

15th CCM meeting, 26-27 February 2015, BIPM

Report from WGDV

Kenichi Fujii, Chair Henning Wolf, Vice-Chair

- Unification of WGD and WGV in July 2014, approved by CIPM
- > WGDV meeting held on 24 Feb 2014 at the BIPM

28 members: A*STAR, BEV, BIPM, Cannon, CEM, CENAM, GUM, INMETRO, INRIM, IPQ, KRISS, LNE-CNAM, METAS, NIM, NIS, NIST, NMIA, NMIJ, NMISA, NPL, NPLI, NRC, PTB, SMU, SP, UME, VNIIM, VSL

- 1 guest: KEBS
- Terms of Reference for WGDV
- Position of WGDV in the CCM Strategy 2014-2024
- Key and supplementary comparisons
- CMC and service category

Terms of Reference for WGDV

- To improve techniques for realizing the SI units of density and viscosity;
- To review and make recommendations for fulfilling the traceability in density and viscosity;
- To identify and support future needs for key and supplementary comparisons in the field of density and viscosity;
- > To perform CIPM key comparisons on density and viscosity;
- To establish and maintain CMC service categories lists, provide guidance to accept CMCs on density and viscosity and coordinate and conduct the CMC review process; and
- To coordinate research activities on metrology for density and viscosity.

CCM Strategy 2014-2024

- Section 7.1 Density
 - In general, completed and planned KCs cover almost all of the CMCs on density. No frequent KCs are necessary. A period of 10 to 15 years is considered to be adequate.
 - As the gas density measurements will be of importance for energy savings and energy transportations, such a CMC may be covered by a new KC on the *pρT* properties of fluids.
 - As food industry and agriculture need a traceable standard of the refractive index of liquids for sugar content measurements, supplying refractive index standard liquids, which are similar to the density standard liquids, will be necessary.
- Section 7.8 Viscosity
 - The current situation is one key comparison every 6 years, alternating between broad viscosity range at moderate temperatures and moderate viscosities in a broad temperature range.

CIPM Key Comparisons on Density

- **CCM.D-K1** Density measurements of a silicon sphere by hydrostatic weighing (2001-2003)
- Status Approved for equivalence (Final report available)
- Pilot NMIJ (JP)
- Pilot group METAS (CH), NRC (CA)
- Participants NMIJ (JP), PTB (DE), INRIM (IT), KRISS (KR), METAS (CH), NRC (CA), CEM (ES), CENAM (MX)
- **CCM.D-K2** Comparison of liquid density standards (2004-2005)
- Status Approved for equivalence (Final report available)
- Pilot PTB (DE)
- Pilot group NMIJ (JP), NRC (CA)
- Participants BEV (AT), NRC (CA), PTB (DE), OMH (HU), NMIJ (JP), KRISS (KR), CENAM (MX), VNIIM (RU)
- **CCM.D-K3** Density measurements of stainless steel weights (2015-)
- Status Technical Protocol in progress
- Pilot NMIJ (JP)
- CCM.D-K4 Hydrometers (2011-2012)
- Status Report in progress, Draft A
- Pilot INRIM (IT)
- Pilot group CENAM (MX), PTB (DE)
- Participants INRIM (IT), CENAM (MX), PTB (DE), LATU (UY), NMIJ (JP), LNE (FR), NMIA (AU), NIST (US), KRISS (KR)

- > CCM.D-K4 (hydrometer)
- Pilot: INRIM (IT)
- > 11 participants
- > 2 Groups: A & B
- Report in progress, Draft A

Group A	Group B	Scale div.	Diameter of body [mm]	Length of body [mm]	Diameter of stem [mm]	Length of stem [mm]	Weight [g]
0,600–0,610 g/cm ³	0,600 -0,610 g/cm ³	0,000 1 g/cm ³	28	260	5,5	140	90
0 – 10 % Vol.	0 – 10 % Vol.	0,1 % Vol	28	240	4	230	130
1,490 – 1,500 g/cm ³	1,490 – 1,500 g/cm ³	0,000 1 g/cm ³	32	270	4,5	140	290
1,980 – 2,000 g/cm ³	1,980 – 2,000 g/cm ³	0,000 2 g/cm ³	29	260	4	170	295

Participants

Laboratory	RMO
Istituto Nazionale di Ricerca Metrologica (INRiM) - ITALY	EURAMET
Physikalisch-Technische Bundesanstalt (PTB) - GERMANY	EURAMET
Magyar Kereskedelmi Engedélyezési Hivatal (MKEH) - HUNGARY	EURAMET
Central Office of Measures Glówny Urzad Miar (GUM) - POLAND	EURAMET
Laboratoire National d'Essais (LNE) - FRANCE	EURAMET
Centro Nacional de Metrologia (CENAM) - MEXICO	SIM
National Institute of Standards and Tecnology (NIST) - UNITED STATES of AMERICA	SIM
Laboratorio Tecnológico del Uruguay (LATU) - URUGUAY	SIM
Korea Research Institute of Standards and Science (KRISS) - REPUBLIC of KOREA	APMP
National Metrology Institute of Japan (NMIJ) - JAPAN	APMP
National Measurement Institute (NMIA) - AUSTRALIA	APMP

Circulation scheme for 2 groups

	Group A		Group B			
Laboratory Data			Laboratory	Data		
INRIM	January 2011		INRIM	January 2011		
CENAM	March – (15) April 2011		NMIA	March – (15) April 2011		
LATU	June 2011		CENAM	June 2011		
NMIJ	August 2011		NIST	August 2011		
LNE	October 2011		KRISS	October 2011		
	to INRIM for A	C arnet formality				
GUM	December 2011		МКЕН	December 2011		
РТВ	February – March 2012		РТВ	February – March 2012		
INRIM	May - June 2012		INRIM	May - June 2012		

Results of Group A

Hydrometer S/N 9342351		NIDM	CENAM	LATU	NMIJ	KRISS	РТВ		
range $0.600 \ 0 - 0.610 \ 0 \ \text{g cm}^{-3}$		INKIM						$KCRV_A$ (weighted mean)	$U(KCRV_A)$
0.601 0		-104	-88	-126	-90	-90	-95	-95	7
0.605 0	р. [.] .	-102	-96	-132	-90	-97	-100	-98	7
0.609 0	5 C	-96	-85	-127	-80	-93	-94	-90	7
	9								
Combined std uncertainty of corrections u_c	x10	8	9	17	6	12	8	$\Pr{\chi^{2}(v) > \chi^{2}_{obs}} < 0,0$	15 ?
Expanded uncertaity of corrections $U_{95} = t_{95} u_c$		15	17	30	13	24	15	$\chi^{2}(5) = 11.07 > \chi^{2}_{obs} = (6.21; 6.03; 8.47)$	
Student t-factor t 95		1.98	1.97	1.97	2.07	1.97	1.96	The consistency test do	esn't fail: procedure A

		0.601 0		0.0	505 0	0.6	509 0	0.600 0 - 0.610 0	
IN IVIT		<i>Di</i> x10^(-6)	$U(Di) \ge 10^{-6}$	<i>Di</i> x10^(-6)	$U(Di) \ge 10^{-6}$	<i>Di</i> x10^(-6)	$U(Di) x10^{(-6)}$	<i>∆j</i> x10^(-6)	$U(\Delta j) x 10^{-6}$
INRiM		-9	14	-4	14	-6	14	-6	14
CENAM	-3	7	16	2	16	5	16	5	16
LATU	g cm	-31	33	-34	33	-37	33	-34	33
NMIJ		5	11	8	11	10	11	8	11
KRISS		5	23	1	23	-3	23	1	24
PTB		0	13	-2	13	-4	13	-2	14

CCM.D-K3: Density of stainless steel weight

- > CMC with ρ = 8000 kg/m³: 15 NMIs
- > Transfer standards: OIML type stainless steel weights
- Method of measurement: Hydrostatic weighing
- Masses: 1 kg, 200 g and 20 g
- Pilot: NMIJ (JP)

aist

- Answers from 14 NMIs and BIPM
 - APMP (3): NIM (China), NIMT (Thailand), NMIJ (Japan)
 - EURAMET (7): CEM (Spain), INRIM (Italy), IPQ (Portugal), METAS (Switzerland), NPL (UK), PTB (Germany), UME (Turkey)
 - AFRIMETS (1): NMISA (South Africa)
 - SIM (3): CENAM (Mexico), INMETRO (Brazil), NRC (Canada)

Q: Desired mass range of the stainless steel weights

Protocol will be prepared soon

- Petal 1: NMIJ→EURAMET (including Link Lab) →BIPM→ AFRIMETS→Link lab from SIM→ NMIJ
- Petal 2: NMIJ→SIM (including Link Lab) →APMP→ Link lab from EURAMET→NMIJ
- Link labs: NMIJ, 1 from EURAMET, 1 from SIM

CIPM Key Comparisons on Viscosity

CCM.V-K1	Five samples of Newtonian liquids: wide viscosity range (2002)
Status	Approved for equivalence (Final report available)
Pilot	PTB (DE)
Pilot group	NMi VSL (NL), IPQ (PT), Cannon (US)
Participants	BNM-LNE (FR), Cannon (US), GUM (PL), CNR-IMGC (IT), NMIJ (JP), NMi VSL (NL), NRCCRM (CN), PTB (DE), SMU (SK), UME (TR), VNIIM (RU), BEV (AT), CENAM (MX), INM (RO), IPQ (PT), NIS (EG), NPLI (IN), SIRIM (MY)
CCM.V-K2	Six samples of Newtonian liquids: wide temperature range (2006)
Status	Approved for equivalence (Final report available)
Pilot	Cannon (US)
Pilot group	PTB (DE)
Participants	INRIM (IT), IPQ (PT), LNE (FR), NIS (EG), NMi VSL (NL), NMIJ (JP), NIM (CN), PTB (DE), VNIIM (RU), INMETRO (BR), SMU (SK), INM (RO), BEV (AT), Cannon (US)
CCM.V-K3	Three samples of Newtonian liquids: wide viscosity range (2012-2013)
Status	Report in progress, Draft A
Pilot	NMIJ (JP)
Pilot Group	PTB (DE)
Participants	Cannon (US), CENAM (MX), GUM (PL), INMETRO (BR), INRIM (IT), LNE (FR), NIM (CN), NMIJ (JP), PTB (DE), SMU (SK), UME (TK), NMi VSL (NL), BEV (AT), IPQ (PT), KEBS (KE), NIS (EG), NMISA (ZA), NPLI (IN), SIRIM (MY)

Link between CIPM and RMO KCs

Density

- CCM.D-K1 (Density of silicon sphere) (2001-2003) Approved for equivalence EURAMET.M.D-K1.1 (2008-2010) Report in progress
- CCM.D-K2 (Density of liquid) (2004) Approved for equivalence EURAMET.M.D-K2 (2008-2009) Report in progress, Draft B COOMET.M.D-S1 (2012-2015) Protocol complete

- CCM.D-K3 (Density of stainless steel weight) (2017) Planned SIM.M.D-K3 (2009-2010) Report in progress, Draft B SIM.M.D-S3 (2006) (volume of glass and stainless steel) Approved and published SIM.M.M-S11 (2012-2013) (Mass and volume of weight) In progress
- CCM.D-K4 (Hydrometer) (2011-2012) Report in progress, Draft A APMP.M.D-K4 (2007-2008) Report in progress, Draft A EUROMET.M.D-K4 (2003-2005) Approved for equivalence SIM.M.D-K4 (2007-2008) Approved for equivalence SIM.M.D-S1 (2007) Approved and published SIM.M.D-S2 (2009-2010) Approved and published SIM.M.D-S4 (2009-2010) Protocol approved

Viscosity

 CCM.V-K1 (wide viscosity range) (2002) Approved for equivalence COOMET.M.V-K1 (2005-2006) Approved for equivalence
 COOMET.M.V-S1 (2013) Report in progress, Draft B

- CCM.V-K2 (wide temperature range)
- CCM.V-K2.1 (2008) (comparison to link Egypt and South Africa)
- CCM.V-K3 (2012-2013) (wide viscosity range) Report in progress, Draft A

New Key Comparisons on Density

(1) Oscillation-type density meter

Concept of this KC

- Pilot institute measures the density of a few litters of liquids.
- The liquids in small bottles are distributed to participants so that their densities can be measured only by oscillation-type density meters.

Agreed as CCM.D-K5: BEV (AT) was proposed to be the pilot.

11 NMIs were interested in this KC.

New Key Comparisons on Density

(2) Density measurement under high-pressure

Concept of this KC

- Pilot institute distributes fluids to participants.
- Method of measurement
 - Magnetic-suspension density meter
 - Oscillation-type density meter
 - Pycnometer

Agreed as CCM.D-K6

4 NMIs were interested in this KC.

Demand for CMC on Refractive Index of Liquid

- Common method for evaluating the sugar concentration in food is to measure the refractive index of liquid sample
- Calibration of the refractometers using a liquid of known refractive index is therefore necessary.
- Practical solution is to use the density standard liquids also as the refractive index standard liquids.

Examples of density standard liquids used also as refractive index standard liquids

Traditional Method: Minimum Deviation Angle

*n*_{water} by L. W. Tilton and J. K. Taylor. *J. Res. Natl. Bur. Stand.*, 20:419, 1938.

Advantage

- Traceable to angle standards (goniometer, prism)
- Applicable for incoherent light sources (lamp, LED)
 Disadvantage
- Limited resolution and accuracy (≈ 10⁻⁵)
- Complexity in setup for angle measurement

New Method: Optical Interferometry

Existing KC and CMC on Refractive Index

- COOMET.PR-S3: Refractive index of solid glass
 - Participants: VNIIOFI (RU), PTB (DE), Ukrmetrteststandart (Ukraine), NMIJ (JP), INRIM (IT), KazInMetr (Kazakhstan)

CMCs: index of refraction in CCL

PAIST

- GUM: Refractive index of materials measuring instruments Refractometers: refractive index, *n*, 1.32 to 1.7
- NMIJ: Triangular prism, *n*, 1.51 to 1.52 Material: BK7 or equivalent glass
- These CMCs in CCL are to be transferred to CCPR.
- Service category for refractive index will be prepared soon at CCPR.

NM J National Metrology Institute of Japan

Proposal

Considering that food industry often requires traceability in the refractive index standard liquids, practical solution would be as follow:

- Refractive index of liquid \rightarrow CCM
- Other optical properties \rightarrow CCPR

This proposal was accepted by the CCM WGS meeting yesterday.

New Key Comparison on Refractive Index

(3) Refractive index of liquid

Concept of this KC

- Pilot institute distribute liquid samples to participants.
- Participants measure the refractive index of the liquid by their own refractometers.

Agreed as CCM.D-K7, Pilot: NMIJ

4 NMIs were interested in this KC.

Participants from other CCs are also welcome.

New Key Comparisons on Viscosity

(4) Viscosity measurements in a wide temperature range

Concept of this KC

- Pilot institute distributes viscosity standard liquids to participants.
- Participants measure the viscosity of the liquids by their own capillary viscometers.

Agreed as CCM.V-K4, Pilot: CENAM (MX)

Repetition of Key Comparisons on Density

(5) Repetition of CCM.D-K1 (final report: 2006)

Concept of this KC

- Pilot institute circulate one or a few Si spheres to participants.
- Participants measure the density by hydrostatic weighing.

Agreed to repeat this KC for a period of 10-15 years

(presented by Ronald Pagel, PTB)

AIST

Non-Newtonian Fluids (presented by Ronald Pagel, PTB)

blood

mortar

toothpaste

mayonnaise

shaving foam

EMRP ENG 59 Non-Newtonian Liquids

"A complete, enhanced sensor package should be standard on every rig"

Objectives

- Develop rheology measurement standard and reference materials
- Determine physical properties of non-Newtonian liquids
- Develop inline sensors including on-site calibration methods

Impact

- Economical: Increased recovery of European oil/gas fields
- Operational efficiency: sensor & model reliability, comparability
- Health & safety: less people in hostile environment
- Standardisation: ISO/NORSOK, API

MEMS based viscosity sensor developed at NMIJ

MEMS Sensor chip

Viscosity sensor holder

Schematic view of the sensor chip

Principle of the viscosity sensor

Cross sectional view of the dual spiral

Measurement system of viscosity sensor

aist

Viscosity calibration of Non-Newtonian liquids

Non-Newtonian properties of candidate substances

Shear Rate, s⁻¹

Conclusion

- After unification, the first WGDV meeting was held on Feb 24. There were 30 participants.
- Progress of CCM.D-K4 (hydrometer) and CCM.V-K3 (wide viscosity range) was discussed. They are close to Draft B.
- > Scheme of CCM.D-K3 (stainless steel weight) were discussed.
- > New KCs were planned and agreed:

CCM.D-K5: Liquid density measurement by oscillation-type density meter

CCM.D-K6: Density measurement under high-pressure

CCM.D-K7: Refractive index of liquid

- CCM.V-K4: Measurement of viscosity standard liquids in a wide temperature range
- Reference materials and demand for non-Newtonian liquids were discussed.