CCT/14-38

Revision of the GUM: why and how?

Walter Bich INRIM – Istituto Nazionale di Ricerca Metrologica Torino (Italia) JCGM-WG1

Why a revision?

Merits of the GUM

- Provides widely accepted guidance on measurement uncertainty
- Treats in a common way systematic and random contributions
- Rests on solid principles of probability and statistics
- It is accused of being difficult (by some) or simplistic (by others), which means that it is a good compromise

- First publication in 1993
- Reprint in 1995 with some corrections
- JCGM 100:2008 (free of charge) GUM 1995 with minor modifications
- Until now, a large number of documents based on the GUM has been written. The GUM has been translated into many <u>languages</u>
- In addition, the GUM has been adopted as a <u>standard</u>, in some cases as a law, in many countries

GUM-translations since 2008

10/06/2011

Translation	GUM	GUM-Intro	GUM-S1	GUM-S2	Language	Laboratory/Organism
✓			✓		Russian	VNIIM
✓	✓		✓		Croatian	DZM
✓	✓				Spanish	СЕМ
✓	✓				Czech	Czech Office for Standards
✓		✓			German	РТВ
✓			✓		Spanish	СЕМ
✓			✓		German	NATG - DIN
✓				✓	Russian	VNIIM
✓		✓			Russian	VNIIM
	✓				Serbian	DCDM
		✓			Spanish	СЕМ

Courtesy BIPM

2

CEN On-line catalogue

ICS: 17.020 - Metrology and r	17.020 - Metrology and measurement in general				
Reference number: ENV 13005:1999					
le: Guide to the expression of uncertainty in measurement					
Country	National Organization	National Document Reference			
Austria	ASI	OENORM ENV 13005			
Belgium	NBN	NBN ENV 13005			
Bulgaria	BDS	BDS ENV 13005:2008			
Croatia	HZN	HRS ENV 13005:2008			
Cyprus	CYS	CYS ENV 13005:1999			
Czech Republic	UNMZ	CSN P ENV 13005			
Denmark	DS.	DS/ENV 13005			
Former Yugoslav Republic of Macedonia	ISRM	ĐœĐšĐ¢Đį ENV 13005:2012			
France	AFNOR	NF ENV 13005			
Germany	DIN	DIN V ENV 13005			
Greece	ELOT	ELOT ENV 13005			
Iceland	IST	FS ENV 13005:1999			
Italy	UNI	UNI CEI ENV 13005			
Latvia	LVS	LVS ENV 13005:2007 L			
Lithuania	LST	LST L ENV 13005:2001			
Luxembourg	ILNAS	SEE-ENV 13005:1999			
Malta	MCCAA	MSA ENV 13005:2000			
Netherlands	NEN	NVN-ENV 13005			
Portugal	IPQ	ENV 13005			
Romania	ASRO	SR ENV 13005:2003			
Slovakia	SUTN	STN P ENV 13005			
Slovenia	SIST	SIST ENV 13005:2004			
Switzerland	SNV	SN-ENV 13005-1999			
Albania	DPS	S H ENV 13005:1999			
Bosnia and Herzegovina	BAS	BAS ENV 13005:2010			
Tunisia	INNORPI	NT 110.138(2001)			

file:///C//Users/ADMIN/Desktop/National%20implementation%20of%20European%20standards.htm[05/11/2013 17:42:58]

http://www.cen.eu/cen/pages/defaul t.aspx

?

On these grounds, a revision of the GUM needs careful consideration and strong motivation

Drawbacks of the GUM

It is a compromise

It is difficult

It is simplistic

The GUM is difficult

• Its application requires notions of

- Calculus (partial derivatives)
- Probability (densities and their moments, mean and variance)
- Statistics (sample statistics, average and standard deviation)

- Its understanding requires solid background in
 - Theory of measurement (concepts such as quantity, error, model)
 - Probability and statistics (random variables, differing views of probability, central limit theorem, convolutions, several distributions)

The GUM is simplistic

- No guidance on the (frequent) case of many measurands
- Poor guidance on the construction of a coverage interval (emphasis is on standard uncertainty), limited to a situation optimistically considered as frequently occurring
- Other (comparatively minor) weak sides, such as poor consideration to
 - non-symmetric distributions
 - non-linear measurement models
- The cases above are difficult, probably they had not been considered in the first edition on purpose

Remedies to difficulty

- NONE. Things should be made as simple as possible, but not simpler
- The GUM is and will remain a high-level document, some difficulty is unavoidable
- However, the next GUM will be at a level comparable to that of the current GUM – still based on a first-order expansion or, ultimately, Gauss' law of errors

Are the cases not covered in the GUM of practical importance?

- Any calibration of a set of artefacts, be they weights, capacitors, gauge blocks or similar, is a multivariate case
- The CIPM MRA asks for CMCs at the 95 % coverage probability, i.e, CMCs are coverage intervals

• Not a few quantities of practical importance are such that the current practice U = ku (with typically k = 2) is inappropriate

There was a real need to address the cases not covered in the current GUM

Remedies to simplism

- Difficult problems typically imply difficult solutions
- Coverage interval (and more): see JCGM 101:2008 (Supplement 1)
- Multivariate case: see JCGM 102:2011 (Supplement 2)

Both problems (multivariate case and coverage interval) and solutions were kept out of the GUM, in the attempt to avoid a deep revision

Side effects of remedies

The GUM and its Supplements are now inconsistent

Why didn't we write Supplements consistent with the GUM?

The GUM is ambiguous

The definition of uncertainty in the GUM is

parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand

This is an intrinsically Bayesian view of uncertainty – uncertainty concerns the measurand

The definition contrasts with the way in which uncertainty is obtained, essentially frequentist – uncertainty concerns the measurand estimate, and is itself uncertain

Supplements are unambiguous

- In Supplement 1, PDFs (probability density functions) are used to describe the state of knowledge about each input quantity
- Accordingly, the state of knowledge about the measurand is described by a PDF obtained from those of the input quantities through the measurement model (in a way that is not relevant here)
- This is an intrinsically Bayesian attitude, and is consistently adopted throughout the Supplements

No alternative was possible!

How to revise the GUM?

• Main purpose: to make it consistent with its Supplements

- Secondary purposes:
 - to make it consistent as much as possible with VIM3
 - to broaden its applicability to "new" needs
 - to minimize notational and terminological ambiguities

Alignment with Supplements

- Uncertainties (and estimates) are:
 - estimates of moments of frequency distributions, in the current GUM (they have degrees of freedom)
 - exact moments of state-of-knowledge distributions, in the Supplements (no degrees of freedom)
- In the revised GUM, uncertainties (and estimates) will be exact moments of state-of-knowledge distributions, as in the Supplements

Practical impact on standard uncertainty

- With respect to the current GUM, input standard uncertainties obtained from a sample of n > 3 repeated indications will be larger by a factor $\sqrt{(n-1)/(n-3)}$
- As a consequence, the output standard uncertainty, *ceteris paribus*, will change, being anyway consistent with the (uncertain) uncertainty provided by the current GUM
- Classification into Type A and Type B evaluations loses its scientific basis will be kept (de-emphasized) due to non-scientific considerations
- No longer effective degrees of freedom attached to the output uncertainty Welch-Satterthwaite formula no longer needed

Practical impact on coverage intervals

- In the revised GUM there will be mostly generic guidance on the construction of coverage intervals, this task being given to Supplement 1
- Distribution-free coverage intervals, based on Chebyshev or Gauss inequalities, will be given
- Expanded uncertainty de-emphasized
- Greater consideration to non-symmetric coverage intervals
- Possible impact on KCDB, Appendix C

Cosmetic changes

- Suffix «c» in the combined standard uncertainty u_c dropped (as in JCGM 101, JCGM 102 and JCGM 106)
- New notation u_x allowed as an alternative to u(x)
- Introduction of the hatted symbol \hat{T} , say, for the estimate of a temperature *T* (when appropriate)
- Introduction of matrix notation, in parallel with, not in substitution of conventional notation

Further notable features

- Increased guidance on the evaluation of input uncertainties
- Guidance on the evaluation of input covariances
- Clarification of the meaning of loose expressions such as «uncertainty of…» through a dedicated section
- Enhanced examples. Examples concerning the GUM and its Supplements will be collected in a separate document

Thank you for your attention

