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An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic
frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10−16. To measure its absolute
frequency with respect to NIM’s cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is
transferred to the Sr laboratory through a 50-km-long fiber. A fiber optical frequency comb, phase-locked to the
reference frequency of this H-maser, is used for the optical frequency measurement. The absolute frequency of
this Sr clock is measured to be 429228004229873.7(1.4) Hz.
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Optical clocks have shown the ability to be ex-
tremely precise. Some of these clocks have reported
an accuracy at the 18th digit,[1−4] which could poten-
tially be used to explore the possible time variation
of some fundamental physical constants such as the
fine-structure constant (𝛼).[5] Although the accuracy
of optical clocks has surpassed the best cesium foun-
tain clocks, their absolute frequency still needs to be
traced to the Cs primary frequency standard under
the current international system of units (SI). To know
the absolute frequency of an optical clock more pre-
cisely, it is always better to have more laboratories to
carry out the frequency measurements independently.
Here we present the systematic uncertainty evaluation
and frequency measurement of the optical lattice clock
based on 87Sr at NIM.

We will give the details of the evaluation and fre-
quency measurement, more information of the clock
and related experiments can be found in Refs. [6–
9]. The simplified level scheme of 87Sr is shown in
Fig. 1(a). The first-stage magneto-optical trap (MOT)
of 87Sr is operated on the 1𝑆0–1𝑃1 transition at 461 nm
with a natural linewidth of 32 MHz.[6] Two re-pumping
lasers at 679 nm and 707 nm are used to improve
the loading efficiency, respectively. The second-stage
MOT cools the atoms down to as low as 3µK uti-
lizing the 1𝑆0–3𝑃1 transition at 689 nm with a natu-
ral linewidth of 7.5 kHz.[7] During the cooling process,
the 813 nm lattice laser is overlapped with the atom
cloud all the time. The lattice laser is a commer-
cial Ti:sapphire laser (Coherent MBR110 pumped by
a Verdi-V10). The 1D optical lattice is horizontally
oriented.[7] The lattice beam waist is ∼42µm and the
trap depth is 29µK. The 698 nm laser is locked to a
high finesse reference cavity with the PDH method to

narrow its linewidth.[8] An AOM driven by a direct-
digital synthesizer (DDS) is used to compensate for
the drift of the cavity.
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Fig. 1. The schematic diagram of the experiment. (a)
Simplified level scheme of 87Sr. (b) The clock transi-
tion locking method. Two servos lock the laser frequency
time-multiplexed to the two transitions (𝑚F=+9/2 and
𝑚F=−9/2) by using the differential transition probabili-
ties (𝑝1–𝑝2 or 𝑝′1–𝑝

′
2) as the error signal. The center fre-

quency of these two servos gives the frequency of the Sr
clock.

To find the 1𝑆0–3𝑃0 clock transition, the clock laser
frequency is scanned over a relative large range. The
Rabi transition probability is logged versus the laser
frequency. When the scanning range is more than
200 kHz, the sideband-resolved spectra are obtained,
as shown in Fig. 2. The fitting of the sidebands shows
that the temperature of the lattice trapped atoms is
∼4µK in the longitudinal axis and ∼10µK in the ra-
dial direction.[10]

After the second stage laser cooling, the atoms
are optically pumped to |𝐹 = 9/2, 𝑚F = +9/2⟩
and |𝐹 = 9/2, 𝑚

F
= −9/2⟩ stretched states alter-

natively by using either 𝜎+ or 𝜎− polarization of the
689 nm laser at 1𝑆0 (𝐹=9/2)–3𝑃1 (𝐹=9/2) transition
frequency and spin-polarized.[9] The 698 nm probe
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laser is co-aligned with the lattice laser and their
polarization is aligned with the bias magnetic field
(∼56µT) to resolve the two stretched states. When
atoms are optically pumped to a single spin sub-state,
the Rabi transition linewidth is as narrow as 3 Hz for a
698-nm probe pulse width of 320ms, as shown in the
inset of Fig. 2. The actual lock utilizes 80 ms pulse
width (the Fourier-limited Rabi linewidth is ∼10 Hz)
to make it more reliable.
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Fig. 2. Sideband resolved spectra of the 1𝑆0–3𝑃0 transi-
tion. The red line is the fitting of the experimental data,
from which the atoms’ temperature is derived. The inset
is a high resolution spectrum (full width at half maximum
∼3Hz) of a single Zeeman component of the 1𝑆0–3𝑃0 tran-
sition with a Rabi excitation pulse width of 320ms.

Table 1. Frequency corrections and uncertainties of the stron-
tium optical lattice clock and of the absolute frequency mea-
surement in units of fractional frequency (10−16).

Contributor Correction Uncertainty
(10−16) (10−16)

Lattice Stark 17.2 2.2
BBR Stark 49.7 0.7

2nd order Zeeman 1.8 0.1
Collision 12.0 0.3

Clock laser Stark 0 0.1
Line pulling 0 0.1

Sr total 80.7 2.3
Statistical 13

Gravitational −50.6 1.1
Fountain calibration 31

Fiber transfer 0 <1
Measurement total 34

Figure 1(b) shows the locking schematic diagram
of the clock laser to the atomic transition. A digital
servo modulates the clock laser frequency alternatively
to the two shoulders of a transition. The difference of
the transition probabilities gives the frequency error
of the clock laser with respect to the atomic transi-
tion. Two independent digital servos are used to lock
the clock laser time-multiplexed to the two stretched
state transitions. After 4 clock cycles, the average of
the two digital lock frequencies gives the center fre-
quency of the Sr clock transition.

Since we have only one optical clock, the sys-
tematic shifts were evaluated by the self-comparison
approach.[11,12] Two independent atomic servos that
share the same physical apparatus are compared in a

time-interleaved way. Only one parameter is modu-
lated in a period of ∼4 s, which contains 4 clock cy-
cles. Within this 4 s period, the clock laser is stable
enough as the reference to compare the two atomic
locked frequencies. The differential frequency between
these two servos reflects the frequency shift induced
by this modulated parameter. With this method, the
systematic shifts were evaluated individually.

The top part of Table 1 lists the important sys-
tematic shifts of NIM’s Sr optical lattice clock. The
largest correction comes from the black-body radia-
tion (BBR) induced shift. The BBR shift is[13]

∆𝜈
BBR

= 𝜈static

(︁ 𝑇

𝑇0

)︁4

+ 𝜈dyn

(︁ 𝑇

𝑇0

)︁6

, (1)

where 𝑇 is the ambient temperature seen by the
atoms, 𝑇0=300 K, 𝜈static is the BBR static coefficient,
and 𝜈dyn is the BBR dynamic coefficient. The higher
order terms are negligible at the current uncertainty
level. Here we cite 𝜈static = −2.13023(6) Hz[14] and
𝜈dyn = −0.1487(7) Hz.[3] The ambient temperature
is recorded continuously during the experiments by
three thin film PT100 sensing resistors. The ambient
temperature 22(1)∘C gives the BBR shift correction
49.7(0.7)×10−16.

The second dominating frequency shift and uncer-
tainty come from the lattice ac Stark shift. Most
reported optical lattice clocks use the special lattice
wavelength called ‘magic wavelength’, where the first
order ac Stark shift of the ground state and the excited
state cancel each other.[15] To determine the magic
wavelength, the frequency of the lattice laser needs
to be changed in a wide range. In our case this is
achieved by locking the lattice laser to different modes
of its reference cavity. At one lattice frequency, the
lattice trap depth is modulated between 175𝐸r and
109𝐸r alternatively,[16] where 𝐸r is the lattice pho-
ton recoil energy. Due to the fact that the modu-
lation of the lattice depth also changes the atomic
cloud density, a correction according to the atomic
number and the collision related coefficient (described
later) is necessary. The dependence of the shift at
𝐼0 (𝐼0=162𝐸r) to the lattice frequency is plotted in
Fig. 3(a). The zero-shift frequency is determined to be
368554672(44)MHz. During the absolute frequency
measurements, the lattice laser frequency is locked to
the nearest cavity mode, which is ∼370(3) MHz away
from the zero shift frequency and measured by the op-
tical frequency comb. The lattice trap depth during
the measurements is 176(5)𝐸r. This gives the correc-
tion of 17.2(2.2)×10−16.

According to the Pauli exclusion principle, re-
searchers usually believe that the collision between
ultra cold fermionic 87Sr atoms would be completely
suppressed. However, in practice the collisions could
occur due to the inhomogeneous excitation.[11,17,18]
The collisional shift is measured with the self-
comparison method by alternating the atomic den-
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sity. The density of the atoms trapped in the lat-
tice is changed by applying different loading times
from 200 ms to 800ms in the first-stage laser cooling.
The stability of a typical differential measurement is
shown (red squares) in Fig. 4(a). Due to the higher
atom number (∼104) and relatively high atom tem-
perature, we observed a larger density-dependent fre-
quency shift. The calibration coefficient per volt of the
photo-multiplier tube output is measured and plotted
in Fig. 3(b). The atom number is recorded at every
clock cycle while the clock is running, and this allows
the point-to-point corrections of the density shifts to
be performed. The correction for running the clock at
high density is 12.0(0.3)×10−16.

(a)

(b)

15

10

5

0

-5

-10

-15

-0.1

-0.2

-0.3

-0.4

-0.5

5

368550 368552 368554 368556 368558 368560

10 15 20 25

F
re

q
u
e
n
c
y
 s

h
if
t 

(H
z
/
I
0
)

F
re

q
u
e
n
c
y
 s

h
if
t 

(H
z
/
V

)

Measurement number

Lattice frequency (GHz)

Fig. 3. (a) The dependence of the lattice ac stark shift
at trap depth 𝐼0 (𝐼0=162𝐸r, where 𝐸r is the recoil en-
ergy of the lattice photon) with respect to the lattice fre-
quency. (b) The dependence of the collisional shift to the
atom number. The atom number is represented by the
fluorescence induced output voltage of the photomultiplier
tube. The error bars show the statistical uncertainties of
the measurements. The red solid line shows the weighted
mean of the measurements and the dashed lines show the
standard deviation of the combined statistical uncertainty.

The clock laser is alternatively locked to the
𝑚

F
=+9/2 and 𝑚

F
=−9/2 components of the clock

transition at a small bias magnetic field. The average
frequency of these two locks cancels the first order Zee-
man shift, and the frequency difference between these
two locks gives the real time estimation of the mag-
netic field at the atomic cloud position, which is used
to evaluate the second order Zeeman shift. The coeffi-
cients of the first and second order Zeeman shifts have
already been measured by some groups and have good
agreements.[19−21] The frequency difference between
these two locks is 556 Hz in our system and the second
order Zeeman shift is estimated to be 1.8(0.1)×10−16

with reference to the coefficient in Ref. [2].
The clock laser power is several nW and the Stark

shift caused by the clock laser is very small (less

than 0.1×10−16) with reference to the coefficient in
Ref. [22]. After the spin-polarization, the excita-
tion of the atoms left in the other 𝑚

F
states may

cause the line shape asymmetric. With the transition
linewidth of 10Hz and the split between two adjacent
𝑚F states of 62 Hz, less than 10% of atoms remain in
the other states after spin-polarization contribute less
than 0.1×10−16 uncertainty by line pulling effect. The
dc Stark shift may occur when electric charges trapped
on the MOT chamber fused silica viewports.[23] The
charges can be removed effectively by shining UV light
on the viewports.[23,24] A UV lamp is used to treat
the viewports, and there is no significant shift found.
Other effects, contributing very small shifts and un-
certainties considering our present total uncertainty
level, are omitted. The total systematic uncertainty
of the Sr clock is 2.3×10−16.
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Fig. 4. (a) The measurement stability. The red solid
squares show the Allan deviation (ADEV) of a typical
self-comparison measurement of the collisional shift. The
ADEV fits to (red line) 6.6× 10−15/

√
𝜏 . The blue circles

show the ADEV of a typical absolute frequency measure-
ment which fits to (blue line) 3.0 × 10−13/

√
𝜏 . (b) The

absolute frequency measurement results. The error bars
show the statistical uncertainties of the measurements.
The red solid line shows the weighted mean of the measure-
ments and the dashed lines show the standard deviation
of the combined statistical uncertainty.

The system setup for the absolute frequency mea-
surement is shown in Fig. 5. The Sr lattice clock is
located at NIM’s Hepingli Campus, which is ∼50 km
away from the NIM5 fountain and the H-maser in
Changping Campus. A fiber link is established be-
tween the fountain lab and the Sr lab. Active FNC
is applied to transfer the reference H-maser frequency
to the Sr lab.[25] The FNC sender is referenced to the
100 MHz output from the H-maser, and up-converts
the frequency to 9.2 GHz to modulate the 1.5µm laser
transferred in the fiber. The FNC receiver down-
converts the transferred frequency to 10MHz. This
signal is fed through a distribution amplifier to refer-
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ence all the signal generators and frequency counters
involved in the measurement. The Sr clock frequency
is

𝑓Sr = 𝑁 · 𝑓rep + 𝑓0 + 𝑓b − 𝑓AOM3 + 𝑓AOM1 + 𝑓AOM2,
(2)

where 𝑓rep is the comb repetition frequency, 𝑓0 is the
comb offset frequency, 𝑓b is the measured beat fre-
quency between the atomic stabilized clock laser and
the 𝑁th comb tooth, 𝑓AOM1 and 𝑓AOM3 are used to
steer the clock laser frequency according to the atomic
lock, and 𝑓AOM2 is 79 MHz of the FNC, which sup-
presses the noises in the fiber delivering the clock laser
to the MOT. All the frequencies on the right side of
Eq. (2) are referenced to the H-maser, which is cali-
brated by NIM5 throughout the measurement, thus
the frequency of the Sr clock is traced to NIM5.

H-maser

50 km fiber

with FNC

10 MHz ref.

AOM1

110 MHz

Locking

DDS

Locking 
system

698 nm 

Clock laser
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Frequency
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Distribution

amplifier

fr

fb
f0

87Sr

Fig. 5. The system setup for the absolute frequency mea-
surement. AOM: acousto-optic modulator. FNC: fiber
noise cancelation.

A total of 49113 s effective measurement data was
acquired with 5 measurements, as shown in Fig. 4(b).
The error bars in Fig. 4(b) show the statistical un-
certainty of the measurements. According to Ein-
stein’s general theory of relativity, the gravitational
shift needs to be considered when the clocks experi-
ence different gravitational potentials. The altitude
of the atomic cloud measured by the large-scale di-
mensional metrology laboratory of NIM is 46.4(1.0)m,
which is traced to a GPS receiver located on the roof of
the lab building, and gives the shift 50.6(1.1)×10−16.
The Allan deviation of one of the measurements is
shown (blue circles) in Fig. 4(a). The statistical un-
certainty of the total measurements is 1.3×10−15. As
listed in Table 1, the calibration uncertainty of NIM5
during the course of the measurements is 3.1×10−15.

The uncertainty introduced by the fiber transfer sys-
tem is less than 1×10−16.[25] The absolute frequency
of the Sr clock is 429228004229873.7(1.4) Hz. This re-
sult is consistent with the measurements carried out
by other groups.[26−31]

In conclusion, we have built an optical lattice clock
based on 87Sr. Its systematic uncertainty is evaluated
to be 2.3×10−16, which is mostly limited by the knowl-
edge of the magic wavelength. The absolute frequency
of the clock is traced to the NIM5 cesium fountain with
an uncertainty of 3.4×10−15, which is dominated by
the uncertainty of the NIM5 fountain within the mea-
surement periods of time limited by the Sr clock’s run-
ning capability.

We would like to thank Zhang A. M., Gao Y. and
Liang K. for fruitful discussions on the absolute fre-
quency measurement, and Chen W. L. for the fiber
transfer of the reference frequency.
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