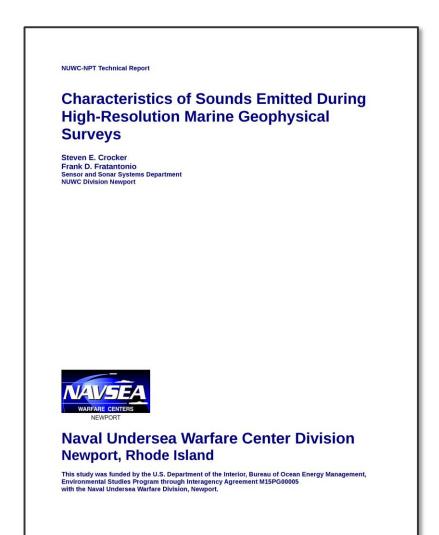
CAUV/15-44

10th Meeting of the Consultative Committee for Acoustics, Ultrasound and Vibration (CCAUV)

Characteristics of Sounds Emitted During High Resolution Marine Geophysical Surveys


Dr. Steven Crocker Underwater Sound Reference Division, USA steven.crocker@navy.mil

Released to the public. Distribution is unlimited.

Acknowledgments

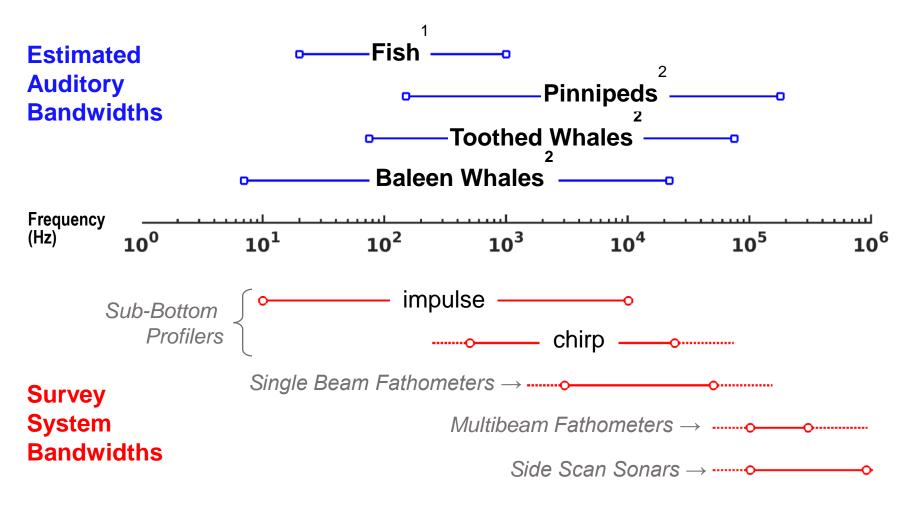
This study was funded by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program through Interagency Agreement M15PG0005 with the Naval Undersea Warfare Center Division Newport.

The United States Geological Survey (USGS) was essential in this study with their contribution of equipment, manpower and technical expertise during the testing.

Background

Marine Mammal Protection Act

The MMPA prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high seas, and the importation of marine mammals and marine mammal products into the U.S.


Definitions

Take: To harass, hunt, capture, or kill, or attempt to harass, hunt, capture, or kill any marine mammal.

Harass: Any act of pursuit, torment, or annoyance which - (i) has the potential to injure a marine mammal or marine mammal stock in the wild [Level A]; or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering [Level B].

Sources: Marine Mammal Protection Act (MMPA) Sec. 3 (18); http://www.nmfs.noaa.gov/pr/laws/mmpa/; http://www.boem.gov/BOEM-Science-Note-March-2015/

Acoustic Spectrum Usage

1) Hastings and Popper, 2005

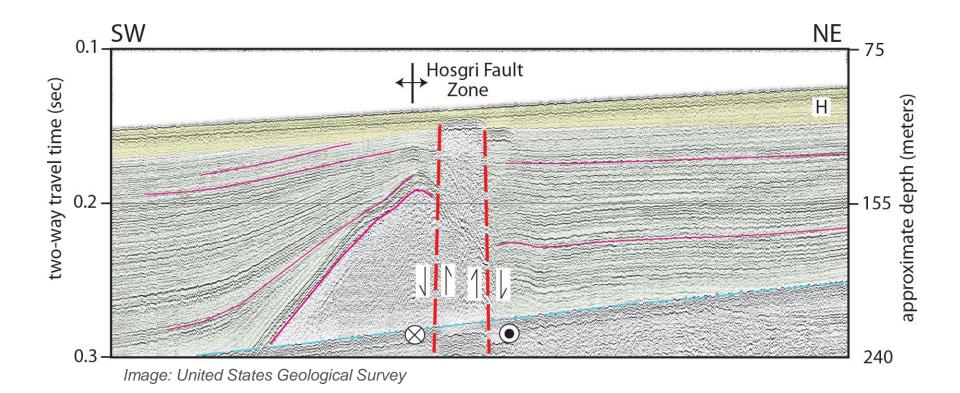
2) Southhall et. al., 2007

Study Objective

Given the scientific questions and uncertainty about the potential impact of noise in the marine environment, a number of regulatory requirements and precautionary mitigation strategies are being applied to lower energy geophysical surveys.

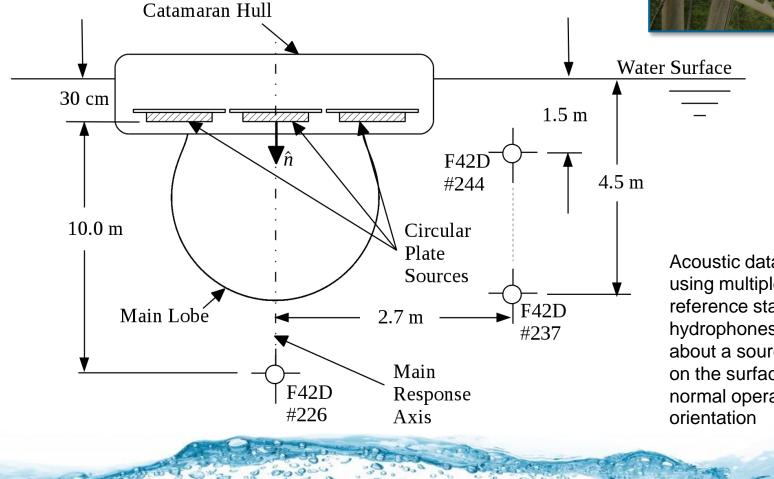
The U.S. Bureau of Ocean Energy Management is working to ensure that environmental mitigation requirements are scientifically supported, cost effective, operationally feasible and impact reducing. The Bureau is advancing this objective by characterizing the acoustic energy radiated by geophysical survey systems used in shallow bodies of water under U.S. jurisdiction.

The objective of this study is to characterize the acoustic fields radiated by marine geophysical survey systems as a critical first step to understanding the potential impacts to marine ecosystems.


Geophysical Survey Systems

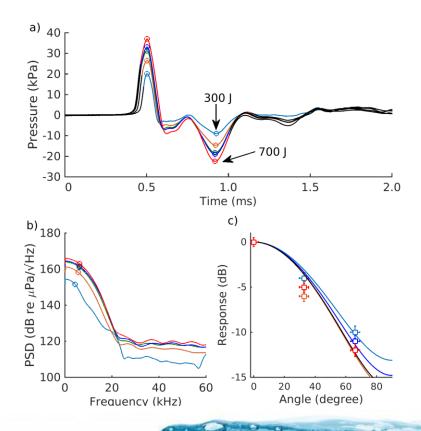
Seafl	oor Mapping	Sub-Bottom Profiling			
System	Description	System	Signal		
Echotrac CV100	Single Beam Fathometer	AA* 200	Impulse		
Reson 7111	Multibeam Fathometer	AA [*] 251	Impulse		
Reson T20-P	Multibeam Fathometer	AA [*] S-Boom	Impulse		
Sea Swath Plus	Interferometer	FSI ^{**} Bubble Pulse	Impulse		
Klien 3000	Side Scan Sonar	EdgeTech 424	FM Chirp		
Klien 3900	Side Scan Sonar	EdgeTech 512i	FM Chirp		
EdgeTech 4200	Side Scan Sonar	Knudsen 3202	FM Chirp		
*Applied Acoustics, L **Falmouth Scientific,					

Reported Parameters

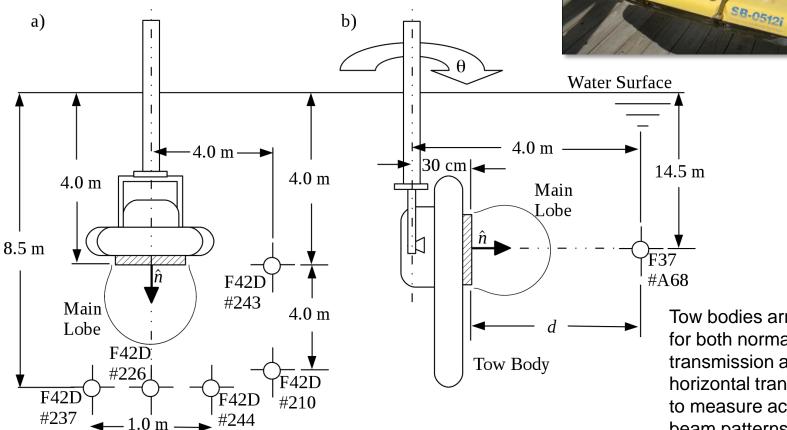

Source level (rms 90%)	dB re 1µPa@1m
Peak acoustic pressure	dB re 1µPa@1m
Peak-to-peak acoustic pressure	dB re 1µPa@1m
Sound exposure level	dB re 1µPa ² s@1m
Spectrum level	dB re 1µPa²/Hz@1m
Effective (90%) pulse width	seconds
Half-power (3 dB) bandwidth	Hz
Beam patterns	dB
Half-power (3 dB) beam width	degree
10 dB beam width	degree
Principal side lobe level	dB
Principal side lobe location	degree

Sub-Bottom Profiling Systems

Applied Acoustic S-Boom Sub-Bottom Profiler



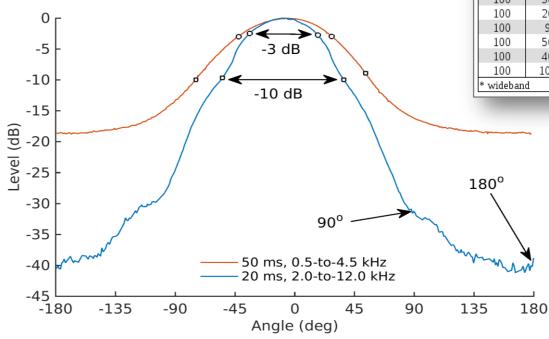
Acoustic data collected using multiple calibrated reference standard hydrophones distributed about a source deployed on the surface in its normal operating


Applied Acoustic S-Boom Sub-Bottom Profiler

Signal characteristics measured for a wide variety of user selected operating modes

Source Level (dB re 1µPa@1m)				Bandwidth	Beam Pattern		
Pk Pk	RMS	SEL	(ms)	3 dB (kHz)	ka	MRA Width 3 dB (deg)	
2 199	189	157	0.6	7.5	1.2	N/A	
2 199	187	157	1.1	4.4	2.1	98	
9 196	185	155	1.2	3.3	2.6	78	
3 200	190	158	0.6	9.1	3.0	66	
3 200	188	157	0.8	5.4	3.1	64	
3 201	. 191	159	0.7	5.7	0.6	N/A	
4 201	. 190	160	1.0	4.4	2.1	98	
2 199	187	158	1.2	3.5	2.5	82	
5 202	192	160	0.7	6.4	2.9	67	
5 202	189	160	1.3	4.1	2.8	70	
7 203	195	164	0.8	4.5	0.0	N/A	
8 204	195	164	0.9	4.6	2.1	98	
6 202	193	163	0.9	4.0	2.1	98	
9 205	196	165	0.8	4.8	2.5	80	
9 205	194	165	1.1	4.1	2.7	75	
9 206	194	165	1.1	4.3	3.1	62	
2 208	200	168	0.6	6.1	2.7	75	
.2 208	199	168	0.8	5.0	2.9	68	
2 208	197	168	1.2	4.0	2.6	78	
2 208	200	168	0.7	5.6	3.2	60	
3 209	202	170	0.7	5.5	2.6	76	
4 209	201	170	0.8	4.8	2.8	71	
3 209	199	170	1.2	3.8	2.5	80	
4 210	202	170	0.6	6.1	3.2	61	
4 209	202	170	0.6	5.7	2.5	81	
4 210	201	171	0.9	4.6	2.8	71	
4 209	200	170	1.2	3.6	2.5	80	
.4 210	203	171	0.6	6.3	3.2	60	
6 211	. 205	172	0.6	6.2	3.2	61	
.4 .6	210 211	210 203 211 205	210203171211205172	2102031710.62112051720.6	210 203 171 0.6 6.3	210 203 171 0.6 6.3 3.2 211 205 172 0.6 6.2 3.2	

EdgeTech 512i Sub-Bottom Profiler


Tow bodies arranged for both normal (vertical) transmission and for horizontal transmission to measure acoustic beam patterns with an angular resolution on the order of one degree.

LF

HF

EdgeTech 512i Sub-Bottom Profiler

Beam patterns measured, with summaries tabulated for user selected operating modes

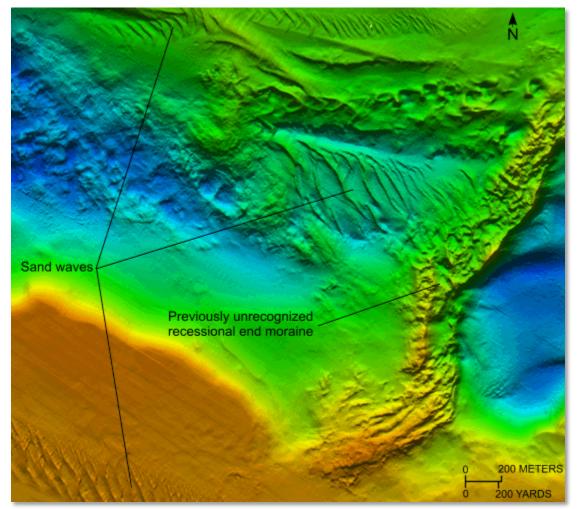
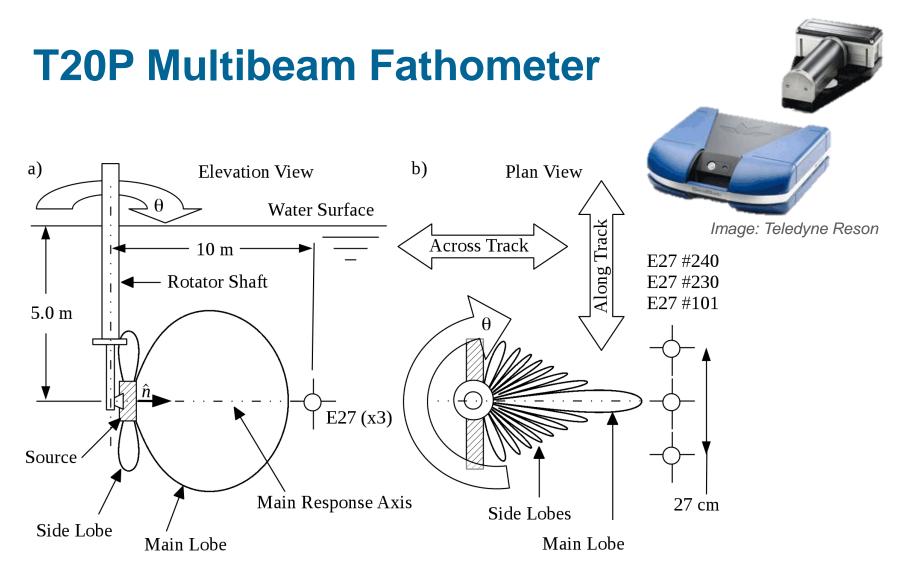
Source Settings			Beam Widt	h (degrees)	Attenuation (dB)			
Power (%)	Pulse Width (ms)	Bandwidth (kHz)	-3 dB	-10 dB	90°	180°		
100	20	2.0-to-12.0	51	91	31	40		
100	40	1.0-to-6.0	66	112	27	31		
100	5	1.0-to-10.0	65	110	29	32		
100	20	0.7-to-12.0	60	99	26	29		
100	5	0.5-to-8.0	70	108	25	26		
100	30	0.5-to-7.2	71	112	24	26		
100	20	0.5-to-7.0*	71	127	20	26		
100	9	0.5-to-6.0	65	108	23	25		
100	50	0.5-to-4.5	70	128	16	19		
100	40	0.4-to-4.0*	80	153	15	20		
100	100	0.5-to-2.7	74	150	16	22		
* wideband								

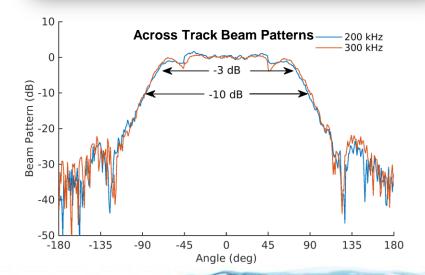
Bottom Mapping Systems

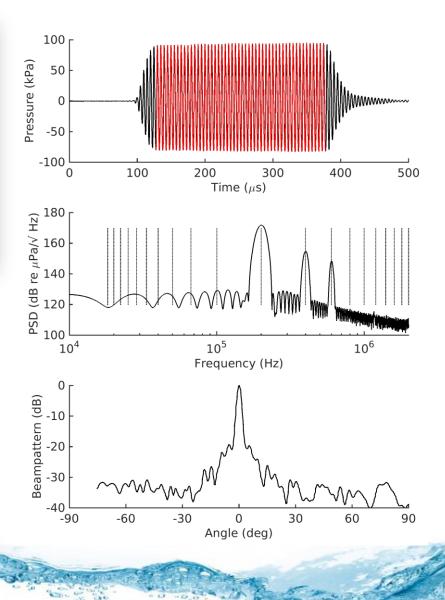
Multibeam sonar

Sidescan sonar

Multibeam Sonar


Image: United States Geological Survey



Geometry for measurement of along track beam patterns using closely spaced calibrated reference standards to improve resolution of narrow beam widths.

T20P Multibeam Fathometer

Source Settings			(d	Effective			
Freq. (kHz)	Source Level (dB)	P ulse Width (µs)	Pk-Pk	Pulse Width (µs)			
200	220	300	226	221	218	182	250
200	205	300	213	208	204	168	248
200	190	300	193	187	184	150	254
300	220	300	232	227	221	185	253
300	205	300	215	210	205	169	252
300	190	300	197	191	185	149	254
400	220	300	229	223	220	184	254
400	205	300	214	208	204	168	257
400	190	300	197	191	185	150	269

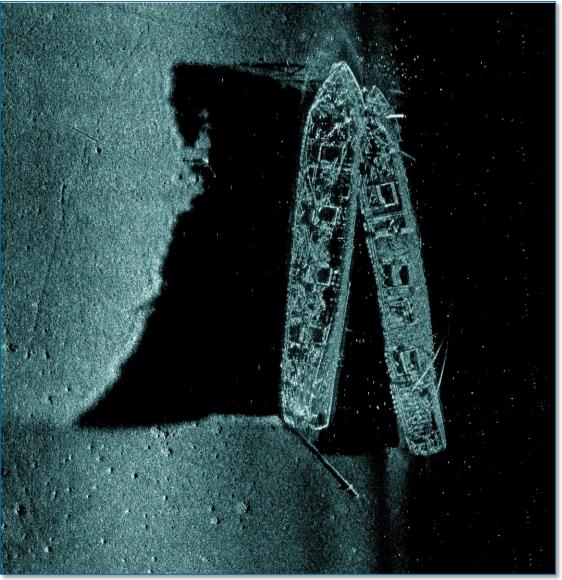
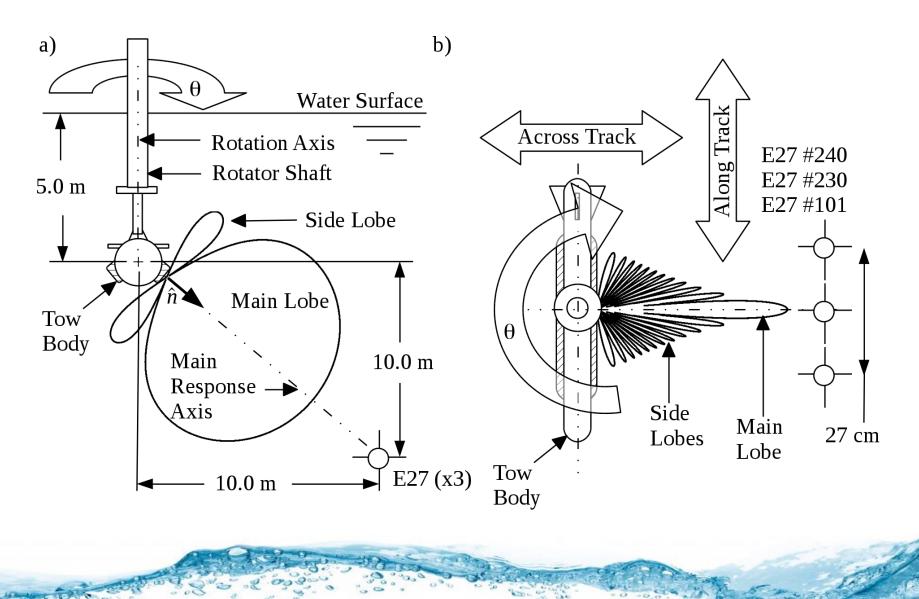
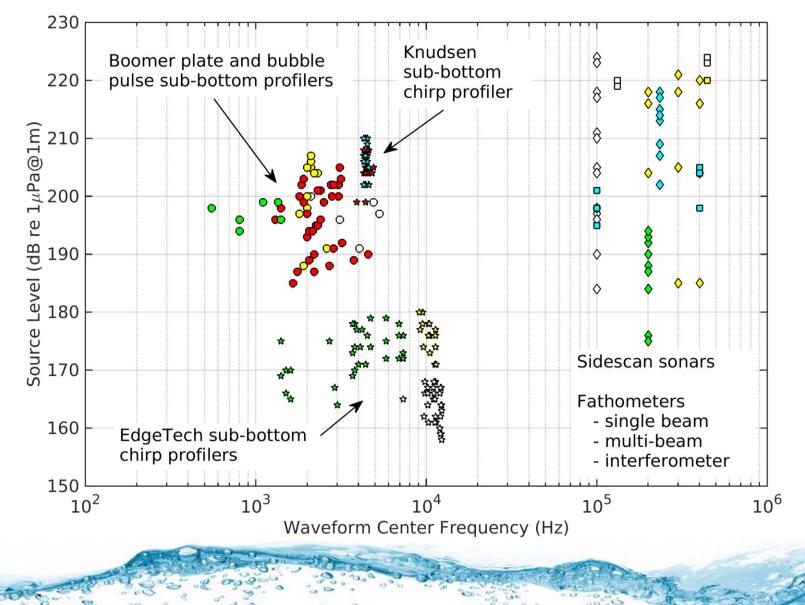



Image: National Oceanic and Atmospheric Administration (USA)

Side Scan Sonar

Klein 3000 Side Scan Sonar



Klein 3000 Side Scan Sonar

Source Settings			Source Level (dB re 1µPa@1m)				Eff. Pulse	Main Lobe	Max. Side Lobe	
Freq. (kHz)	P ulse Wid th (us)	Range (m)	Pk-Pk	Pk	RMS	SEL	Width (us)	Width (3 dB) (deg)	Angle (deg)	Level (dB)
132	50	25	229	224	219	176	44	2.4	-16	-10
132	50	50	229	224	220	176	44	2.4	-17	-9
132	50	100	229	224	220	176	42	2.2	-17	-10
132	50	400	230	225	220	176	44	1.9	-17	-10
132	50	600	230	225	220	176	44	2.2	-17	-9
132	100	100	230	224	220	179	81	2.1	-17	-10
132	200	200	230	225	220	182	168	1.8	-17	-10
132	400	400	230	224	219	184	343	1.7	-17	-11
132	400	600	230	224	219	184	343	1.8	-17	-11
445	25	50	233	227	224	177	21	1.2	-5	-16
445	25	600	233	227	223	177	21	0.8	-5	-17
445	100	100	233	227	223	182	88	1.2	-5	-19

Measurement Summary

Conclusion

Information to support estimation of environmental impacts associated with the operation of high-resolution, marine geophysical survey systems is not usually available in the vendor data.

The Bureau of Ocean Energy Management funded a study, performed by the Underwater Sound Reference Division and U.S. Geological Survey to acquire and analyze calibrated acoustic source data for a number of commonly used geophysical survey systems.

The full report will be posted to: <u>http://www.boem.gov/Studies/</u>

Interested persons can also request to receive a copy by contacting the author at steven.crocker@navy.mil