

Report of the TC Time and Frequency

Ramiz Hamid TC-TF Chair, TÜBİTAK UME, Turkey

Contents

- TC-TF meeting and T&F strategy
- EMRP Projects and future optical redefinition of the second
- Time scale generation with low uncertainty based on BIPM and EURAMET projects activity

TC-TF Meeting

EURAMET TC-TF 2015 Meeting was at BEV on March Main Subjects:

- EURAMET TF projects,
 - Time interval comparison
 - GNSS receiver calibrations and performance monitoring
 - Time Transfer using optical fiber links
- EMRP projects
- New projects
- EURAMET TC-TF 2016 Meeting plan in MIKES on March

TC-TF Meeting

EURAMET

TC-TF 2015 delegates

STRATEGY

The development of accurate ground atomic clocks

Target accuracy: from 10^{-14} - 10^{-15} to 10^{-17} - 10^{-18}

Space applications of atomic clocks and time-frequency metrology

Target accuracy of clocks on space 1x10⁻¹⁶ - 1x10⁻¹⁷ for next 10 years.

Time and frequency dissemination and comparison

In ground <10⁻¹⁸ and <0.1ns; In Space <10⁻¹⁶ and <0.1ns

Accurate time scale generation and traceability (from 7ns to <2 ns)

Impacts: New second, Gravity wave detection, fundamental constant, gas detection, Space, Navigation, Communication

on C

STRATEGY and ACTIVITY

The development of accurate ground atomic clocks

Target accuracy: from 10^{-14} - 10^{-15} to 10^{-17} - 10^{-18}

EMPIR, SRT-s16, Optical Clocks with 10⁻¹⁸ uncertainty

Time and frequency dissemination and comparison

In ground <10⁻¹⁸ and <0.1ns; In Space <10⁻¹⁶ and <0.1ns

EMPIR, SRT-s15, Optical Frequency Transfer – a European Network

Accurate time scale generation and traceability (from 7ns to <2 ns) EURAMET, TC-TF, GNSS Comparison and Cable Delay Measurement EMPIR, SRT-r05, International traceability for T&F measurements

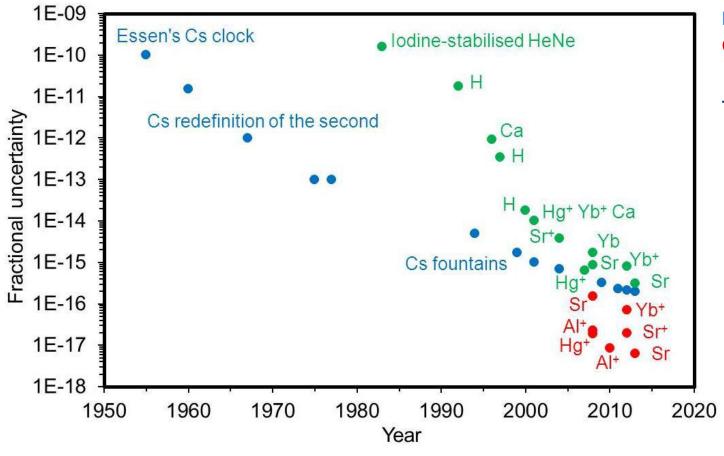
EMRP Projects

SIB04, High-accuracy optical clocks with trapped ions SIB55, International timescales with optical clocks

IND14, New generation of frequency standards for industry IND55, Compact microwave clocks for industrial applications

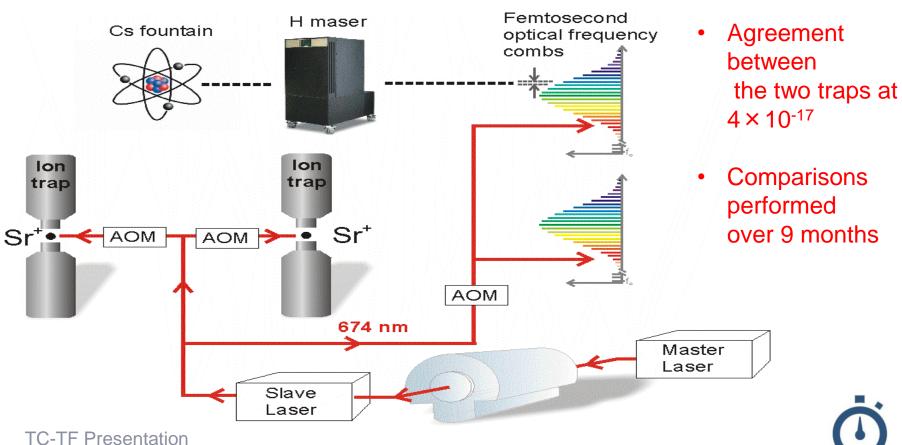
SIB02, Accurate time/frequency comparison and dissemination through optical telecommunication networks

SIB60, Metrology for long distance surveying EXL01, Quantum engineered states for optical clocks and atomic sensors



Evaluation of atomic clocks and future optical redefinition of the second

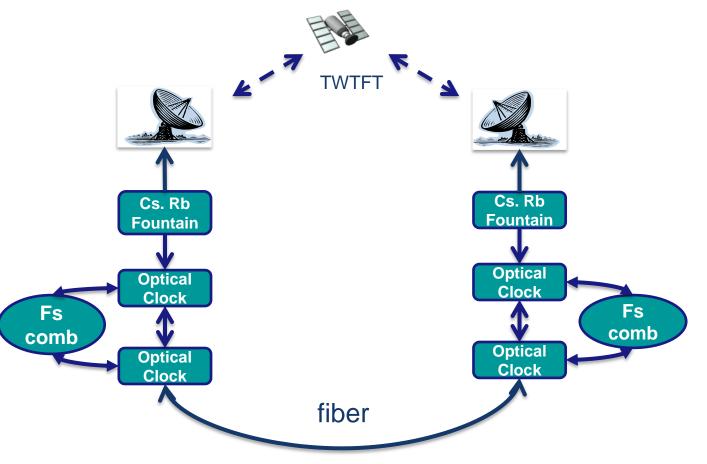
Microwave and Optical Clocks


TC-TF 2015

SIB04, High-accuracy optical clocks with trapped ions

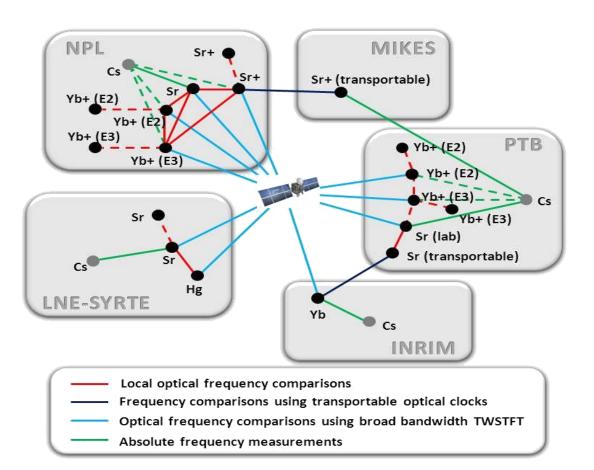
Aim: development of ultra - precise optical clocks using laser - cooled trapped ions.

CCTF-2015



Time and Frequency Dissemination and Comparison

Satellite <1ns


Fiber: 1ms – 0.1ns 10⁻¹⁷ - 10⁻¹⁶

SIB55, International timescales with optical clocks

Key Deliverable:

Comparison at 10⁻¹⁷ - 10⁻¹⁶ level, Future optical redefinition of the second

NEXT: SRT-s16, Optical Clocks with 10⁻¹⁸ uncertainty

Time and Frequency Dissemination Using Fibers

Developments techniques for frequency comparisons at ~10⁻¹⁸ at 1 day

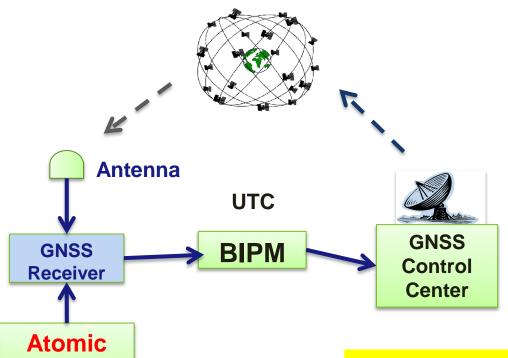
Time comparison using satellite <1ns
Time comparison using fibers: 10 ms - 10 ps

TC-TF Presentation CCTF-2015



Time and Frequency Applications

Developments of compact and low cost atomic clocks for industry


Development Low Phase Noise RF-MW Oscillator Based on Femtosecond Lasers

Time scale generation with low uncertainty

Atomic Clocks Accuracy 10⁻¹⁴ - 10⁻¹⁶

Time deviation $\Delta t / t = \Delta f / f = 1 - 0.01 \text{ ns/day}$

Time scale generation depends

- Delay on antenna
- Delay on Cables
- Delay on GNSS receivers

Time Scale Shift

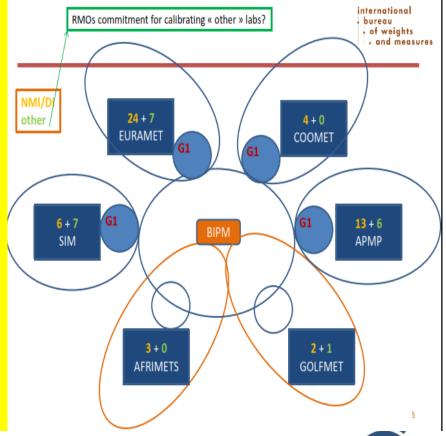
UTC- UTC(k): 5 -100 ns

EURAMET Projects:

GNSS Receiver Comparisons
Cable Delay Measurements

TC-TF Presentation CCTF-2015

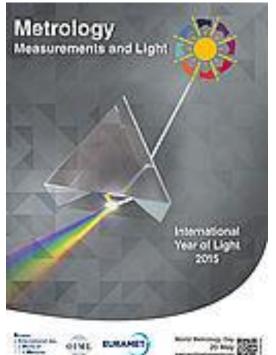
Clock



GNSS Receiver Comparison

- BIPM prepared Guidelines
- Sharing with RMOs the task of GNSS equipment calibration for UTC time comparisons,
- Most TF labs contributing to UTC
 with u_B uncertainty ≈7 ns
- Contributing to the evaluation of the u_B, targeting at 2-3 ns

Pilot G1 Laboratories: ROA, PTB, LNE



Thank you for your attention

UME fs Comb Light for Metrology Day

