Report of the CCTF WG on TWSTFT

Dirk Piester

20th Meeting of the CCTF, BIPM, 17-18 September 2015
Two-way satellite time and frequency transfer (TWSTFT) How does it work?

Phase coherent to a local clock pseudo random noise phase-shift keying spread spectrum signals are exchanged between two stations typically in the Ku-band 11 – 14.5 GHz.

Modulation of operational links is typically 1 – 2.5 Mcps, corresponding to occupied transponder bandwidth of about 2 – 4 MHz.
Two-way satellite time and frequency transfer (TWSTFT)
The global metrology network - until December 2014

Not all stations can access to all intercontinental links.
Members

The members of the working group are representatives and especially experts of the participating institutes as well as representatives of prospective participating institutes.

America:
NIST, USNO

Asia:
NICT, NIM, NMIJ, NPLI, NTSC, TL

Europe:
AOS, CH (METAS), IPQ, IT (INRIM), NPL, OCA, OP, PTB, PTF1 (ESA), PTF2 (ESA), ROA, SP, SU (VNIIFTRI), TIM (TimeTech), VSL

Chair:

Secretary:
Zhiheng Jiang
Meetings

Annual Meetings:

21st Meeting, 5th and 6th September 2013, Taipei, Taiwan

22nd Meeting, 15th and 16th September 2014, VNIIFTRI, Mendeleeevo, Russia

23rd Meeting, 7th and 8th September 2015, BIPM, Sèvres, France
Meetings

Participating Stations Meetings at Conferences:

44th PTTI, 26-29 Nov 2012, Reston, Virginia, USA

Joint UFFC, EFTF and PFM, 21-25 Jul 2013, Prague, Czech Republic

45th PTTI, 2-5 Dec 2013, Bellevue (Seattle), WA, USA

28th EFTF, 23-26 Jun 2014, Neuchâtel, Switzerland

ION PTTI 2014, 1-4 Dec 2014, Boston, MA, USA

2015 Joint IEEE IFCS & EFTF, 12-16 Apr 2015, Denver, CO, USA

20th Meeting of the CCTF, BIPM, 17-18 September 2015
New developments in TWSTFT

Fountain clock comparisons:

6 Cs fountain clocks in 4 institutes in Asia and Europe were compared by TWSTFT and GPS CP in May 2013.

Participating institutes:
NIM
NPLI
PTB
VNIIFTRI

Satellite: AM-2
Chiprate: 2.5 Mcps

Duration: 20 days
New developments in TWSTFT

Fountain clock comparisons:

<table>
<thead>
<tr>
<th>Pair of fountains</th>
<th>TWSTFT (1e-15)</th>
<th>GPS CP (1e-15)</th>
<th>U (1e-15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB CSF1-NIM</td>
<td>0.3</td>
<td>-0.1</td>
<td>2.3</td>
</tr>
<tr>
<td>PTB CSF2-NIM</td>
<td>0.5</td>
<td>0.1</td>
<td>2.2</td>
</tr>
<tr>
<td>SU CSF1-NIM</td>
<td>0.2</td>
<td>-1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>SU CSF2-NIM</td>
<td>0.5</td>
<td>-0.8</td>
<td>2.2</td>
</tr>
<tr>
<td>PTB CSF1-SU CSF1</td>
<td>-0.1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>PTB CSF1-SU CSF2</td>
<td>-0.7</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>PTB CSF2-SU CSF1</td>
<td>-0.2</td>
<td>1.0</td>
<td>1.8</td>
</tr>
<tr>
<td>PTB CSF2-SU CSF2</td>
<td>-0.8</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>PTB CSF1-NPLI</td>
<td>1.2</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>PTB CSF2-NPLI</td>
<td>1.1</td>
<td>0.9</td>
<td>2.6</td>
</tr>
<tr>
<td>NIM-NPLI</td>
<td>0.0</td>
<td>0.5</td>
<td>3.3</td>
</tr>
<tr>
<td>SU CSF1-NPLI</td>
<td>1.1</td>
<td>-0.1</td>
<td>3.1</td>
</tr>
<tr>
<td>SU CSF2-NPLI</td>
<td>1.8</td>
<td>0.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>
New developments in TWSTFT

TWSTFT carrier phase:

UTC(NICT)-UTC(PTB) by TWCP

Common-clock at NICT

Application:
First direct intercontinental comparison of optical clocks in 2013
New developments in TWSTFT

Broadband TWSTFT:

An increased chiprate of 20 Mcps decreases measurement noise significantly.

Four European institutes operated a dedicated broadband TWSTFT link to compare primary frequency standards as well as optical clocks.

In a test campaign in October 2014 instabilities < $2 \cdot 10^{-16}$ @ 1 day averaging time was observed. The optical clock comparison took place in June 2015. Data analysis is ongoing.
Data handling and calibration guidelines

For the production of UTC measurement data are provided by the individual participating stations following the ITU Recommendations ITU-R TF.1153-3. It was found necessary to calculate corrections applied to the measurement results with a higher accuracy than considered necessary in previous editions. As the Earth is not perfectly spherical, it is considered as an ellipsoid at first approximation. For a given location, there are a single longitude and two latitudes: the geocentric latitude and the geodetic latitude. The current version ITU-R TF.1153-4 takes proper care of this in the calculation of the Sagnac correction.
Data handling and calibration guidelines

For harmonization of reporting results of TWSTFT calibration campaigns to BIPM guidelines were written and agreed.

They consist of one document describing general considerations of the procedure for calibrations by using a mobile TWSTFT station as well as the calibration of TWSTFT links using transportable GNSS receivers.

In subsequent annexes examples are given for both cases.
Calibration of TWSTFT links

In principle two methods for calibrations

Calibration of time-transfer links

+ any other link (e.g. GPS can be calibrated directly)
+ operational parameters remain constant
- noise of three measurements
Calibration of TWSTFT links

In principle two methods for calibrations

Calibration of time-transfer links

+ any other link (e.g. GPS can be calibrated directly)
+ operational parameters remain constant
- noise of three measurements

Calibration of ground stations

+ noise of two measurements
+ complete network can be calibrated easily
- Operational parameters have to be changed

20th Meeting of the CCTF, BIPM, 17-18 September 2015
July 2015: Calibration of the link UTC(USNO)-UTC(PTB) by a portable X-band station

with R. Bumgarner, J. Wright, J. Hirschauer, A. McKinley

The established X-band TWSTFT link (red and blue) was operated in parallel to the operational Ku-band TWSTFT link (black) for nearly four days.

<table>
<thead>
<tr>
<th></th>
<th>correction (ns)</th>
<th>u_A (ns)</th>
<th>$u_{B,1}$ (ns)</th>
<th>$u_{B,2}$ (ns)</th>
<th>$u_{B,3}$ (ns)</th>
<th>U (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-band - Ku-band</td>
<td>0.466</td>
<td>0.233</td>
<td>0.522</td>
<td>0.5</td>
<td>0.1</td>
<td>0.766</td>
</tr>
</tbody>
</table>
Calibration of TWSTFT links

Calibration campaigns during the last three years:

2012:
VNIIFTRI mobile station (+GPS, +H-maser): VNIIFTRI, PTB
TimeTech mobile station: METAS, LNE-SYRTE, PTB, TIM

2013:
TimeTech mobile station: AOS, ESTEC, VSL, TIM
USNO fly away station: USNO, PTB

2014:
TimeTech mobile station: INRIM, LNE-SYRTE, PTB, PTF1, PTF2, ROA, SP
USNO fly away station: USNO, PTB
BIPM GNSS receiver: NICT, NIM, TL, OP, PTB, ROA

2015:
USNO fly away station: USNO, PTB
BIPM GNSS receiver: NIST, USNO, OP, PTB
Calibration of TWSTFT links

UTC TWSTFT links calibrated in 2013-2014

3 by GPS: \(u_B \leq 0.8\text{~to}1.5 \text{ ns} \)

3 by TW: \(u_B \leq 0.6\text{~to}0.8 \text{ ns} \)

6 by GPS + TW: \(u_B \leq 0.6\text{~to}0.8 \text{ ns} \)

20th Meeting of the CCTF, BIPM, 17-18 September 2015
Two-way satellite time and frequency transfer (TWSTFT)
The global metrology network – 2015

Not all stations can access to all intercontinental links.

20th Meeting of the CCTF, BIPM, 17-18 September 2015
Thanks for your attention!

Благодаря за вниманието!

感谢您的关注

Děkuji vám za pozornost

Dank voor uw aandacht!

Merci pour votre attention!

Σας ευχαριστώ για την προσοχή σας

Grazie per l’attenzione!

ご清聴ありがとうございます

감사합니다

Ačiū už dėmesį

Dziękuję za uwagę!

Obrigado pela vossa atenção

Спасибо за внимание

¡Gracias por su atención!

Tack för er uppmärksamhet!

உடன்பெண்மைக்கு நன்றி!

Danke für Ihre Aufmerksamkeit!