 2

2
obs2

corr uu xu
m

xu
−

=
χ

 

where   

.
)(

)(

1
2

2
2
obs ∑

=

−
=

m

i i

ui

xu

xx
χ  

Covariance )cov( x,xi  



 =

=
.otherwise,0

,...,1,)(
  ),cov(

2 mixuw
xx ii

i   

Uncertainty component of degree 
of equivalence: 

U(di) = ku(di), 

where 

i) Result included in calculation 
of x  

 

a) Uncorrected for observed 
dispersion 

),()()( 222
uii xuxudu −=  

b) Corrected for observed 
dispersion 

).()2(1)()( 22
corr

2
corr iiui xuwxudu −+=  

 
 (see Additional remark ii) below). 

ii) Result not included in 
calculation of x  

)()()( 222 xuxudu ii +=  

or 

),()( 2
corr

2 xuxu i +  

as appropriate. 

Breakdown point Zero 

Efficiency One (with reliably reported uncertainties with large degrees of 
freedom) 

Special cases Over-dispersion requires a scale correction to the reported 
uncertainties; see above.  
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Software  Weighted means are implemented in some statistical software. 
General-purpose linear modelling software usually implements 
weighting, and will return the weighted mean if instructed to fit an 
intercept-only regression model; the standard error will usually be 
corrected for dispersion by default.  

Additional remarks i) The uncertainty associated with the uncertainty-weighted 
mean should normally be corrected for observed dispersion 
where that dispersion is greater than can be accounted for 
by the reported standard uncertainties. 

ii) The correction given for observed dispersion is equivalent 
to an assumption that excess variance affects each 
laboratory to an extent proportional to its reported 
uncertainty. This circumstance is unlikely in practice, and 
should consequently be regarded as an approximation. 

iii) The calculation for ucorr(di) assumes that )(corr uxu  is greater 

than )( uxu  due to excess variance arising from effects 
outside the control of the laboratories.  

iv) The uncertainty-weighted mean described above is often 
referred to as simply ‘the weighted mean’.  

v) Zhang [1] recommends modified estimates and associated 
uncertainty which are preferred where any reported 
uncertainties are associated with small degrees of freedom.  

 

 

2.3 Median 

Value med(x) 








+

= +
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,even,)''(
2

1

)med(
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12/2/

mx
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where x'1, …, x'm denote the participant values arranged in 
increasing order (or if there are ties in non-decreasing order).  

 Standard uncertainty ))(med( xu  
,ˆ

2
))(med( 22 σ

π
m

xu =  

where σ̂  is a robust estimate of standard deviation, usually based 
on the median absolute deviation mad(x) multiplied by 1.483. 
(This corrected estimate is sometimes called MADE.) 

Covariance ))med(cov( x,xi  



 =

=
.otherwise,0

,...,,1,ˆ
))med(,cov(

2 mim
xxi

σ
  

Uncertainty component of degree 
of equivalence: 

U(di) = ku(di), 

where 

i) Result included in 
calculation of med(x) .ˆ

2

4
1)( 22 σ

π







 −
+=

m
du i  

ii) Result not included in 
calculation of med(x) 

.))(med()()( 222 xuxudu ii +=  
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Breakdown point 1/2.  

Efficiency 0.637. 

Special cases Where the u(xi) are considered to be reliably determined and an 
additional random effect increases the dispersion of values xi,  

)(
1

))med(,cov( 2
ii xu

m
xx =  

and 

.))(med()(
2

1)( 222
xuxu

m
du ii +








−=  

Software The median is implemented routinely in spreadsheets and 
statistical software. MADE is implemented in most statistical 
software. In the free open-source package R [2] MADE is 
implemented as mad() and in the AMC Excel add-in 
Robstat.xla [3] as MADE(). 

Additional remarks i) The median takes no account of the reported laboratory 
uncertainties. 

ii) MADE is inefficient and is negatively biased for small m. At 
m = 5, MADE

2 underestimates σ2 by approximately 10 %, 
which may be acceptable, but at m = 4, MADE

2 
underestimates σ2 by approximately 30 %. MADE is 
therefore not recommended for use with m < 5.  
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3 Additional-variance estimators 

3.1 Overview 

These estimators arise from the assumption of a random between-laboratory effect in addition to the 
effects accounted for by the laboratory uncertainties. They calculate an additional variance component to 
model over-dispersion in addition to the reported standard uncertainties. They are most appropriate when 
an effect such as test material inhomogeneity or instability unexpectedly affects all laboratories in a 
similar manner. They are also appropriate when there is evidence of appreciable inconsistency and where 
robust methods are not considered appropriate. Note that in the summaries below, it is assumed that the 
excess variance arises from an effect such as material inhomogeneity which is outside the control of the 
participants and is therefore properly included in the uncertainty of any calculated degrees of 
equivalence.  

3.2 Mandel-Paule and Vangel-Ruhkin estimators 

This section points to implementations of the Mandel-Paule (M-P) and Vangel-Ruhkin (V-R) estimates 
and presents formulae for calculating u(KCRV) and degree-of-equivalence uncertainties.  

Estimator Recommended software implementation(s) 

Vangel-Ruhkin 

 

Dataplot [4]  

Remarks:  

i) The Vangel-Ruhkin method provides an iterative restricted 
maximum likelihood estimate as the KCRV and the associated 
uncertainty; when software is available for its computation it is 
recommended over the M-P procedure. 

ii) The efficiency is high, but breakdown point zero unless 
supported by outlier rejection 

Mandel-Paule [5] 

 

Dataplot [4]  

Remarks:  

i) An additional free implementation is available in the 
experimental R Packege ‘metRology’ available at 
http://sourceforge.net/projects/metrology/ 

ii) The iterative algorithm converges reasonably fast and can 
consequently be implemented in a spreadsheet. See reference 
[5] for details. 

iii) The efficiency is high, but breakdown point zero 

 

3.3 Uncertainty and DoE calculations 

Both the Mandel-Paule and Vangel-Ruhkin methods effectively estimate an additional component of 
variance and combine this with reported uncertainties, with weights based on the resulting combined 
uncertainties. The following calculations apply to either of these methods where degrees of freedom are 
large and the estimated additional variance component is available. 

Value AVx  
,

1
AV ∑

=

=
m

i

ii xwx  

where  
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( )∑
= +
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and u2(q) is the estimated additional variance from the iterative 
V-R or M-P procedure 

Uncertainty component of degree 
of equivalence: 

U(di) = ku(di), 

where 

Value xi included in calculation )()()()( AV
2222 xuquxudu ii −+=  

Value xi not included in calculation )()()()( AV
2222 xuquxudu ii ++=  

 

3.4 The DerSimonian-Laird procedure 

The DerSimonian-Laird estimator is a non-iterative method that includes a calculated excess variance 
term. It can therefore be implemented reasonably easily in a spreadsheet. It provides very similar results 
to the V-R and Mandel-Paule estimators above and has been suggested (CCQM-11-18) as a preferred 
calculation where calculation simplicity is desired and where an excess-variance estimator is appropriate 
(see above).   

 The method starts with an initial calculation of the Graybill-Deal uncertainty-weighted mean identical to 

ux  in 2.2 and then calculates an estimate of excess variance, denoted by λ below.  
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DerSimonian-Laird mean 
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Uncertainty component of 
degree of equivalence: 

U(di) = ku(di), 

where 

Value xi included in 
calculation 

,DLxxd ii −=       ).()( DL
222 xuudu ii −+= λ

 
Value xi not included in 

calculation 
,DLxxd ii −=       ).()( DL

222 xuudu ii ++= λ  
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Software 

An implementation of the DerSimonian-Laird procedure is provided in 
the R package ‘metRology’ currently available at 
http://sourceforge.net/projects/metrology/ and at 
https://r-forge.r-project.org/projects/metrology/ 
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4 Robust estimators (unweighted) 

4.1 Huber estimate 2 (H15) 

Value H15µ̂  
,

1
ˆ

1
H15 ∑
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m

i

ii xW
W

µ  
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,,
ˆ
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i WW
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σ

 

σ̂  is a robust scale estimate (often MADE or a value H15σ̂  
determined during iteration) and k is a tuning constant, usually 
1.345 or 1.5. For 95 % efficiency, 1.345 is recommended. 

Standard uncertainty ( )H15µ̂u  ( ) ,ˆ
1

ˆ 2
H15H15

2 σµ
e

u =  

where H15σ̂  is the robust estimate of standard deviation 

delivered simultaneously in the iterative estimation of H15µ̂  and 
e is the efficiency (0.95 for k = 1.345). 

Covariance )ˆ,cov( H15µix  
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
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=

=
otherwise,0

,...,,1,ˆ
)ˆ,cov(

2
H15
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mi
W

W

x
i

i
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(see Additional Remarks ii)). 

Uncertainty component of DoE: U(di) = ku(di), 

where 

i) Result included in 
calculation of H15µ̂  

( ) )ˆ,cov(2ˆˆ)( H15H15
22

H15
2 µµσ ii xudu −+=  

(see Additional Remarks ii). 

ii) Result not included in 
estimation of H15µ̂  

).ˆ()()( H15
222 µuxudu ii +=  

Breakdown point 1/2 with prior scale estimate: 0.33 with simultaneous 
determination of H15σ̂  using an absolute deviation basis [6]. 

Efficiency 0.95 for k = 1.345. 

Special cases Where the u(xi) are considered to be reliably determined and an 
additional random effect increases the dispersion of values xi,  

,)()ˆ,cov( 2
H15 iii xuwx =µ  

where  

 ).ˆ,cov(2)ˆ()()( H15H15
222 µµ iii xuxudu −+=   

Software Huber’s estimate is implemented in some statistical software (in 
R as hubers() and rlm() in the MASS package; in S-plus in the 
robust package, also available for R) and in the AMC Excel 
add-in Robstat.xla [3]. 

Additional remarks i) Because the weights depend on the estimate H15µ̂ , 
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Huber’s estimate is, in common with many robust 
estimators, usually calculated by iterative re-weighting. 

ii) Huber’s estimate is typically applied without regard to 
reported uncertainties; the uncertainty for an individual 
value is then implicitly assumed to be equal to the 
estimated standard deviation for the data (usually H15σ̂ ) 
as it would be for the mean and median. The case for 
which the u(xi) are reliably estimated and an additional 
random effect is operating is covered above. 

iii) ISO 13528 suggests a value of  

m2
ˆ H15

π
σ  

for the uncertainty associated with the Huber estimate. This 
value is unnecessarily conservative when the efficiency is 
known (and not equal to π/2). 
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5 Robust estimators (weighted) 

Robust estimators that use prior weights (whether based on reported uncertainties or otherwise) are not 
described in detail here. Rather, software implementations are listed for information. Additional detail is 
under consideration for future releases of this guidance; in particular, the present software 
implementations do not provide ready access to DoE uncertainty components. Additional software is 
currently under development to provide this feature. 

These estimators are appropriate when outliers are likely and reported uncertainties vary substantially for 
good reason.  

Estimator Recommended software implementation(s) 

Huber estimate (H15) (weighted) 

 

R [2], using package MASS[7]. 

The appropriate call is 

summary(rlm(x~1, method=“huber”, weights=1/u^2)). The 
return value includes the estimate and its associated standard 
error, which should be used as the KCRV and associated 
standard uncertainty respectively. 

Remarks: i) Posterior weights wp can be obtained from the 
return value as the component ‘w’. These can be used to 
calculate effective weights wi (above) using wi = wp/u

2(xi). 

ii) The implementation estimates the scale from the data.  

MM- estimate (MM) (weighted) 

 

R [2], using package MASS[7]. 

The appropriate call is 

summary(rlm(x~1, method=“MM”, weights=1/u^2)).  

The return value includes the estimate and its associated 
standard error, which should be used as the KCRV and 
associated standard uncertainty respectively. 

Remarks: i) Posterior weights can be obtained from the return 
value as the component ‘w’. 

ii) The implementation estimates the scale from the data. 
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Appendix 3: Symbols and notation 
The following symbols and notation are used in this guidance document: 

cov(x,y) covariance between x and y. 

di  value component xi – xref  of the degree of equivalence (DoE) for laboratory i (i = 1, …, N) 

k coverage factor  

m number of qualified participants (see section 5)  

n number of participating laboratories  

u(di) standard uncertainty associated with di 

U(di)  uncertainty component of the DoE for laboratory i (i = 1, …, N).  
Note: The Technical Annex to the MRA states that this uncertainty is expressed at 95 % 
confidence.  

u(xi)  standard uncertainty associated with xi (i = 1, …, N)  

u(xref)  standard uncertainty associated with xref 

u
2(x) u(x) expressed as a variance (x can be xi, xref, etc.) 

wi weighting factor applied to xi in the calculation of a KCRV 

xi  value submitted by ith participating laboratory (i = 1, …, n)  

xref  key comparison reference value (KCRV) 

 

 

 


